高数同济版第十二章幂级数

合集下载

高等数学(同济大学第五版)第十二章

高等数学(同济大学第五版)第十二章

习题12−11. 试说出下列各微分方程的阶数:(1)x (y ′)2−2yy ′+x =0;解 一阶.(2)x 2y ′−xy ′+y =0;解 一阶.(3)xy ′′′+2y ′+x 2y =0;解 三阶.(4)(7x −6y )dx +(x +y )dy =0;解 一阶.(5)022=++C Q dt dQ R dtQ d L ; 解 二阶.(6)θρθρ2sin =+d d . 解 一阶.2. 指出下列各题中的函数是否为所给微分方程的解:(1)xy ′=2y , y =5x 2;解 y ′=10x .因为xy ′=10x 2=2(5x 2)=2y , 所以y =5x 2是所给微分方程的解.(2)y ′+y =0, y =3sin x −4cos x ;解 y ′=3cos x +4sin x .因为y ′+y =3cos x +4sin x +3sin x −4cos x =7sin x −cos x ≠0,所以y =3sin x −4cos x 不是所给微分方程的解.(3)y ′′−2y ′+y =0, y =x 2e x ;解 y ′=2xe x +x 2e x , y ′′=2e x +2xe x +2xe x +x 2e x =2e x +4xe x +x 2e x .因为y ′′−2y ′+y =2e x +4xe x +x 2e x −2(2xe x +x 2e x )+x 2e x =2e x ≠0,所以y =x 2e x 不是所给微分方程的解.(4)y ′′−(λ1+λ2)y ′+λ1λ2y =0, .x x e C e C y 2121λλ+= 解 , .x x e C e C y 212211λλλλ+=′x x e C e C y 21222211λλλλ+=′′因为y y y 2121)(λλλλ+′+−′′)())((2121212121221121222211x x x x x x e C e C e C e C e C e C λλλλλλλλλλλλλλ++++−+= =0,所以是所给微分方程的解.x x e C e C y 2121λλ+= 3. 在下列各题中, 验证所给二元方程所确定的函数为所给微分方程的解:(1)(x −2y )y ′=2x −y , x 2−xy +y 2=C ;解 将x 2−xy +y 2=C 的两边对x 求导得2x −y −xy ′+2y y ′=0,即 (x −2y )y ′=2x −y ,所以由x 2−xy +y 2=C 所确定的函数是所给微分方程的解.(2)(xy −x )y ′′+xy ′2+yy ′−2y ′=0, y =ln(xy ).解 将y =ln(xy )的两边对x 求导得y y x y ′+=′11, 即xxy y y −=′. 再次求导得 )(1)()()1()(2222y y y y y x x xy x xy y y y x x xy y x y y x xy y y ′+′−′−⋅−=−+−′−=−−′+−−′=′′. 注意到由y y x y ′+=′11可得1−′=′y x y yx , 所以 )2(1])1([12y y y y x xxy y y y y y x x xy y ′+′−′−⋅−=′+′−′−′−⋅−=′′, 从而 (xy −x )y ′′+xy ′2+yy ′−2y ′=0,即由y =ln(xy )所确定的函数是所给微分方程的解.4. 在下列各题中, 确定函数关系式中所含的参数, 使函数满足所给的初始条件:(1)x 2−y 2=C , y |x =0=5;解 由y |x =0=0得02−52=C , C =−25, 故x 2−y 2=−25.(2)y =(C 1+C 2x )e 2x , y |x =0=0, y ′|x =0=1;解 y ′=C 2e 2x +2(C 1+C 2x )e 2x .由y |x =0=0, y ′|x =0=1得, ⎩⎨⎧=+=10121C C C 解之得C 1=0, C 2=1, 故y =xe 2x .(3)y =C 1sin(x −C 2), y |x =π=1, y ′|x =π=0.解 y ′=C 1cos(x −C 2).由y |x =π=1, y ′|x =π=0得, 即, ⎩⎨⎧=−=−0)cos(1)sin(2121C C C C ππ⎩⎨⎧=−=0cos 1sin 2121C C C C 解之得C 1=1, 22π=C , 故2sin(π−=x y , 即y =−cos x . 5. 写出由下列条件确定的曲线所满足的微分方程:(1)曲线在点(x , y )处的切线的斜率等于该点横坐标的平方;解 设曲线为y =y (x ), 则曲线上点(x , y )处的切线斜率为y ′, 由条件y ′=x 2, 这便是所求微分方程.(2)曲线上点P (x , y )处的法线与x 轴的交点为Q , 且线段PQ 被y 轴平分.解 设曲线为y =y (x ), 则曲线上点P (x , y )处的法线斜率为y ′−1, 由条件第PQ 中点的横坐标为0, 所以Q 点的坐标为(−x , 0), 从而有y x x y ′−=+−10, 即yy ′+2x =0. 6. 用微分方程表示一物理命题: 某种气体的气压P 对于温度T 的变化率与气压成正比, 所温度的平方成反比.解2T P k dT dP =, 其中k 为比例系数.习题12−111. 试用幂级数求下列各微分方程的解:(1)y ′−xy −x =1;解 设方程的解为, 代入方程得 ∑∞=+=10n n n x a a y ,111011=−−−∑∑∞=+∞=−x x a x a x na n n n n n n 即 . 0])2[()12()1(112021=−++−−+−+∞=+∑n n n n x a a n x a a a 可见 a 1−1=0, 2a 2−a 0−1=0, (n +2)a n +2−a n =0(n =1, 2, ⋅ ⋅ ⋅),于是 , 11=a 2102a a +=, !!313=a , !!4104a a +=, ⋅ ⋅ ⋅ , !)!12(112−=−k a k , !)!2(102k a a k +=, ⋅ ⋅ ⋅. 所以 ]!)!2(1!)!12(1[120120∑∞=−++−+=k k k x k a x k a y ∑∑∞=∞=−++−+=12011202(!1)1(!)!12(1k k k k x k a xk a ∑∞=−−+++−=11220!)!12(1)1(12k k x x k e a , 即原方程的通解为∑∞=−−+−=1122!)!12(112k k x x k Ce y .(2)y ′′+xy ′+y =0;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,0)1(01122=++−∑∑∑∞=∞=−∞=−n n n n n n n n n x a xna x x a n n即 , 0])1()1)(2[(21220=++++++∑∞=+n n n n x a n a n n a a 于是 0221a a −=,1331a a −=, ⋅ ⋅ ⋅,1112!)!12()1(a k a k k −−=−−,02!)!2()1(a k a k k −=, ⋅ ⋅ ⋅. 所以 ]!)!12()1(!)!2()1([12112010+∞=+−+−++=∑k k k k k x k a x k a x a a y ∑∑∞=−−∞=−−+−=11211020!)!12()1()2(!!1k k k k k x k a x k a ∑∞=−−−−−+=1121120!)!12()1(2k k k x x k a e a , 即原方程的通解为∑∞=−−−−−+=1121221!)!12()1(2k k k x x k C e C y . (3)xy ′′−(x +m )y ′+my =0(m 为自然数);解 设方程的解为, 代入方程得 ∑∞==0n n n x a y , 0)()1(01122=++−−∑∑∑∞=∞=−∞=−n n n n n n n n n x a m xna m x x a n n x 即 . 0])())(1[()(1110=−−−++−∑∞=+n n n n x a m n a m n n a a m 可见 (a 0−a 1)m =0, (n −m )[(n +1)a n +1−a n ]=0 (n ≠m ),于是 a 0=a 1,)2( )2()1(1+≥+⋅⋅⋅−=+m n m n n a a m n ,)( !11m n a n a n ≤=. 所以 ∑∑∞+=+++=+⋅⋅⋅−+++=2111100)2()1(!m n n m m m m n n x m n n a x a x n a a y∑∑∞+=+++=+++=211100!)!1(!m n n m n m mn n n x a m x a n x a ∑∑∞+=+=++=1100!)!1(!m n n m m n n n x a m n x a )!()!1(!0100∑∑=+=−++=m n n x m m n n n x e a m n x a∑=+++−++=m n n m x m n x a m a e a m 0101!])!1([)!1(, 即原方程的通解为∑=+=m n n x n x C e C y 021!(其中C 1, C 2为任意常数). (4)(1−x )y ′=x 2−y ;解 设方程的解为, 代入方程得 ∑∞==0n n n x a y ,∑∑∞=∞=−−=−0211)1(n n n n n n x a x x na x 即 . 0])1[()13(231223201=+−++−−+++∑∞=+n n n n n x a na a n x a a x a a a 可见 a 1+a 0=0, 2a 2=0, 3a 3−a 2−1=0, (n +1)a n +1−(n −1)a n =0(n ≥3),于是 a 1=−a 0, a 2=0, 313=a , )1(221−=−=−n n a n n a n n (n ≥4). 因此原方程的通解为∑∞=−++−=43)1(231)1(n n x n n x x C y (C =a 0为任意常数). . (5)(x +1)y ′=x 2−2x +y .解 设方程的解为, 代入方程得 ∑∞==0n n n x a y, ∑∑∞=∞=−+−=+02112)1(n n n n n n x a x x x na x 即 . 0])1()1[()13()1(231232210=++−+−+++++−∑∞=+n n n n x a n a n x a a x a a a 于是 a 1=a 0, a 2=−1,323=a ,)4()1(4)1( 231≥−−=−−=−−n n n a n n a n n n. 因此原方程的通解为 ∑∞=−−−++−+=4332)1(4)1(32)1(n n n x n n x x x C y (C =a 0为任意常数). 2. 试用幂级数求下列方程满足所给初始条件的解:(1)y ′=y 2+x 3, 21|0==x y ; 解 根据初始条件, 可设方程的解为∑∞=+=121n n n x a y , 代入方程得 32111)21(x x a x na n n n n n n ++=∑∑∞=∞=−, 即 ⋅⋅⋅+++++++=+∑∑∞=∞=− )2(2414312232122113211x a a a x a a x a x a x x na a n n n n n n . 比较两边同次幂的系数得411=a , 2a 2=a 1, 3a 3=a 2+a 12, 4a 4=a 3+2a 1a 2+1, ⋅ ⋅ ⋅, 于是 411=a , 812=a , 1613=a , 3294=a , ⋅ ⋅ ⋅. 因此所求特解为329161814121432⋅⋅⋅+++++=x x x x y . (2)(1−x )y ′+y =1+x , y |x =0=0;解 根据初始条件, 可设方程的解为, 代入方程得 ∑∞==1n n n x a y,x x a x na x n n n n n n +=+−∑∑∞=∞=−1)1(111即 . x x a n a n a n n n n +=−+−+∑∞=+1])1()1[(111比较系数得 , 11=a 212=a , )3( )1(121≥−=−=−n n n a n n a n n . 因此所求特解为∑∑∞=∞=−+=−++=232)1(1)1(121n n n n x n n x x n n x x y . 因为∑∞=−2)1(1n n x n n 的和函数为(1−x )ln(1−x )+x , 所以特解还可以写成 y =2x +(1−x )ln(1−x )+x .(3)0cos 22=+t x dt x d , x |t =0=a , 0|0==t dt dx . 解 根据初始条件, 可设方程的解为. ∑∞=+=2n n n t a a x 将, ∑∞=+=2n nn t a a x ∑∞=−−=2222)1(n n n t a n n dt x d 和∑∞=−=02)!2()1(cos n n n t n t 代 入方程得0)!2()1()()1(02222=−++−∑∑∑∞=∞=∞=−n n n n n n n n n t n t a a t a n n .将级数展开、整理合并同次项, 并比较系数得, a a =001=a , !22a a −=, , 03=a !424a a =, , 05=a !696a a −=, , 07=a !8558a a =, ⋅ ⋅ ⋅. 故所求特解为 !855!69!42!211(8642⋅⋅⋅++−+−=t t t t a x .习题12−21. 求下列微分方程的通解:(1)xy ′−y ln y =0;解 分离变量得dx xdy y y 1ln 1=, 两边积分得∫∫=dx x dy y y 1ln 1, 即 ln(ln y )=ln x +ln C ,故通解为y =e Cx .(2)3x 2+5x −5y ′=0;解 分离变量得5dy =(3x 2+5x )dx ,两边积分得, ∫∫+=dx x x dy )53(52即 123255C x x y ++=, 故通解为C x x y ++=232151, 其中151C =为任意常数.(3)2211y y x −=′−;解 分离变量得2211x dx y dy −=−, 两边积分得∫∫−=−2211x dx y dy 即 arcsin y =arcsin x +C ,故通解为y =sin(arcsin x +C ).(4)y ′−xy ′=a (y 2+y ′);解 方程变形为(1−x −a )y ′=ay 2, 分离变量得dx x a a dy y −−=112, 两边积分得∫∫−−=dx xa a dy y 112, 即 1)1ln(1C x a a y−−−−=−, 故通解为)1ln(1x a a C y −−+=, 其中C =aC 1为任意常数. (5)sec 2x tan ydx +sec 2y tan xdy =0; 解 分离变量得dx xx y y y tan sec tan sec 22−=, 两边积分得∫∫−=dx xx y y y tan sec tan sec 22, 即 ln(tan y )=−ln(tan x )+ln C , 故通解为tan x tan y =C .(6)y x dxdy +=10; 解 分离变量得10−y dy =10x dx ,两边积分得∫∫=−dx dy x y 1010, 即 10ln 10ln 1010ln 10C x y +=−−, 或 10−y =10x +C ,故通解为y =−lg(C −10x ).(7)(e x +y −e x )dx +(e x +y +e y )dy =0;解 方程变形为e y (e x +1)dy =e x (1−e y )dx , 分离变量得dx e e dy e e xx y y +=−11, 两边积分得∫∫+=−dx e e dy e e xx y y 11, 即 −ln(e y )=ln(e x +1)−ln C ,故通解为(e x +1)(e y −1)=C .(8)cos x sin ydx +sin x cos ydy =0;解 分离变量得dx xx dy y y sin cos sin cos −=, 两边积分得∫∫−=dx x x dy y y sin cos sin cos , 即 ln(sin y )=−ln(sin x )+ln C ,故通解为sin x sin y =C .(9)0)1(32=++x dxdy y ; 解 分离变量得(y +1)2dy =−x 3dx ,两边积分得∫∫−=+dx x dy y 32)1(, 即 14341)1(31C x y +−=+, 故通解为4(y +1)3+3x 4=C (C =12C 1).(10)ydx +(x 2−4x )dy =0.解 分离变量得dx xx dy y 411(4−+=, 两边积分得∫∫−+=dx x x dy y )411(4, 即 ln y 4=ln x −ln(4−x )+ln C ,故通解为y 4(4−x )=Cx .2. 求下列微分方程满足所给初始条件的特解:(1)y ′=e 2x −y , y |x =0=0;解 分离变量得e y dy =e 2x dx ,两边积分得, ∫∫=dx e dy e x y 2即 C e e x y +=221,或 )21ln(2C e y x +=.由y |x =0=0得0)21ln(=+C , 21=C , 所以特解2121ln(2+=x e y .(2)cos x sin ydy =cos y sin xdx , 4|0π==x y ; 解 分离变量得tan y dy =tan x dx ,两边积分得∫∫=xdx ydy tan tan ,即 −ln(cos y )=−ln(cos x )−ln C , 或 cos y =C cos x . 由4|0π==x y 得C C ==0cos 4cos π, 21=C , 所以特解为x y cos cos 2=.(3)y ′sin x =y ln y , e y x ==2π;解 分离变量得dx xdy y y sin 1ln 1=, 两边积分得∫∫=dx x dy y y sin 1ln 1,即 C xy ln 2ln(tan )ln(ln +=, 或2tan x C e y =. 由e y x ==π2得4tan πC e e =, C =1,所以特解为2tan x e y =.(4)cos ydx +(1+e −x )sin ydy =0, 4|0π==x y ; 解 分离变量得dx e e dy y y x x +=−1cos sin , 两边积分得∫∫+=−dx e e dy y y xx 1cos sin , 即 ln|cos y |=ln(e x +1)+ln |C |,或 cos y =C (e x +1).由4|0π==x y 得)1(4cos 4+=ππe C , 42=C , 所以特解为)1(42cos +=x e y . (5)xdy +2ydx =0, y |x =2=1.解 分离变量得dx xdy y 21−=, 两边积分得∫∫−=dx x dy y 21, 即 ln y =−2ln x +ln C ,或 y =Cx −2.由y |x =2=1得C ⋅2−2=1, C =4, 所以特解为24x y =.3. 有一盛满了水的圆锥形漏漏斗, 高为10cm , 顶角为60°, 漏斗下面有面积为0. 5cm 2的孔, 求水面高度变化的规律及流完所需的时间.解 设t 时该已流出的水的体积为V , 高度为x , 则由水力学有x dtdV )9802(5.062.0×××=, 即dt x dV )9802(5.062.0×××=. 又因为330tan x x r =°=,故 dx x dx r V 223ππ−=−=, 从而 dx x dt x 23)9802(5.062.0π−=×××, 即 x dt 2398025.062.03×××=π,因此 C x t +×××−=2598025.062.032π. 又因为当t =0时, x =10, 所以251098025.062.053××××=πC ,故水从小孔流出的规律为 645.90305.0)10(98025.062.0532252525+−=−××××=x x t π. 令x =0, 得水流完所需时间约为10s .4. 质量为1g (克)的质点受外力作用作直线运动, 这外力和时间成正比, 和质点运动的速度成反比. 在t =10s 时, 速度等于50cm/s , 外力为4g cm/s 2, 问从运动开始经过了一分钟后的速度是多少?解 已知v t k F =, 并且法t =10s 时, v =50cm/s , F =4g cm/s 2, 故50104k =, 从而k =20, 因此vt F 20=. 又由牛顿定律, F =ma , 即v t dt dv 201=⋅, 故v dv =20t d t . 这就是速度与时间应满足的微分方程. 解之得C t v +=221021, 即C t v 2202+=. 由初始条件有C +×=2210105021, C =250. 因此 500202+=t v .当t =60s 时, cm/s 3.26950060202=+×=v .5. 镭的衰变有如下的规律: 镭的衰变速度与它的现存量R 成正比. 由经验材料得知, 镭经过1600年后, 只余原始量R 0的一半. 试求镭的量R 与时间t 的函数关系.解 由题设知,R dt dR λ−=, 即dt RdR λ−=, 两边积分得ln R =−λt +C 1,从而 .)( 1C t e C Ce R ==−λ 因为当t =0时, R =R 0, 故R 0=Ce 0=C , 即R =R 0e −λt .又由于当t =1600时, 021R R =, 故λ16000021−=e R R , 从而16002ln =λ. 因此 t t e R e R R 000433.0010002ln 0−−==.6. 一曲线通过点(2, 3), 它在两坐标轴间的任一切线线段均被切点所平分, 求这曲线方程.解 设切点为P (x , y ), 则切线在x 轴, y 轴的截距分别为2x , 2y , 切线斜率为 xy x y −=−−2002, 故曲线满足微分方程:x y dx dy −=, 即dx x dy y 11−=, 从而 ln y +ln x =ln C , xy =C .因为曲线经过点(2, 3), 所以C =2×3=6, 曲线方程为xy =6.7. 小船从河边点O 处出发驶向对岸(两岸为平行直线). 设船速为a , 船行方向始终与河岸垂直, 又设河宽为h , 河中任一点处的水流速度与该点到两岸距离的乘积成正比(比例系数为k ). 求小船的航行路线.解 建立坐标系如图. 设t 时刻船的位置为(x , y ), 此时水速为)(y h ky dt dx v −==, 故dx =ky (h −y )dt .又由已知, y =at , 代入上式得dx =kat (h −at )dt ,积分得C t ka kaht x +−=3223121.由初始条件x |t =0=0, 得C =0, 故3223121t ka kaht x −=. 因此船运动路线的函数方程为⎪⎩⎪⎨⎧=−=ayy t ka kaht x 3223121, 从而一般方程为)312(32y y h a k x −=.习题12−31. 求下列齐次方程的通解:(1)022=−−−′x y y y x ;解 原方程变为1)(2−−=x y x y dx dy . 令xy u =, 则原方程化为 12−+=+u u dx du x u , 即dx x du u 1112=−, 两边积分得C x u u ln ln )1ln(2+=−+, 即Cx u u =−+12, 将xy u =代入上式得原方程的通解Cx x y x y =−+1)(2, 即222Cx x y y =−+. (2)xy y dx dy xln =; 解 原方程变为xy x y dx dy ln =. 令xy u =, 则原方程化为 u u dx du x u ln =+, 即dx x du u u 1)1(ln 1=−, 两边积分得ln(ln u −1)=ln x +ln C , 即u =e Cx +1, 将xy u =代入上式得原方程的通解 y =xe Cx +1.(3)(x 2+y 2)dx −xydy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+x 2u 2)dx −x 2u (udx +xdu )=0, 即dx x udu 1=,两边积分得u 2=ln x 2+C , 将xy u =代入上式得原方程的通解 y 2=x 2(ln x 2+C ).(4)(x 3+y 3)dx −3xy 2dy =0;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 3+x 3u 3)dx −3x 3u 2(udx +xdu )=0, 即dx x du u u 121332=−, 两边积分得C x u ln ln )21ln(213+=−−, 即2312x C u −=, 将xy u =代入上式得原方程的通解 x 3−2y 3=Cx .(5)0ch 3)ch 3sh2(=−+dy xy x dx x y y x y x ; 解 原方程变为xy x y dx dy +=th 32. 令xy u =, 则原方程化为 u u dx du x u +=+th 32, 即dx x du u u 2sh ch 3=, 两边积分得3ln(sh u )=2ln x +ln C , 即sh 3u =Cx 2, 将xy u =代入上式得原方程的通解 22sh Cx xy =. (6)0)1(2)21(=−++dy yx e dx e y x y x . 解 原方程变为y xy xe e y x dy dx 21)1(2+−=.令yx u =, 则原方程化为 u u e e u dy du y u 21)1(2+−=+, 即u u ee u dy du y 212++−=, 分离变量得dy y du e u e uu 1221−=++, 两边积分得ln(u +2e u )=−ln y +ln C , 即y (u +2e u )=C , 将yx u =代入上式得原方程的通解 C e yx y y x =+)2(, 即C ye x y x =+2. 2. 求下列齐次方程满足所给初始条件的特解:(1)(y 2−3x 2)dy +2xydx =0, y |x =0=1;解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2u 2−3x 2)(udx +xdu )+2x 2udx =0,即 dx x du u u u 1332=−−, 或dx x du u u u 1)11113(=−+++− 两边积分得−3ln |u |+ln|u +1|+ln|u −1|=ln|x |+ln|C |, 即u 2−1=Cxu 3, 将xy u =代入上式得原方程的通解 y 2−x 2=Cy 3.由y |x =0=1得C =1, 故所求特解为y 2−x 2=y 3.(2)xy y x y +=′, y |x =1=2; 解 令xy u =, 则原方程化为 u u dx du x u +=+1, 即dx xudu 1=, 两边积分得C x u +=ln 212,将xy u =代入上式得原方程的通解 y 2=2x 2(ln x +C ).由y |x =1=2得C =2, 故所求特解为y 2=2x 2(ln x +2).(3)(x 2+2xy −y 2)dx +(y 2+2xy −x 2)dy =0, y |x =1=1.解 这是齐次方程. 令xy u =, 即y =xu , 则原方程化为 (x 2+2x 2u −x 2u 2)dx +(x 2u 2+2x 2u −x 2)(udx +xdu )=0,即dx x du u u u u u 1112232−=+++−+, 或 dx x du u u u 1)1211(2=+−+, 两边积分得ln|u +1|−ln(u 2+1)=ln|x |+ln|C |, 即u +1=Cx (u 2+1), 将xy u =代入上式得原方程的通解 x +y =C (x 2+y 2).由y |x =1=1得C =1, 故所求特解为x +y =(x 2+y 2).3. 设有连结点O (0, 0)和A (1, 1)的一段向上凸的曲线弧A O , 对于A O 上任一点P (x , y ), 曲线弧P O 与直线段所围图形的面积为x 2, 求曲线弧A O 的方程. 解 设曲线弧A O 的方程为y =y (x ). 由题意得 20)(21)(x x xy dx x y x =−∫,两边求导得 x x y x x y x y 2)(21)(21)(=′−−, 即 4−=′x y y . 令xy u =, 则有 4−=+u dx du x u , 即dx xdu u 41−=, 两边积分得u =−4ln x +C . 将xy u =代入上式得方程的通解 y =−4x ln x +Cx .由于A (1, 1)在曲线上, 即y (1)=1, 因而C =1, 从则所求方程为y =−4x ln x +x .习题12−41. 求下列微分方程的通解:(1)x e y dxdy −=+; 解 )()()(C x e C dx e e e C dx e e e y x x x x dx x dx +=+⋅=+∫⋅∫=−−−−−∫∫. (2)xy ′+y =x 2+3x +2;解 原方程变为x x y x y 231++=+′.])23([11C dx e x x e y x x +∫⋅++∫=∫−])23(1])23([12C dx x x x C xdx x x x +++=+++=∫∫x Cx x C x x x x +++=+++=22331)22331(1223.(3)y ′+y cos x =e −sin x ;解 )(cos sin cos C dx e e e y xdx x dx +∫⋅∫=∫−−)()(sin sin sin sin C x e C dx e e e x x x x +=+⋅=−−−∫.(4)y ′+y tan x =sin 2x ;解 )2sin (tan tan C dx e x e y xdx xdx +∫⋅∫=∫−)2sin (cos ln cos ln C dx e x e x x +⋅=∫−∫+⋅=)cos 1cos sin 2(cos C dx x x x x=cos x (−2cos x +C )=C cos x −2cos 2x .(5)(x 2−1)y ′+2xy −cos x =0;解 原方程变形为1cos 1222−=−+′x xy x xy .)1cos(1221222C dx e x x e y x xdx x x +∫⋅−∫=∫−−−)(sin 11])1(1cos [112222C x x C dx x x xx +−=+−⋅−−=∫.(6)23=+ρθρd d ; 解 )2(33C d e e d d +∫⋅∫=∫−θρθθ )2(33C d e e +=∫−θθθ θθθ33332)32(−−+=+=Ce C e e . (7)x xy dxdy 42=+; 解 )4(22C dx e x e y xdx xdx +∫⋅∫=∫− )4(22C dx e x e x x +⋅=∫− .2222)2(x x x Ce C e e −−+=+= (8)y ln ydx +(x −ln y )dy =0;解 原方程变形为y x y y dy dx 1ln 1=+. )1(ln 1ln 1C dy e ye x y y dy y y +∫⋅∫=∫− )ln 1(ln 1C ydy yy +⋅=∫ yC y C y y ln ln 21)ln 21(ln 12+=+=. (9)3)2(2)2(−+=−x y dxdy x ; 解 原方程变形为2)2(221−=−−x y x dx dy . ])2(2[21221C dx e x e y dx x dx x +∫⋅−∫=∫−−− ∫+−⋅−−=]21)2(2)[2(2C dx x x x =(x −2)[(x −2)2+C ]=(x −2)3+C (x −2).(10)02)6(2=+−y dxdy x y .解 原方程变形为y x y dy dx 213−=−. ])21([33C dy e y e x y dy y +∫⋅−∫=∫− )121(33C dy y y y +⋅−=∫ 32321)21(Cy y C y y +=+=. 2. 求下列微分方程满足所给初始条件的特解:(1)x x y dxdy sec tan =−, y |x =0=0; 解 )sec (tan tan C dx e x e y xdx xdx +∫⋅∫=∫− )(cos 1)cos sec (cos 1C x xC xdx x x +=+⋅=∫. 由y |x =0=0, 得C =0, 故所求特解为y =x sec x .(2)xx x y dx dy sin =+, y |x =π=1; 解 )sin (11C dx e x x e y dx x x +∫∫=∫− )cos (1)sin (1C x xC xdx x x x +−=+⋅=∫. 由y |x =π=1, 得C =π−1, 故所求特解为)cos 1(1x x y −−=π. (3)x e x y dx dy cos 5cot =+, 4|−==πx y ; 解 )5(cot cos cot C dx e e e y xdx x xdx +∫⋅∫=∫− )5(sin 1)sin 5(sin 1cos cos C e xC xdx e x x x +−=+⋅=∫. 由4|2−==πx y , 得C =1, 故所求特解为)15(sin 1cos +−=x e x y . (4)83=+y dxdy , y |x =0=2;解 )8(33C dx e e y dx dx +∫⋅∫=∫− x x x x x Ce C e e C dx e e 3333338)38()8(−−−+=+=+=∫. 由y |x =0=2, 得32−=C , 故所求特解为)4(323x e y −−=. (5)13232=−+y x x dx dy , y |x =1=0. 解 )1(223232C dx e e y dx x x dx x x +∫⋅∫=∫−−− )21()1(22221131313C e e x C dx e x e x x x x x +=+=−−∫. 由y |x =1=0, 得e C 21−=, 故所求特解为)1(211132−−=x e x y . 3. 求一曲线的方程, 这曲线通过原点, 并且它在点(x , y )处的切线斜率等于2x +y . 解 由题意知y ′=2x +y , 并且y |x =0=0.由通解公式得)2()2(C dx xe e C dx xe e y x x dx dx +=+∫∫=∫∫−− =e x (−2xe −x −2e −x +C )=Ce x −2x −2.由y |x =0=0, 得C =2, 故所求曲线的方程为y =2(e x −x −1).4. 设有一质量为m 的质点作直线运动, 从速度等于零的时刻起, 有一个与运动方向一至、大小与时间成正比(比例系数为k 1)的力作用于它, 此外还受一与速度成正比(比例系数为k 2)的阻力作用. 求质点运动的速度与时间的函数关系.解 由牛顿定律F =ma , 得v k t k dt dv m21−=, 即t m k v m k dt dv 12=+. 由通解公式得)()(222211C dt e t m k e C dt e t m k e v t m k t m k dt m km k +⋅=+∫⋅∫=∫∫−− )(22222121C e k m k te k k e t m kt m k t m k +−=−.由题意, 当t =0时v =0, 于是得221k m k C =. 因此 )(22122121222k m k e k m k te k k e v t m k t m k m k +−=− 即 )1(22121t m k e k m k t k k v −−−=. 5. 设有一个由电阻R =10Ω、电感L =2h(亨)和电源电压E =20sin5t V (伏)串联组成的电路. 开关K 合上后, 电路中有电源通过. 求电流i 与时间t 的函数关系.解 由回路电压定律知01025sin 20=−−i dt di t , 即t i dt di 5sin 105=+. 由通解公式得t dt dt Ce t t C dt e t e i 5555cos 5sin )5sin 10(−−+−=+∫⋅∫=∫. 因为当t =0时i =0, 所以C =1. 因此)45sin(25cos 5sin 55π−+=+−=−−t e e t t i t t (A).6. 设曲在右半平面(x >0)内与路径无关, 其中f (x )可导, 且f (1)=1, 求f (x ).dy x x xf dx x yf L ])(2[)(2−+∫ 解 因为当x >0时, 所给积分与路径无关, 所以])(2)]([2x x xf xx yf y −∂∂=∂∂, 即 f (x )=2f (x )+2xf ′(x )−2x , 或 1)(21)(=+′x f xx f . 因此 x C x C dx x x C dx e e x f dx x dx x +=+=+∫⋅∫=∫∫−32)(1)1()(2121. 由f (1)=1可得31=C , 故xx x f 3132)(+=. 7. 求下列伯努利方程的通解:(1))sin (cos 2x x y y dxdy −=+;解 原方程可变形为x x ydx dy y sin cos 11−=+, 即x x y dx y d cos sin )(11−=−−−. ])cos sin ([1C dx e x x e y dx dx +∫⋅−∫=−−∫x Ce C dx e x x e x x x sin ])sin (cos [−=+−=∫−, 原方程的通解为x Ce y x sin 1−=. (2)23xy xy dxdy =−; 解 原方程可变形为x y x dxdy y =−1312, 即x xy dx y d −=+−−113)(. ])([331C dx e x e y xdx xdx +∫⋅−∫=∫−−)(222323C dx xe e x x +−=∫− 31)31(222232323−=+−=−−x x x Ce C e e , 原方程的通解为311223−=−x Ce y . (3)4)21(3131y x y dx dy −=+; 解 原方程可变形为)21(31131134x y dx dy y −=+, 即12)(33−=−−−x y dx y d . ])12([3C dx e x e y dx dx +∫⋅−∫=−−∫x x x Ce x C dx e x e +−−=+−=∫−12])12([, 原方程的通解为1213−−=x Ce y x .(4)5xy y dxdy =−; 解 原方程可变形为x ydx dy y =−4511, 即x y dx y d 44)(44−=+−−. ])4([444C dx e x e y dx dx +∫⋅−∫=∫−− )4(44C dx xe e x +−=∫− x Ce x 441−++−=, 原方程的通解为x Ce x y 44411−++−=.(5)xdy −[y +xy 3(1+ln x )]dx =0.解 原方程可变形为 )ln 1(11123x yx dx dy y +=⋅−⋅, 即)ln 1(22)(22x y x dx y d +−=+−−. ])ln 1(2[222C dx e x e y x dx x +∫⋅+−∫=∫−− ])ln 1(2122C dx x x x ++−=∫ x x x x C 94ln 322−−=, 原方程的通解为x x x x C y 94ln 32122−−=. 8. 验证形如yf (xy )dx +xg (xy )dy =0的微分方程, 可经变量代换v =xy 化为可分离变量的方程, 并求其通解.解 原方程可变形为)()(xy xg xy yf dx dy −=. 在代换v =xy 下原方程化为)()(22v g x v vf x v dx dv x −=−,即dx xdu v f v g v v g 1)]()([)(=−, 积分得 C x du v f v g v v g +=−∫ln )]()([)(, 对上式求出积分后, 将v =xy 代回, 即得通解.9. 用适当的变量代换将下列方程化为可分离变量的方程, 然 后求出通解:(1)2)(y x dxdy +=; 解 令u =x +y , 则原方程化为21u dx du =−, 即21u du dx +=. 两边积分得x =arctan u +C .将u =x +y 代入上式得原方程的通解x =arctan(x +y )+C , 即y =−x +tan(x −C ).(2)11+−=yx dx dy ; 解 令u =x −y , 则原方程化为 111+=−udx du , 即dx =−udu . 两边积分得 1221C u x +−=.将u =x +y 代入上式得原方程的通解12)(21C y x x +−−=, 即(x −y )2=−2x +C (C =2C 1).(3)xy ′+y =y (ln x +ln y );解 令u =xy , 则原方程化为u x u x u x u dx du x x ln )1(2=+−, 即du uu dx x ln 11=. 两边积分得ln x +ln C =lnln u , 即u =e Cx .将u =xy 代入上式得原方程的通解xy =e Cx , 即Cx e xy 1=. (4)y ′=y 2+2(sin x −1)y +sin 2x −2sin x −cos x +1;解 原方程变形为y ′=(y +sin x −1)2−cos x .令u =y +sin x −1, 则原方程化为x u x dx du cos cos 2−=−, 即dx du u =21. 两边积分得 C x u +=−1. 将u =y +sin x −1代入上式得原方程的通解 C x x y +=−+−1sin 1, 即C x x y +−−=1sin 1.(5)y (xy +1)dx +x (1+xy +x 2y 2)dy =0 . 解 原方程变形为)1()1(22y x xy x xy y dx dy +++−=. 令u =xy , 则原方程化为)1()1(1222u u x u u x u dx du x +++−=−, 即)1(1223u u x u dx du x ++=. 分离变量得du uu u dx x )111(123++=. 两边积分得 u uu C x ln 121ln 21+−−=+. 将u =xy 代入上式得原方程的通解 xy xy y x C x ln 121ln 221+−−=+, 即 2x 2y 2ln y −2xy −1=Cx 2y 2(C =2C 1).习题12−51. 判别下列方程中哪些是全微分方程, 并求全微分方程的通解:(1)(3x 2+6xy 2)dx +(6x 2y +4y 2)dy =0;解 这里P =3x 2+6xy 2, Q =6x 2y +4y 2. 因为x Q xy yP ∂∂==∂∂12, 所以此方程是全微分方程, 其通解为 , C dy y y x dx x y x =++∫∫02202)46(3即 C y y x x =++3223343. (2)(a 2−2xy −y 2)dx −(x +y )2dy =0;解 这里P =a 2−2xy −y 2, Q =−(x +y )2. 因为xQ y x y P ∂∂=−−=∂∂22, 所以此方程是全微分方程, 其通解为 , C dy y x dx a y x =+−∫∫0202)(即 a 2x −x 2y −xy 2=C .(3)e y dx +(xe y −2y )dy =0;解 这里P =e y , Q =xe y −2y . 因为x Q e yP y ∂∂==∂∂, 所以此方程是全微分方程, 其通解为 , C dy y xe dx e y y x =−+∫∫000)2(即 xe y −y 2=C .(4)(x cos y +cos x )y ′−y sin x +sin y =0;解 原方程变形为(x cos y +cos x )dy −(y sin x +sin y )dx =0. 这里P =−(y sin x +sin y ), Q =x cos y +cos x . 因为xQ x y y P ∂∂=−=∂∂sin cos ,所以此方程是全微分方程, 其通解为, C dy x y x dx yx =++∫∫00)cos cos (0即 x sin y +y cos x =C .解(5)(x 2−y )dx −xdy =0;解 这里P =x 2−y , Q =−x . 因为x Q yP ∂∂=−=∂∂1, 所以此方程是全微分方程, 其通解为, C xdy dx x y x =−∫∫002即 C xy x =−331. (6)y (x −2y )dx −x 2dy =0;解 这里P =y (x −2y ), Q =−x 2. 因为y x yP 4−=∂∂, x x Q 2−=∂∂, 所以此方程不是全微分方程.(7)(1+e 2θ)d ρ+2ρe 2θd θ=0;解 这里P =1+e 2θ, Q =2ρe 2θ. 因为xQ e y P ∂∂==∂∂θ22, 所以此方程是全微分方程, 其通解为 , C d e d =+∫∫θθρθρρ02022即 ρ(e 2θ+1)=C .(8)(x 2+y 2)dx +xydy =0.解 这里P =x 2+y 2, Q =xy . 因为y yP 2=∂∂, y x Q =∂∂, 所以此方程不是全微分方程.2. 利用观察法求出下列方程的积分因子, 并求其通解:(1)(x +y )(dx −dy )=dx +dy ;解 方程两边同时乘以y x +1得 y x dy dx dy dx ++=−, 即d (x −y )=d ln(x +y ), 所以yx +1为原方程的一个积分因子, 并且原方程的通解为 x −y =ln(x +y )+C .(2)ydx −xdy +y 2xdx =0;解 方程两边同时乘以21y 得 02=+−xdx y xdy ydx , 即02()(2=+x d y x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C x y x =+22. (3)y 2(x −3y )dx +(1−3y 2x )dy =0;解 原方程变形为xy 2dx −3y 3dx +dy −3x 2dy =0, 两边同时乘以21y 并整理得 0)33(2=+−+xdy ydx ydy xdx , 即0)(3)1()2(2=−−xy d y d x d , 所以21y 为原方程的一个积分因子, 并且原方程的通解为 C xy yx =−−3122. (4)xdx +ydy =(x 2+y 2)dx ;解 方程两边同时乘以221y x +得 022=−++dx yx ydy xdx , 即0)]ln(21[22=−+dx y x d , 所以221y x +为原方程的一个积分因子, 并且原方程的通解为 x 2+y 2=Ce 2x .(5)(x −y 2)dx +2xydy =0;解 原方程变形为xdx −y 2dx +2xydy =0, 两边同时乘以21x 得 0222=−+x dx y xydy x dx , 即0)()(ln 2=+x y d x d , 所以21x为原方程的一个积分因子, 并且原方程的通解为 C x y x =+2ln , 即x ln x +y 2=Cx . (6)2ydx −3xy 2dx −xdy =0.解 方程两边同时乘以x 得2xydx −x 2dy −3x 2y 2dx =0, 即yd (x 2)−x 2dy −3x 2y 2dx =0, 再除以y 2得03)(2222=−−dx x ydy x x yd , 即0)(32=−x y x d 所以2y x 为原方程的一个积分因子, 并且原方程的通解为 032=−x yx . 3. 验证)]()([1xy g xy f xy −是微分方程yf (xy )dx +xg (xy )dy =0的积分因子, 并求下列方程的通解:解 方程两边乘以)]()([1xy g xy f xy −得 0])()()]()([1=+−dy xy xg dx xy yf xy g xy f xy , 这里)]()([)(xy g xy f x xy f P −=, )]()([)(xy g xy f y xy g Q −=. 因为x Q xy g xy f xy g xy f xy g xy f y P ∂∂=−′−′=∂∂2)]()([)()()()(, 所以)]()([1xy g xy f xy −是原方程的一个积分因子. (1)y (x 2y 2+2)dx +x (2−2x 2y 2)dy =0;解 这里f (xy )=x 2y 2+2, g (xy )=2−2x 2y 2 , 所以 31)]()([1y x xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以3331y x 得全微分方程 032323222232=−++dy y x y x dx y x x , 其通解为C dy y x y x dx x x y x =−++∫∫122123232, 即C y x y x =−+−)11ln (ln 31222, 或2212y x e Cy x =.(2)y (2xy +1)dx +x (1+2xy −x 3y 3)dy =0.解 这里f (x y )=2x y +1, g (x y )=1+2x y −x 3 y 3 , 所以 441)]()([1yx xy g xy f xy =− 是方程的一个积分因子. 方程两边同乘以1y x 得全微分方程 02112433334=−+++dy y x y x xy dx yx xy ,其通解为C dy y x y x xy dx x x y x =−+++∫∫14333142112, 即 C y y x y x =++||ln 3113322. 4. 用积分因子法解下列一阶线性方程:(1)xy ′+2y =4ln x ;解 原方程变为x x y x y ln 42=+′, 其积分因子为 22)(x e x x =∫=μ, 在方程x xy x y ln 42=+′的两边乘以x 2得 x 2y ′+2xy =4x ln x , 即(x 2y )′=4x ln x ,两边积分得, C x x x xdx x y x +−==∫222ln 2ln 4原方程的通解为21ln 2x C x y +−=. (2)y ′−tan x ⋅y =x . 解 积分因子为,x e x xdx cos )(tan =∫=−μ在方程的两边乘以cos x 得cos x ⋅y ′−sin x ⋅y =x cos x , 即(cos x ⋅y )′=x cos x , 两边积分得C x x x xdx x y x ++==⋅∫cos sin cos cos , 方程的通解为xC x x y cos 1tan ++=.习题12−61. 求下列各微分方程的通解:(1)y ′′=x +sin x ;解 12cos 21)sin (C x x dx x x y +−=+=′∫, 21312sin 61)cos 21(C x C x x dx C x x y ++−=+−=∫, 原方程的通解为213sin 61C x C x x y ++−=. (2)y ′′′=xe x ;解 , 12C e xe dx xe y x x x +−==′′∫, 21122)2(C x C e xe dx C e xe y x x x x ++−=+−=′∫, 3221213)22(C x C x C e xe dx C x C e xe y x x x x +++−=++−=∫原方程的通解为.32213C x C x C e xe y x x +++−= (3)211x y +=′′; 解 12arctan 11C x dx x y +=+=′∫ x C dx x x x x dx C x y 1211arctan )(arctan ++−=+=∫∫ 212)1ln(21arctan C x C x x x +++−=, 原方程的通解为2121ln arctan C x C x x x y +++−=.(4)y ′′=1+y ′2;解 令p =y ′, 则原方程化为p ′=1+p 2, 即dx dp p =+211, 两边积分得arctan p =x +C 1, 即y ′=p =tan(x +C 1),, 211|)cos(|ln )tan(C C x dx C x y ++−=+=∫原方程的通解为21|)cos(|ln C C x y ++−=.(5)y ′′=y ′+x ;解 令p =y ′, 则原方程化为p ′−p =x ,由一阶线性非齐次方程的通解公式得, 1)()(111−−=+=+∫⋅∫=∫∫−−x e C C dx xe e C dx e x e p x x x dx dx 即 y ′=C 1e x −x −1,于是 221121)1(C x x e C dx x e C y x x +−−=−−=∫, 原方程的通解为22121C x x e C y x +−−=.(6)xy ′′+y ′=0;解 令p =y ′, 则原方程化为 x p ′+p =0, 即01=+′p xp , 由一阶线性齐次方程的通解公式得xC e C e C p x x 1ln 111==∫=−−, 即 xC y 1=′, 于是 211ln C x C dx xC y +==∫, 原方程的通解为y =C 1ln x +C 2 .(7)yy ′′+′=y ′2;解 令p =y ′, 则dy dp p dx dy dy dp y =⋅=′′, 原方程化为 21p dy dp yp =+, 即dy y dp p p 112=−, 两边积分得||ln ||ln |1|ln 2112C y p +=−, 即. 22121y C p ±− 当|y ′|=|p |>1时, 方程变为2211y C y +±=′, 即dx dy y C ±=+21)(11, 两边积分得arcsh(C 1y )=±C 1x +C 2,即原方程的通解为)(sh 1121x C C C y ±=. 当|y ′|=|p |<1时, 方程变为 2211y C y −±=′, 即dx dy y C ±=−21)(11, 两边积分得arcsin(C 1y )=±C 1x +C 2,即原方程的通解为)(sin 1121x C C C y ±=.(8)y 3y ′′−1=0;解 令p =y ′, 则dy dp py =′′, 原方程化为 013=−dy dp py , 即pdp =y −3dy , 两边积分得122212121C y p +−=−, 即p 2=−y −2+C 1, 故 21−−±=′y C y , 即dx dy y C ±=−−211, 两边积分得)(12121C x C y C +±=−,即原方程的通解为C 1y 2=(C 1x +C 2)2 .(9)yy 1=′′; 解 令p =y ′, 则dy dp py =′′, 原方程化为 y dy dp p 1=, 即dy ypdp 1=, 两边积分得122221C y p +=, 即1244C y p +=, 故 12C y y +±=′, 即dx dy C y ±=+11, 两边积分得原方程的通211231]2)(32[C C y C C y x ++−+±=.(10)y ′′=y ′3+y ′. 解 令p =y ′, 则dydp py =′′, 原方程化为 p p dy dp p +=3, 即0)]1([2=+−p dy dp p . 由p =0得y =C , 这是原方程的一个解. 由0)1(2=+−p dydp 得 arctan p =y −C 1, 即y ′=p =tan(y −C 1),从而 )sin(ln )tan(1112C y dy C y C x −=−=+∫, 故原方程的通解为.12arcsin C e y C x +=+ 2. 求下列各微分方程满足所给初始条件的特解:(1)y 3 y ′′+1=0, y |x =1=1, y ′|x =1=0;解 令p =y ′, 则dy dp p y =′′, 原方程化为013=+dy dp p y , 即dy ypdp 31−=, 两边积分得1221C y p +=, 即y y C y 211+±=′. 由y |x =1=1, y ′|x =1=0得C 1=−1, 从而yy y 21−±=′, 分离变量得dx dy yy =−±21, 两边积分得221C x y +=−±, 即22)(1C x y +−±=.由y |x =1=1得C 2=−1, 2)1(1−−=x y , 从而原方程的通解为22x x y −=.(2)y ′′−ay ′2=0, y |x =0=0, y ′|x =0=−1;解 令p =y ′, 则原方程化为02=−ap dx dp , 即adx dp p=21, 两边积分得 11C ax p +=−, 即11C ax y +−=′. 由y ′|x =0=−1得C 1=1, 11+−=′ax y , 两边积分得 2)1ln(1C ax a y ++−=.由y |x =0=0得C 2=0, 故所求特解为)1ln(1+−=ax a y .(3)y ′′′=e ax , y |x =1=y ′|x =1=y ′′|x =1=0;解 11C e adx e y ax ax +==′′∫.。

高数同济版 幂级数共27页文档

高数同济版 幂级数共27页文档
高数同济版 幂级数

6、黄金时代是在我们的前面,而不在 我们的 后面。

7、心急吃不了热汤圆。

8、你可以很有个性,但某些时候请收 敛。

9、只为成功找方法,不为失败找借口 (蹩脚 的工人 总是说 工具不 好)。

10、只要下定决心克服恐惧,便几乎 能克服 任何恐 惧。因 为,请 记住, 除了在 脑海中 ,恐惧 无处藏 身。-- 戴尔. 卡耐基 。
Байду номын сангаас
46、我们若已接受最坏的,就再没有什么损失。——卡耐基 47、书到用时方恨少、事非经过不知难。——陆游 48、书籍把我们引入最美好的社会,使我们认识各个时代的伟大智者。——史美尔斯 49、熟读唐诗三百首,不会作诗也会吟。——孙洙 50、谁和我一样用功,谁就会和我一样成功。——莫扎特

高等数学第六版(同济版)第十二章复习资料

高等数学第六版(同济版)第十二章复习资料

注:r.级数是无穷多个数相加的结果./!-12°.级数£知的形成经历了一个有限到无限的过程.n-13•级数的和:称级数亍“”的前”项和s 产士%为级数的部分和.称数列{»}为级数的部分和数列. /r-l女■】 若部分和数列{片}有极限$,即lim»=s ,则称级数收敛,称s 为级数的和,即"K-1s = u { + u 2 + w 3+ ・・• + ll n + ….称差值/;,=5-5,_为级数的余项,显然lim/^0. 気 "T* 若数列{»}的极限不存在,则称发散.H-1X例1 •讨论等比级数(几何级数)5>/=0 +如+如2+…+呵“+…的敛散性,其中。

工0・ 解:(1)・若§工1 ,则部分和片=工彳/ =a + aq+ +aq n ^9a(l — q")_ a acfl_g l_g \-q当I ty 1< 1 0寸,有lim 片=—^―,则乞呵收敛.…1 _ qn-l综上,等比级数为诃在Iglvl 时收敛,在Iglni 时发散. F1-In-1 n-1当I g l> 1时,有lini s H = oo ,则为“q"发散n->xn-1⑵.若q = 1 ,则部分和s n = na* ,有liin s” = s ,则工发散fi->xn-1⑶•若§ = -1,则部分和》=<::二严,有呼不存在'则討发散X例2.证明等差级数2> = 1 + 2 + 3 +… n-l证明:由于部分和L + 2 +…卄冒有lim s = s从而发散.J7-1航判定级数£法r护右…躺r…的敛散性•解:由于通项= —=-—-L ,因此部分和片=1 一丄+丄一丄+…+丄一丄=丄n(n +1) n n + \12 2 3 n n + \ n + \且lim s n = lim 1 ---- !— I = 1,则, ! 收敛,其和为1.―丸n + \)/?(// +1)二、收敛级数的基本性质性质1 :若级数Y知收敛,和为$ ,则级数工《冷也收敛,和为愿,其中&H0. n-l n-1性质2 :若级数与$>"都收敛,其和分别为S和CT ,则土儿也收敛,其和为S±b.H-l K-l fl-1性质3 :在级数工“”中去掉、加上或改变有限项,不会改变级数丫心的敛散性. n-l n-i 性质4 :若级数丫匕收敛,则对该级数的项任意加括号后所形成的级数n-i(⑷+ …+5) +(仏+1+ •••+%) + ••• + (%” + ••• + %) + ••.仍收敛.注:r.反之不成立,即去掉收敛级数各项中的括号后得到的级数未必收敛.例如:为(1-1) = (1-1) +…+ (1-1) +…收敛于o,但去掉括号后所形成的级数“■】90工(・1)M =1_1 + 1_1 +・・・+ (_1)曲+・・・/I-1□0C Q 77 = 2£却发散•因为yc-ir1的部分和必=‘ "/ 不存在极限.”■11, n = 2k +1 ・XX2°.若级数乞叫的项加括号后所形成的级数发散,则也发散n-i/r-1x性质5 :若级数5X 收敛,则limw w =O.J?-l"T*X21若lim u n = 0 ,则,u n 未必收敛.x1例4•证明调和级数》丄发散.证明:用反证法.001假设级数工丄收敛于$,再令该级数的部分和为》,有,从而也有Um = 5 ,Iln->x n->» -即 lim(s 2 -5 ) = 0.但1 1 I 1 1 1 1 九一兀= ---- + ----- + …+— > — + — + …+—=-,n + \ n + 2 2n 2n 2n 2n 2x i这与鯉(%-$”)= 0矛盾,从而调和级数岁发散. 三.级数收敛的判别法一(柯西审敛原理)8定理:级数工心收敛、3N 已N ・、Pn>N Np 已W ,都有+/^2+ --- + ^p \<£/r-l成立.8证明:级数》©收敛O 数列{S 〃}收敛OVw>0 , mN , V/7 > N , Vp e ,都有;t-iI S 一 片 1=1 %】+ %2 + …+ J IV £ 成立.x 1例5•利用柯西审敛原理判定级数若占的敛散性.X 注:1°.若lim/HO ,则发散 n->xH-l解:V^>0 , V/r N+ ,要使不等式1 ---------- +…+(“ +1)(〃 + 2)] (/? + /7-l)(n + p)1 1 1 ------- -- —I ---------- n + \ n +2 n + p -11< - n 成立,只须"〉丄.由柯西审敛原理知,数收敛.叽+%+…+%匸时+ -------- T + …+ ---------- T ⑺ + 2)" 1 -- + n{n +1) 于是, Vw>0VpeAT ■都有l%】+%2 + ・第二节常数项级数的审敛法正项级数及其审敛法 1 •正项级数及其收敛性(1) .正项级数:若级数中的通项>0 ,则称为正项级数./|-1n-1(2).正项级数收敛:设正项级数£ 的部分和数列{»}收敛于s ,则称£叫收敛,其和为s. n-1 n-1注:正项级数工知的部分和数列{»}是单调增加的数列.“■1 (3) .正项级数收敛的性质:X 00定理1.正项级数为“”收敛O 工叫的部分和数列匕}有界.n-ln-I注:正项级数£血发散的部分和数列{»}无界./i-ln-l2.正项级数审敛法(敛散性判别法) (1) .比较审敛法,满足s 叫,/7 = (1,2,-),若£气,收敛,则£收敛;若”■】 H-18 X发散,则\>”发散(大的收敛保证小的必收敛;小的发散导致大的发散)n-ln-l证明:1°.设fl ,”收敛于和<7 ,则土叫的部分和n-1n-1S fJ = U x +U 2 + ・・• + ll n + ■' * < Vj + v 2 + • • • + \;, + ・・• V b ,即部分和数列{»}有上界,且单调增加,于是由单调有界准则知{»}收敛,从而也收敛.2°.假设收敛,由1知也收敛,出现矛盾,故发散.n-1 n-1 n-1X X定理2•对正项级数丫知和工叫 w-l n-l推论:对正项级数工冷和为匕,若Y匕收敛,且2N , V/7 > TV,有u n < kv n伙>0), n-l /t-l n-1□000 X则丫你收敛・若工X发散、且mN w N十,\fn>N , u H > kv n伙>0),则》叫发散n-l n-l n-ix 1例i•讨论〃-级数(广义调和级数)y4(p>0)的收敛性・解:(I).当0</虫1时,有-L>1 ,而调和级数发散,从而广义调和级数£占发散.(2).当P>1 时,由于m"时,有君 V 士,所以-L = ^l_dx<\k_^dx ,a>2). 从而级数的部分和『1+£存1+£匸占心出号心< 1 + —-—(72 = 2,3,…). ”一1=1 +00 1这表明数列{»}有界,从而广义调和级数工丄收敛.tin8 1综上,广义调和级数工丄当”>1时收敛,当0</7<1发散.n-l n例2•证明级数V , 1是发散的.台/心+ 1)I 1 x i证明:由于/?(« + 1)<(/: + 1)2 ,从而.1> —>而级数,丄是调和级数,发散•故级yjn(n +1) 7? + 1 铝"+ 1x ]数》,是发散的.禽3®+1)(2).比较审敛法的极限形式定理3.对正项级数和",满足!坐如=/n-l n-l 叫(1).若Ov/v+s ,为比与》心同敛态.n-l /?-!(2).若/ = 0 ,且£ v”收敛,则“收敛.n-l n-l(3) .若/ = +s ,且£卩”发散,则发散. n-l w-l证明:⑴•由 lim = / ,贝 1」对£ = — , mNwTT宀v n 2若£叫收敛,由于U n <^v n ,从而$>“收敛.若£叫发散,由于叫〉A ,从而发散. “■1 2 “■] “■】 2H-IX从而YX 收敛・n-i⑶•由lim/ = ”o 知lim — = 0 ,假设工心收敛,则由⑵知工匕收敛,矛盾,故工心发散xi例3•判定级数工sin 丄的收敛性.・1 sin- — x f解:由于1曲—^ = 1 ,又》丄发散,从而工sin 丄发散 “虫 1 粽n 粽 川 (3).比值审敛法©Alembert 判别法) X定理4.对正项级数,知,满足lim 也(1)•若pvl ,则工心收敛.12-1⑵.若Q>1或Q = +s ,则》"”发散./r-1(3) .若Q = 1 ,则£叫敛散性待定.n-1证明:,V/7 > N , W —-/ <£ =—⑵•由lim 乞=0 ,则对 £ =丄,3/Ve7V +, V/7 > N ,有性2VnV ,即u n <Lv n .^±v n 收敛,例6.判断级数£ 解:由于 lim 也=lim "°"7卩2"屮)=lim“y u n "TOC 1/(2〃-1)2” "TOC (2〃+ 1)(2”+ 2)1 1 x 1 x 1由于2—沁〃,从而十讣,而若+收敛,从而希坛收釵 (4) .根值审敛法(柯西判别法)(1) •由lim 上伫丄= /?vl ,取£>0 ,使/? + £ = /・vl ,存在正数加,当n > m B 寸,有或护"+ £ =厂‘即心V" •从而柿<",%2 <叽G …由于级数j^r ku m 收敛,于是根据比较判别法的推论知乞竹收敛. J1 “■】 (2).由limdd = Q>l ,取£>0,使°一£>1,存在正数加,当n > m 时,有 "T8 linlfn或也>° —£>1,即“心>©「即数列{血}是单调增加的,从而,因此工©发散. 心 “ 粽(3).当° = 1日寸,土叫可能收敛也可能发散,例如:广义调和级数£丄满足”■】 n-l “u ICC \/n P 1叫〃 + 1 丿P=1,但当301x1”>1时工二收敛,当0</,<1时工二发散n-i n/r-i nx1例4 •证明级数若聞的收敛性.证明:由于 lim = lim = Um - = 0< IS H "TOC /?! HT3C JJ x1I,故工时收敛.w-1 例5.判定级数£竺的收敛性."■1 1° 解:由于lim 乞日n->® 叫2* nl/\O n 10,故謠发散.⑵-1)2“=1 ,故比值判别法失效.n-l定理5・对正项级数为心,满足lim诉7 = °・/r-l(1).若pel ,则£©收敛.n-1⑵.若p>l或Q = +S ,则工"”发散./r-l(3)•若p = \ ,则工心敛散性待定.n-l注:当0=1时,£心可能收敛也可能发散,例如:广义调和级数£2满足“■】n-l “lim li/w? = limn->»v n->x但当”>1时£厶收敛,当0</7<l时£丄发散例7.判断级数£2 + 3的收敛性.W-1/— 1 i -------------------- 1 一训2+(-1*] 1 Um-ln|2+(-l)rt J 解:由于lim 呃=lim -r{l2 + (一1)“ = lim =lim _疋"““Tx> v— x> 2 “f00 2 “f00 2 =0,从而£2 + (-1)"/r-l收敛.(5) •极限审敛法定理6•对正项级数工匕,w⑴•若lim nu n = / (0 < / < +s),则Y u n发散.H—n-lg⑵•若〃 > 1 而lim n p u n =1 (0</ < +s),则乞收敛.n-ln-»»证明:(1).在比较审敛法的极限形式中,取V n=-,由调和级数E丄发散,结论成立. (2).在比较审敛法的极限形式中,取v…=J-,当p>l时,由“-级数丈丄收敛,结论成立.例&判断级数finn-lT 的收敛性.二.交错级数及其收敛法解:由于In ; 1+ 1 - ---- (〃 T s),有 lim /?2 In 1 i f 丿 rr 心30 V + -L ) = lim n 2- 1 zr 丿 gg 1 30 ' 1 '—=1 ,故工In 1 +眉 收敛.irn-l 例9.判断级数 n-l 的收敛性.1-COS- 77解:由于1- cos — = 2sin 2n 7t2n )、2 ,有3 lim n 2( 〃 1・ 》1 - cos — = lim 八"丿1 2= _7V21-COS-n 丿收敛.1.交错级数:称各项是正负交错的级数为交错级数,记作E (j )”「S”或£(j )s”("”no )・n-lw-12•交错级数审敛法:(莱布尼兹判别法)定理7•若交错级数工(_1)心知满足(1).给》也(〃 =123,…),(2). 收敛,且其和余项乙满足|/;?|<^rX oc简记:若交错级数为(-1广5”中数列{“”}单调减少趋近0 ,则为(-1)”“叫收敛.H-1W-1xi例io •判断交错级数yc-ir 1丄的收敛性.11 1 x解:由于(1 )・冷=—> -- =%](〃 = 1,2,3,…),(2). lim u n = lim — = 0 ,从而工(-1)心—收敛. n n + \ 『―30 28 口 訂 n II三.任意项级数及其绝对绝对收敛.条件收敛1.任意项级数:若级数$>”中各项为任意实数,则称$>”为任意项级数. n-ln-l00X2.绝对收敛:若级数£h/n l 收敛,则称级数绝对收敛・H-ln-l例如:$(j )心丄绝对收敛;yc-ir 1-条件收敛・ 3•级数收敛的绝对审敛法:定理8.若级数绝对收敛,则必定收敛.n-ln-l001证明:由已知,有刃"」收敛,设匕=一(冷+1"口1) >则有匕V"」,从而有工叫收敛. “■】 2□00C 130OC3030又亍匕=乞:7(如+1"」)’有刃匕=乞2叫-力叩’从而亍心收敛./i-l/r-1 乙/i-ln-l/r-1n-1注:「反之不成立,即收敛的级数未必是绝对收敛的.2°.—般来讲,£|“”1发散,办”未必发散 但若1心1不趙近0则由£|“”1发散可知n-ln-ln-ln-I发散.例11.判定级数£弓笋 的收敛性.条件收敛:若级数“收敛,而级数£|“」发散,则称级数条件收敛.n-1/i-lH-l/I-1解:由于sin na 活而洋收敛吨譽艸收敛,从而£耳笋也收敛•例12. x1 / 1 Y r判定级数£(_1)”厶1+丄 的收敛性.n=l2 Ifl )71=1 T £>1 (“TS),从而有©不趋近0 ,因此2工 I I工(T )发散.第三节幕级数—、函数项级数的相关概念1.函数项级数:设有区间/上的函数列{叫(力},将{n…(A)}中各项依次用加号连接起来,即n I(x) + H2(x)+ -- + zf/l(x) + - -,称为函数项无穷级数,简称函数项级数,记作£"“(尤).n-1注:1°.若x = x.el ,则函数项级数]>”(切成为常数项级数$>“(无).n-1 /r-l2°.函数项级数分两类:幕级数、三角级数.2.函数项级数的收敛域:若常数项级数(忑)收敛,则称儿是函数项级数£心(羽的收敛n-1 n-1点,收敛点的全体称为它的收敛域.若常数项级数£馮(无)发散,则称也是函数项级数/r-l£叫(劝的发散点,发散点的全体称为它的发散域.“■1X3•函数项级数的和函数:对收敛域内的任一数x ,常数项级数£知(0都有一个确定的和数/r-ls(x),称之为函数项级数£你(切的和函数,即=n-1 H-1注:和函数s(x)的定义域是£叫(切的收敛域. n-1x4•函数项级数的余项:若的部分和为片(x),其和函数为s(x),有lim s n(x) = s(x), n—l则称r n(x) = s n(x) - s(x)为工u… (x)的余项,有liny;(x) = 0.“■1"T*二、幕级数及其收敛性1.幕级数:称各项都是幕函数的函数项级数Xa n x"为幕级数,即/!-090为G*=a0 + a}x + a2x2 + ・・・ + a n x n + ….zi-0注:幕级数在兀=0处收敛于5.(幕级数还在X轴上哪些点收敛,又在哪些点n-0 n-0发散呢?下面的介绍的幕级数的收敛性能回答这些问题.)2 •幕级数的收敛性X例1 •考察幕级数E疋的收敛性・J7-0解:暂时固定X,则工弋为几何级数,从而当lxl<10寸,工0收敛,其和为5(x)=—;当H-0K-0 1 —XX 8lxl>lH寸,£対发散,即亍*在(一1,1)上收敛,在(V — l]U[l, + s)发散.□■0“■()由此可见幕级数壬疋的收敛域是一个区间,这个结论对一般的幕级数也成立,即: /!-(>定理l.(Abel定理)若级数工当% =儿工0时收敛,则Vx:lxl<x0 ,有工©0绝对收敛.”■()口■()若级数^a n x"当x =儿H 0时发散,则Vx: I x 1>心,有为发散./!-0 口■()注:由Abel定理可以看出,幕级数^a…x n的收敛域是以原点为中心的区间:(-1忑1,1忑1);/!-0(-lx0IJx0 I] ; [-lx0IJx D l) ; [-lx o IJx o l].推论:若幕级数工©0既不仅在x = 0 —点收敛,也不是在整个数轴上都收敛,则必有一个确定的正数R存在,使得1.当\x\<R时,幕级数绝对收敛./!-02•当\x\>R时,幕级数发散・/I-03•当1x1=/?时,幕级数工敛散性待定.zi-0注:称/?为幕级数工勺工的收敛半径.7!-02 •幕级数收敛半径的求法x定理2•设有幕级数工,若lim紜a ft =p ,则的收敛半径R = <H-0丄,Q H 0P+ s,p = 00, p = +sX X定理3.设有幕级数,若巴]呃| = °,则为©*的收敛半径/? = <n-0n-0 丄,"0 P+ s,p = 0・例2•求幕级数$(-1)心匸=兀-少+匸+・・・+ (-1)心匸+…的收敛半径与收敛区间. 铝n 2 3 n1= lim 斗1 = 1,则该级数的收敛半径为/? = ! = !."T8 1 1nX 1 X 1 X 1又当X = -\时,工(—1尸7丄=_工丄发散;当*1时,工(—1)^丄是交错级数,H-l f1/i-l ,l/r-1 n,从而收敛区间为(-1, 1]・例3.求幕级数£匚=w-0料・心+計・丄+…的收敛区间.IV.解:由于Q = lim 土=1曲竺岂=1曲丄=0,从而级数歹匸的收敛半径R=W2 8 1 2" n + \粽川收敛区间为(_S,+QO)・例4•求幕级数为川疋= l + x + 2!/ +…+川疋+…的收敛区间.n-0解:由于p = lim =亦也士 = lim〃+ l = +s ,从而级数丈匸的收敛半径R = 0 MT* n\ “TOC粽 /?!从而例g 级数£器0的收敛半径.收敛;当4I X I 2>1 ,即lx 卜丄时,级数£ 斗0发散,从而级数£ 半的收敛半2 /r-o (川) /I-O (n!) 径R =丄.2例6.求幕级数£口匕的收敛区间.n-0 2"・〃解:令y = x-l ,则有级数■*于Q = lim|加|=lim ——/—=-,从而级数幺 2"•” ” | "2间心 + 1)/ 2” •“ 2 £恙的收敛半径X X 1 X / [ W"001当"2时,工4 =工丄发散;当尸一2时,工畔二=工(一1)“丄收敛;因此级数 /I-0 乙• n/r-(> n/r-(>Z •11 /r-() 口-的收敛区间为[-2, 2).n-o 2 • n由-2<x-\<2 , fiP-l<x<3 ,于是级数f的收敛区间为[—1,3)n-0 2 • ll三. 幕级数的运算x x定理4.设幕级数为如卍与工>屏的收敛半径分别为&和鸟,令/? = nin{/?1,/?2},则有n-0n-»0□c 00吃认=工加* , 2为常数,H</?j ;“■0£%"±£加"=£("“±»)x", \x\<R ;/I «B 0//-()n»0= ,其中 C n =^a k b n _k , \X \<R ;n=0 A-0级数n-0仅在x = 0收敛.解:由于lim/t->x ⑵2+ 2)!宀+2 /⑵叭2〃 W + 1)!]' / 耐.—当仆"即I 吨时,级哼霧0x / oo x n工工仇x"=》C 詁川,其中5=工%5“ ,凶 <凡,&比&和心都小> /|-0 / /i-O n-0 X:-()x例如:工%疋=1 ,其中(q = 1“ =0昇2 = 1,2,…),/|-0^b n x'' = \-x ,其中 % = 1,勺=一1,戈=0, “ = 2,3,…,这两个级数的收敛半径均为R = +s ,但是Z唧/ E X” =一=工八1+%+F +…+疋+… /I-0 /n-0 1 — X /!-()的收敛半径只是/? = !.四. 幕级数和函数的性质 定理5•若幕级数的收敛半径7?>0 ,则其和函数$(对满足:n-0 ⑴.在收敛区间(-ER)上连续;90f3D(2)•在收敛区间内可逐项求导,且F(x) =》(d =£叫严,xw(—R 、R);/T -O/r-J(3).在收敛区间内可逐项积分,且匚$(x)〃x = £qJ (X 血,xe(-R.R). n»0 注:逐项积分时,运算前后端点处的敛散性不变. 例7.求幕级数£匚的和函数5(x). 緬n\解:由于R = lim 厶=血]化丄=+00 ,所以该级数的收敛域为(-1 + 00),设其函数为 1计川两端乘以「,有(e~v s(x)) =0 •因此s(x) = Ce" •由 s(0) = 1 得 s(x) = e",故有 V — = e v . 紜n\X yfl,(一OOVXV+S ),贝9s'M = X/?=|⑺一1)!(一 oo <X< +s)・例8.求幕级数的和函数s(x).w-0—[——f/x = - —ln(l -x) , [0<lxl<l)及 x = -l ・ x Jo l-x x 而$(o )= q = i 或由和函数的连续性得到5(0) = lim s(x) = lim | - ln (1~ V )=1,于是5 XT 叭 X 丿心-抑-"[7叽(0'1) 1,x = 0第四节函数展开成幕级数—、函数展开成幕级数的相关概念1. 函数展开成幕级数:若在区间/上存在幕级数j^a n x n收敛于给定的函数/(x),则称/(x)n.O在I 上能展开成幕级数,即/(A ) = Xa n x n .n-02. 泰勒级数:若函数/(x)在儿的某邻域内具有” + 1阶导数,则称乞£2学2(X _站 *(勺)+几G (—勺)+今2(一勺)2+…+£2^2(兀—勺)”+…为/(对的泰勒级数,即 心)〜歹口^2(—观)”.解:由于 /? = lim|^|=lim —= 1 ”鬥勺+] | “* n又x = ±l 时,级数<>(±1)"发散,所以该级数的收敛11-0域为(-1,1),设其函数为 s(x) = £nx" , (-lvxvl),则 ;r-()5(x)=为必"=xy' nx n ~l;r —0 口 ■()X 川例9.求幕级数y — E+i 的和函数s(x)・ 解:由于/? = liman= lim 出.=1,又x = 10寸,级数Y —发散,% = -!时,级数Y — E “ + 1 忍"+ 1 禺八+ 1收敛,所以该级数的收敛域为[-1,1),设其和函数为s(x) , 1-1<X<1),当XH0日寸,有心)=£n-0= xE (x”)'=x(£x")= ;t -0 /r-1[IFH +1当心=0时,泰勒级数又叫麦克劳林级数.注:泰勒级数£ 匚如(―勺)"在“儿处收敛于f(x0).為n\3.函数展成幕级数的条件定理1 .函数/(X)在点儿的某一邻域t/(x(J内具有各阶导数,则/(x)在该邻域内能展开成泰勒级数的充要条件是/G)的泰勒公式的余项满足liin/?w(x) = O.证明:设S”+") = 土心如(―勺)*为泰勒级数£匚如(—和”的” + 1项余和,/⑴的z k!n=o ”!〃阶泰勒公式为fM = S ll+l(x) + ^(x),其中R ii(x) = J^l(x-x o y l+l为拉格朗日余项.S + 1)!必要性:若_/3在邻域“忑)内能展开成泰勒级数/W = y£2^(x-x(>)« ,则有伺川lim R tl(x) = -S”+](x)] = O.HTOC n->®充分性:若lim R ti(A) = 0,则有f(x) = lini 5ZI+1(A)=工一(x-x0)".,l /F n=0 料・思考:函数_/3在儿处“有泰勒级数”与“能展成泰勒级数”有何不同?定理2•若/(x)能展成x的幕级数,则这种展开式是唯一的,且与它的麦克劳林级数相同.证明:设/(X)所展成的幕级数为f(x) = a0 + a x x + a2x2 + - - - + a tl x n + • •,有勺=/(。

高数:函数的幂级数展开

高数:函数的幂级数展开

解: f x ln1 x ln 2 ln 1
3 2
x
2 x3x2 1 x23x
ln
1 x
x x2 x3
2
3
(1)n xn1
n1 n1
xn n
1 x 1
ln 1
3 2
x
n 1
1n1
n
3 2
x
n
1
3 2
x
1
2 3
x
2 3
因此
f
(x)
ln 2
n
n
定理 (函数的幂级数展开定理)
设函数 f (x) 在点 x0 的某一邻域U(x0)内具有各阶导数, 则 f (x) 在该邻域内能展开成泰勒级数的充要条件是 f (x) 的
泰勒公式中的余项满足:
lim
n
Rn
(x)
0。
9.4.5 常用初等函数的幂级数展开式
直接展开法 — 利用泰勒公式 展开方法
间接展开法 — 利用已知其级数展开式的函数展开 1. 直接展开法
由泰勒级数理论可知, 函数f (x) 展成 x 的幂级数的步骤如下:
第一步 求函数及其各阶导数在 x = 0 处的值 ; 第二步 写出麦克劳林级数 , 并求出其收敛半径 R ;
第三步 判别在收敛区间(-R, R) 内 lim Rn (x) 是否为0。
n
例1. 将函数 f(x)=ex 展开成 x 的幂级数
泰勒公式中的余项满足:
lim
n
Rn
(x)
0。
证明:
f
(x)

f (n
n0
Sn1
) x0
n!
x
x
n

高等数学同济第七版第十二章课后习题答案

高等数学同济第七版第十二章课后习题答案

…I I
半径为 I,收敛区间为(-1 J).
(4)lim %" = lim —= 0 ,故收敛半在为+8,收敛区间是(-8 , ♦ 8 ). …14 | …2 (门♦ I)
第十二童无穷级数
221
由此可知.对任意给定的正数£ .取正整数 A m 岫十,当〃 >投时,对一切正整数 p, 都有 S--
力 < £ ,按柯西收敛原理.该级数收敛•
(4)本题与(2)类同.因 4 =丁\ + (
故对 3/1 ♦ 1 \3n +2 3n + 3) 3〃 ♦ I An
% = + .不论/!取什么正整数.取 p = 〃时.就有 1〃.,・h1 =%八+U..2 ।…+
219
解(D 此级数为公比 g =-5 的等比级数.因|°| < 1 ,故该级数收敛.
(2)此级数的部分和
即该级数发散.
lim sA = + oc , 冬■一
(3)此级数的一股项% =*,有 要条 忖% = lim(y), = 1 ,不满足级数收敛的必
件,故该级数发散. (4)此级数为公比 4 二方的等比级数,因|q| > 1 ,故该级数发散. (5)此级数的一般项% =3.二注意到与£ 上分别是公比”;

・a
散,故各项乘;志的级数 Ej 也发放,由比较审敛法知原级数 s 二二■? 发散.
1 解法二 因=1,而 y 1 发故.故由极限形式的比较审敛法知原 … I 2 1n
级数发散 (2) u = Lt: >二而 f L 发散.由比较审敛法知原级数 ・
1 > n2 n n2 n Sf”
222
一• 《高等数学》(第七版)下册习咫全解

高数幂级数详解和习题

高数幂级数详解和习题
n1 n! lim an1 lim 1 0, R ,
n an n n 1
20.4.5
收敛域为
.
13
(4) (1)n 2n ( x 1)n .
n1
n2
lim an1 lim
n an
n
2n n1
2
R 1, 2
即 x 1
2 当x 0时,
1 2
收敛, x (0,1)收敛,
(2) 幂级数对一切 x 都收敛,
R , 收敛区间
.
问题 如何求幂级数的收敛半径?
20.4.5
8
定理 2 如果幂级数 an x n 的所有系数an 0,
设 lim an1 n0 n an
(1)
则当
0时,R
1
;
(2)
当 0时,R ;
(3) 当 时,R 0.
证明 对级数 an xn 应用达朗贝尔判别法
设 an xn和 bn xn的收敛半径各为R1和R2 ,
n0
n0
R minR1 , R2
(1) 加减法
an xn bn xn cn xn .
n0
n0
n0
x R, R
(其中 cn an bn )
20.4.5
17
(2) 乘法
( an xn ) ( bn xn ) cn xn . x R, R
第三节 幂级数
❖一、函数项级数的一般概念 ❖二、幂级数及其收敛性 ❖三、幂级数的运算 ❖四、小结 练习题
20.4.5
1
一、函数项级数的一般概念
1.定义: 设 数,则
是定义在
u1( x), u2 ( x), , un ( x),
上的函
称为定义在区间 上的(函数项)无穷级数.

高数幂级数详解和习题

高数幂级数详解和习题

二、幂级数及其收敛性
1.定义: 形如 an ( x x0 )n的级数称为幂级数.
n 0
当x0 0时, an xn , 其中an为幂级数系数.
n0
2.收敛性:
例如级数 xn 1 x x2 ,
n0
当 x 1时, 收敛; 当 x 1时, 发散;
收敛域(1,1); 发散域(,1] [1,);
n1
lim
an1
n an
lim
n
(n
1)n1 nn
lim n
1
1 n
n
(n
1)
R 0,
级数只在 处收敛, 收敛域为{0}.
(3) xn ;
n1 n! lim an1 lim 1 0, R ,
n an n n 1
收敛域为
.
(4) (1)n 2n ( x 1)n .
n1
定理 1 (Abel 定理)
如果级数 an x n 在 x x0 ( x0 0)处收敛,则
n0
它在满足不等式 x x0 的一切 x处绝对收敛;
如果级数 an x n 在x x0 处发散,则它在满足
n0
不等式 x x0 的一切x 处发散.
几何说明 收敛区域
• • •• • • ••• • •
(2)
(1)n
n0
x2n
1 1 x2
;
(3)
ax 2n
n0
a 1 x2
;
(4) xn e x;
n0 n!
(5) (1)n1
x 2n1
sin x;
n1
(2n 1)!
(6) (1)n xn1 ln(1 x);
n0
n1
四、小结

高数同济六版课件D12_5幂级数的应用

高数同济六版课件D12_5幂级数的应用
e x i y e x (cos y i sin y ) e x
( x, y R)
作业x P291 cos(1),(3); 2(2);r ei ; 4(2) 1 i sin 3(1),(3) r z iy
2013-8-6 高数同济六版
第七节 第六节 目录 上页 下页 返回 结束
例6.
解: 根据初始条件, 设所求特解为
代入原方程, 得
比较同次幂系数, 得
故所求解的幂级数前几项为
2013-8-6 高数同济六版
目录 上页 下页 返回 结束
2. 二阶齐次线性微分方程问题

定理: 设 P(x), Q(x) 在 (-R, R ) 内可展成 x 的幂级数,
则在-R < x < R 内方程 ② 必有幂级数解:
1 1 (1 ) 3 1 (1 ) 5 1.6094 ln 5 2 ln 2 2 9 9 3高数同济六版5 9 2013-8-6
目录 上页 下页 返回 结束
例3. 利用 误差.

的近似值 , 并估计
(弧度)
解: 先把角度化为弧度 9
π π 1 π 3 1 π 5 1 π 7 sin ( ) ( ) ( ) 20 20 3! 20 5! 20 7 ! 20 1 π 5 r2 ( ) 1 (0.2) 5 1 105 5! 20 3 120 π π 1 π 3 sin ( ) 0.157080 0.000646 20 20 3! 20 3 5 7 x x x .15643 0 sin x x 3! 5! 7 !
目录 上页 下页 返回 结束
3 (1 14 3
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

当4 x2 1 当4 x2 1
( 2 n 1 ) ( 2 n 2) 2 2 4 x lim x n ( n 1 )2 时级数收敛 1 故收敛半径为 R . 2 时级数发散
例4. 解: 令 级数变为
的收敛域. (2)
R lim n
1
n
an
n n lim 2 n 2 n
能否确定它的收敛半径不存在 ? 答: 不能. 因为
n
3 1
2 6
, ,
n 为奇数
n 为偶数
lim
n
u n ( x) lim
n
n
x 2 (1) 2
n

时级数收敛 ,
说明: 可以证明 比值判别法成立
时级数发散 , (为什么?) 根值判别法成立
作业
P277 1 (1), (3), (5), (7), (8)
x

x
S ( x)

(0 x 1 )
ln (1 x) lim 1, x 0 x
[1,0) U (0,1) x(
因此由和函数的连续性得: 1 ln(1 x) , x
S ( x)
1,
x0
例6.
的和函数 .
解: 由例2可知级数的收敛半径 R=+∞. 设
例5. 求级数
的和函数
解: 易求出幂级数的收敛半径为 1 ,
收敛 , x=1时级数发 散. xn 1 x n 1 S ( x) x n 0 n 1 n 0 n 1
1 1 1 n x dx dx x 0 n 0 x 01 x
(0 x 1 )
外发散; 在 x R 可能收敛也可能发散 .
(-R , R ) 称为收敛区间. R 称为收敛半径 ,
(-R , R ) 加上收敛的端点称为收敛域.
收敛 发散



o



x
定理2. 若
的系数满足

1) 当 ≠0 时, R 1 ;
2) 当 =0 时, R ; 3) 当 =∞时, R 0 .
第十二章
§12.3 幂级数
一、函数项级数的概念 二、幂级数及其收敛性 三、幂级数的运算
一、 函数项级数的概念
设 u n ( x) (n 1, 2 , ) 为定义在区间 I 上的函数, 称
为定义在区间 I 上的函数项级数 . 对 若常数项级数 收敛, 称 x0 为其收
敛点, 所有收敛点的全体称为其收敛域 ; 若常数项级数 发散 , 称 x0 为其发散点, 所有
n n 1


0 S ( x) d x
n 0

x n an x 0
an n 1 x , x ( R , R ) dx n 0 n 1
(证明略 )

注: 逐项积分时, 运算前后端点处的敛散性不变. 通过逐项求导和逐项积分目的是转化幂级数为等比级数 这样可方便求和.

n 0 n a x n (为常数 )
n
x R1
n
n 0
*
an x

n
bn x
n 0

n 0
(an bn ) x
n 0

,
x R x R
an x n bn x n cn x n , n0 n0
其中
以上结论可用部分和 的极限证明 .
*说明: 两个幂级数相除所得幂级数的收敛半径可能比
原来两个幂级数的收敛半径小得多. 例如, 设
( a0 1, a n 0 , n 1, 2 , )
b0 1, b1 1, b 0 , n 2 , 3, n
它们的收敛半径均为 R , 但是
满足不等式 x x0 的 x , 原幂级数也发散 . 证毕
由Abel 定理可以看出, 中心的区间.
n 0
an x

n
的收敛域是以原点为
用±R 表示幂级数收敛与发散的分界点, 则 R = 0 时, 幂级数仅在 x = 0 收敛 ; R = 时, 幂级数在 (-∞, +∞) 收敛 ;
0 R , 幂级数在 (-R , R ) 收敛 ; 在[-R , R ]
证:
an 1 x n 1 an 1 lim lim x n n n an an x
1 当 x 1, 即 x 时, 原级数收敛; 当 x 1 , 即 x 1 时, 原级数发散.
1) 若 ≠0, 则根据比值审敛法可知:
因此级数的收敛半径 R
1
形如 (1) 的函数项级数称为幂级数, 其中数列 为幂级数的系数 . 下面着重讨论 的情形, 即
因为只要令 则(1)成为

例如, 幂级数 x n 1 x L x n L 即是此种情形. n 0 1 , 收敛域 x 1 1 x

n a x 定理 1. ( Abel定理 ) 若幂级数 n
发散点的全体称为其发散域 .
在收敛域上, 函数项级数的和是 x 的函数 为级数的和函数 , 并写成
称它
若用
表示函数项级数前 n 项的和, 即
令余项 则在收敛域上有
例如, 等比级数
它的收敛域是
有和函数
它的发散域是 ( , 1 ] 及 [1, ) , 或写作 x 1 .
二、幂级数及其收敛性

0
例3.
的收敛半径 .
解: 级数缺少奇次幂项,不能直接应用定理2, 故直接由 比值审敛法求收敛半径.
[ 2 (n 1) ] ! 2 ( n 1) x 2 [ (n 1) ! ] u n 1 ( x) lim lim [ 2n] ! 2n n u n ( x) n 2 x [n! ]
2 (1), (3)
P323 7 (1), (4)
8 (1), (3)
当 t = 2 时, 级数为
当 t = – 2 时, 级数为
此级数发散;
此级数条件收敛;
因此级数(2)的收敛域为 2 t 2 , 故原级数的收敛域为
即 1 x 3 .
三、幂级数的运算
定理3. 设幂级数


的收敛半径分别为
R1 , R2 , 令 R min R1 , R2 , 则有 :
解: (1)
an R lim n an 1
所以收敛域为 ( , ) . an lim n ! (2) R lim n an 1 n ( n 1) ! 所以级数仅在 x = 0 处收敛 .
1 n! lim 1 n (n 1) !
1 x x2 xn
其收敛半径只是 R 1 .
定理4 若幂级数
的收敛半径
则其和函
在收敛域上连续, 且在收敛区间内可逐项求导与
逐项求积分, 运算前后收敛半径相同:
S ( x)
x
n 0
n 1 a x n a x n n , x ( R , R )
2) 若 0, 则根据比值审敛法可知, 对任意 x 原级数
绝对收敛 , 因此 R ; 3) 若 , 则对除 x = 0 以外的一切 x 原级发散 , 因此 R 0 . 说明:据此定理

.
1 R lim n n | a | n
记下来!!!
an 的收敛半径为 R lim n an 1
2) 在收敛区间内幂级数的和函数连续;
3) 幂级数在收敛区间内可逐项求导和求积分.
思考与练习
1. 已知
半径是多少 ? 答: 根据Abel 定理可知, 级数在 时发散 . 故收敛半径为 收敛 , 处条件收敛 , 问该级数收敛
2. 在幂级数
中,
n 1
an 1 1 2 (1) n an 2 2 (1)



o



x
an x n
当 x x0 时 ,
故原幂级数绝对收敛 . 收敛, 也收敛,
反之, 若当 x x0 时该幂级数发散 , 下面用反证法证之.
假设有一点 x1 满足 x1 x0 且使级数收敛 , 则由前
面的证明可知, 级数在点 x 0 也应收敛, 与所设矛盾, 故假设不真. 所以若当 x x0 时幂级数发散 , 则对一切
比值判别法成立 根值判别法成立
例1.求幂级数 的收敛半径及收敛域.
1 lim n 1 n n 1
an 解: R lim n an 1
对端点 x = 1, 级数为交错级数
对端点 x =-1, 级数为 故收敛域为 (1, 1] . 发散 .
收敛;
例2. 求下列幂级数的收敛域 :

显然收敛域为[-1,1)
S ( x) x
n 1 x
n 1
1 1 x
1 S ( x) dx S (0) ln(1 x) 0 1 x
S (1) ln 2.
内容小结
1. 求幂级数收敛域的方法
1) 对标准型幂级数
先求收敛半径 , 再讨论端点的收敛性 . 2) 对非标准型幂级数(缺项或通项为复合式) 求收敛半径时直接用比值法或根值法, 也可通过换元化为标准型再求 . 2. 幂级数的性质 1) 两个幂级数在公共收敛区间内可进行加、减与 乘法运算.

则对满足不等式
反之, 若当 证:
的一切 x 幂级数都绝对收敛. 时该幂级数发散 , 则对满足不等式
n
n 0
的一切 x , 该幂级数也发散 . n n x x M x n n n an x an x0 n an x0 x0 x0 x0 收敛, 则必有
相关文档
最新文档