人教版七年级数学下册第九章不等式与不等式组
人教版数学七年级下册第9章不等式与不等式组教学设计

一、教学目标
(一)知识与技能
1.理解不等式的定义,掌握不等式的性质,能够运用不等式解决实际问题。
2.学会解一元一次不等式,包括移项、合并同类项、系数化等方法,并能够解决实际问题。
3.理解不等式组的定义,掌握解不等式组的方法,能够解决实际问题。
4.能够运用数轴表示不等式的解集,理解区间表示方法。
(3)采用讲练结合法,让学生在练习中掌握解不等式的方法,提高解题能力。
(4)小组合作学习,培养学生协作解决问题的能力,提高课堂互动性。
2.教学过程:
(1)导入:以实际情境导入,提出问题,引导学生思考,激发学习兴趣。
(2)新知:讲解不等式的性质,引导学生通过实例发现性质,加强理解。
(3)例题:讲解一元一次不等式的解法,通过典型例题,让学生掌握解题方法。
5.引导学生运用数轴表示不等式的解集,培养学生直观想象能力。
(三)情感态度与价值观
1.培养学生对待数学学习的积极态度,增强学生对数学学科的兴趣和信心。
2.引导学生认识到不等式在生活中的广泛应用,激发学生学习数学的积极性。
3.培养学生勇于探索、克服困难的精神,让学生在解决不等式问题的过程中,体验到成功的喜悦。
5.部分学生对数学学习存在恐惧心理,需要教师关注学生的情感需求,鼓励学生积极参与课堂,增强自信心。
在教学过程中,教师应充分了解学生的实际情况,针对不同层次的学生进行差异化教学,关注学生的个体发展,激发学生的学习兴趣,提高学生的数学素养。
三、教学重难点和教学设想
(一)教学重难点
1.理解并掌握不等式的性质,能够熟练运用性质解决实际问题。
3.拓展题:针对不等式组的内容,设计2-3道拓展题,要求学生运用所学知识解决问题,培养学生的综合应用能力。
人教版七年级下册数学 第九章 不等式与不等式组 不等式 不等式的性质(第一课时)

探究新知
知识点 2 不等式的性质2 用不等号填空: (1)5 > 3 ;
5×2 > 3×2 ; 5÷2 > 3÷2 . (2)2 < 4 ;
2×3 < 4×3 ;2÷4 < 4÷4 . 自己再写一个不等式,分别在它的两边都乘(或除以)同一 个正数,看看有怎样的结果?与同桌互相交流,你们发现了 什么规律?
解:(1)为了使不等式x-7>26中不等号的一边变为x,根 据不等式的性质1,不等式两边都加7,不等号的方向不 变,得 x-7+7 > 26+7,
x > 33.
这个不等式的解集在数轴上的表示如图所示:
0
33
探究新知
(2)为了使不等式3x<2x+1中不等号的一边变为x,根据
__不__等__式__性__质__1_,不等式两边都减去_2_x__,不等号的方向
探究新知
(3)已知 a<b,则 -a3
由不等式基本性质3,得
-a 3
>
-b 3
,
因为
-a 3
>
-b 3
,两边都加上2,
由不等式基本性质1,得
-a 3
+2
>
-b3+2
.
巩固练习
若 a>b, 用“>”或“<”填空: a-5 > b-5(根据不等式的性质 1 )
探究新知
如果_a_>_b_且__c_>_0_, 那么_a_c_>_b_c__
(或 a b ) cc
探究新知
不等式基本性质2
不等式的两边都乘(或除以)同一个正数, 不等号的方向不变.
人教版七年级数学下册课件 第九章 不等式与不等式组 一元一次不等式 第2课时 一元一次不等式的应用

购买数量(件)
A
第一次 第二次
B
购买总费用(元)
2
1
55
1
3
65
解:(1)设 A 种商品的单价为 x 元,B 种商品的单价为 y 元,根据题 意,可得2xx++3yy= =5655, , 解得xy==1250,,
答:A 种商品的单价为 20 元,B 种商品的单价为 15 元
(2)设第三次购买商品A种a件,则购买B种商品(12-a)件,根据题意, 可得a≥2(2y=y=59940000,,
解得xy==13
500, 200,
答:每台 A 型电脑
的价格为 3 500 元,每台 B 型打印机的价格为 1 200 元
(2)设学校购买 a 台 B 型打印机,则购买 A 型电脑为(a-1)台,根据题 意,得 3 500(a-1)+1 200a≤20 000,解得 a≤5.答:该学校至多能购买 5 台 B 型打印机
9.某大型超市从生产基地购进一批水果,运输过程中质量损失10%, 假设不计超市其他费用,如果超市要想至少获得20%的利润,那么这种水 果的售价在进价的基础上应至少提高( B )
A.40% B.33.4% C.33.3% D.30%
10.马师傅计划用10天时间加工320个零件,前两天每天加工20个零件, 后改进了工作方式,结果提前一天完成了加工任务,马师傅在两天后每天 至少加工__4_0_个零件.
∵m=20a+15(12-a)=5a+180,∴当a=8时所花钱数最少,即购买 A商品8件,B商品4件
(1)求每台A型电脑和每台B型打印机的价格分别是多少元? (2)如果学校购买A型电脑和B型打印机的预算费用不超过20 000元,并 且购买B型打印机的台数要比购买A型电脑的台数多1台,那么该学校至 多能购买多少台B型打印机?
人教版七年级数学下册_9.1.1不等式及其解集

A.5
B.4
C.3
D.2
感悟新知
知识点 3 不等式的解集的表示方法
在数轴上表示不等式的解集:
特别提醒 在数轴上表示不等式的解集时,
大于向右画, 小于向左画;界点处 用空心圆圈圈住该点.
知3-讲
感悟新知
知3-讲
不等式的解集表示的是未知数的取值范围,所以不等
式的解集可以在数轴上直观地表示出来. 一般地,利用数
C. 3
D. 2
感悟新知
例2 用不等式表示: (1)a 的一半与3 的和大于5; (2)x 的3 倍与1 的差小于2; (3)a 的 1 与1 的差是正数;
2
(4)m 与2 的差是负数.
知1-练
解题秘方:紧扣不等关系中的关键词语列出不等式.
感悟新知
解:(1) 1 a+3>5.
2
(2)3x-1<2.
第9章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1 课时讲解 2 课时流程
不等式 不等式的解与解集 不等式的解集的表示方法
逐点 导讲练
课堂 小结
作业 提升
感悟新知
知识点 1 不等式
知1-讲
1. 定义:用符号“<”或“>”表示大小关系的式子叫做不等
式. 用符号“≠”表示不等关系的式子也是不等式.
轴表示不等式的解集通常有以下四种情况(设a>0):
不等式的解集 x>a
x>-4a
x<a
x<-a
数轴表示
感悟新知
知3-练
例4 在数轴上表示下列不等式的解集: (1)x>2 (2)x<-2 解题秘方:紧扣不等式解集在数轴上的表示方法, 看清不等号和端点值是解决问题的关键.
《不等式与不等式组》ppt完美课件

的解的有
5 3
,
是-32x>1 的解的有 -2,-2.5 .
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
10.将下列不等式的解集在数轴上表示出来:
(1)x<-3;
(2)x≥-1;
(3)x≠2;
(4)x>-2.
解:
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
七年级数学(下册)·人教版
第九章 不等式与不等式组
9.1 不等式 9.1.1 不等式及其解集
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
1.用“> ”或“ < ”表示大小关系的式子叫做不等式,用“ ≠ ” 表示不等关系的式子也是不等式. 2.使不等式成立的未知数的值叫做不等式的解;一般地,一个含有未知数 的不等式的 所有的解 组成这个不等式的解集.求不等式的 解集 的过程叫 做解不等式.
14.x 与 3 的差的 2 倍小于 x 的 2 倍与 3 的差,用不等式表示为( C )
A.2(x-3)<x-3
B.2x-3<2(x-3)
C.2(x-3)<2x-3
D.2x-3<12(x-3)
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
解:(1)3x>-2; (2)4y+1<5; (3)x2-2>0; (4)2y-6≥0.
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
《不等式与不等式组》完美实用课件 (PPT优 秀课件 )
20.若方程(m+2)x=2 的解为 x=1,想一想(m-2)x>-3 的解集是多少? 试探究-1,-2,0,1,2 这五个数中的哪些数是该不等式的解. 解:由题意可知:m=0,则不等式(m-2)x>-3 可化为-2x>-3.可以看 出其解集为 x<32.故-1,-2,0,1 是该不等式的解.
人教版七年级下册数学课件 第九章 不等式与不等式组 一元一次不等式 第1课时 一元一次不等式的解法

第九章 不等式与不等式组
9.2 一元一次不等式
第1课时 一元一次不等式的解法
1.(3 分)下列各式中,是一元一次不等式的是( B)
A.x2-2x>1
B.x3 -1>x-2 1
C.1x -2≥0 D.x+y2 <-1
2.(3 分)已知 xa-1+3<5 是关于 x 的一元一次不等式,则 a=_2__.
9.若点 P(3a-2,2b-3)在第二象限,则(C )
A.a>23 ,b>32
B.a>23 ,b<32
C.a<23 ,b>32
D.a<23 ,b<32
10.(呼和浩特中考)若不等式2x+ 3 5 -1≤2-x 的解集中 x 的每一个值, 都能使关于 x 的不等式 3(x-1)+5>5x+2(m+x)成立,则 m 的取值范围是(C )
三、解答题(共 36 分) 13.(10 分)当 x 取何值时,代数式6x-4 1 -2x 的值:(1)大于-2;(2)不大于 1-2x.
解:(1)由题意,得6x-4 1 -2x>-2,解得 x<72 (2)由题意,得6x-4 1 -2x≤1-2x,解得 x≤56
14.(10 分)已知关于 x 的方程x+3m -2x-2 1 =m 的解为负数,求 m 的取值范围. 解:解方程得 x=-m+34 ,∵方程的解为负数,∴-m+34 <0,解得 m>34
6.(12分)解下列不等式,并在数轴上表示出解集: (1)3x-1≥2(x-1); 解:去括号,得3x-1≥2x-2,移项,得3x-2x≥-2+1,合并同类项,得x≥-1. 将不等式的解集表示在数轴上如下:
x-2 (2) 5
-ቤተ መጻሕፍቲ ባይዱ+2 4
>-3.
解:去分母,得2(x-2)-5(x+4)>-30,去括号,得2x-4-5x-20>-30, 移项,得2x-5x>-30+4+20,合并同类项,得-3x>-6, 系数化为1,得x<2.将不等式的解集表示在数轴上如下:
新人教七年级数学下册 第九章不等式与不等式组全章讲与练

第九章不等式与不等式组第一节、知识梳理一、学习目标1.掌握不等式及其解(解集)的概念,理解不等式的意义.2.理解不等式的性质并会用不等式基本性质解简单的不等式.3.会用数轴表示出不等式的解集.二、知识概要1.不等式:一般地,用不等号“>”、“<”表示不等关系的式子叫做不等式.2.不等式的解:一般地,在含有未知数的不等式中,能使不等式成立的未知数的值,叫做不等式的解.3.不等式的解集:一个不等式的所有解,组成这个不等式的解的集合,称之为此不等式的解集.4.一元一次不等式:只含有一个未知数,且未知数的次数是1的不等式,叫做一元一次不等式.5.不等式的性质:性质一:不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.性质二:不等式两边都乘以(或除以)同一个正数,不等号的方向不变.性质三:不等式的两边都乘以(或除以)同一个负数,不等号方向改变.6.三角形中任意两边之差小于第三边.三、重点难点重点是不等式的基本性质及其应用,难点是不等式和不等式解集的理解.四、知识本周知识由以前学过的比较大小拓展而来,又为解决实际问题提供了一个解题的工具,并为以后学的不等式组打下基础.五、中考视点不等式也是经常考到的内容,经常出现在选择题、填空题中,以解不等式为主.有时在一些解答题中也要用到不等式,利用不等关系求X围等.第二节、教材解读1. 常用的不等号有哪些?常用的不等号有五种,其读法和意义是:(1)“≠”读作“不等于”,它说明两个量是不相等的,但不能明确哪个大哪个小.(2)“>”读作“大于”,表示其左边的量比右边的量大.(3)“<”读作“小于”,表示其左边的量比右边的量小.(4)“≥”读作“大于或等于”,即“不小于”,表示左边的量不小于右边的量.(5)“≤”读作“小于或等于”,即“不大于”,表示左边的量不大于右边的量.2. 如何恰当地列不等式表示不等关系?(1)找准题中不等关系的两个量,并用代数式表示.(2)正确理解题目中的关键词语,如:多、少、快、慢、增加了、减少了、不足、不到、不大于、不小于、不超过、非负数、至多、至少等的确切含义.(3)选用与题意符合的不等号将表示不等关系的两个量的代数式连接起来.根据下列关系列不等式:a的2倍与b的的和不大于2a+ b.“不大于”就是“小于或等于”.列不等式为:2a+b≤3.3. 用数轴表示不等式注意什么?用数轴表示不等式要注意两点:一是边界;二是方向.若边界点在X围内则用实心点表示,若边界点不在X围内,则用空心圆圈表示;方向是对于边界点而言,大于向右画,而小于则向左画.在同一个数轴上表示下列两个不等式:x>-3;x≤2.第三节、错题剖析一、去括号时,错用乘法分配律【例1】解不等式3x+2(2-4x)<19.错解: 去括号,得3x+4-4x<19,解得x>-15.诊断: 错解在去括号时,括号前面的数2没有乘以括号内的每一项.正解: 去括号,得3x+4-8x<19,-5x<15,所以x>-3.二、去括号时,忽视括号前的负号【例2】解不等式5x-3(2x-1)>-6.错解: 去括号,得5x-6x-3>-6,解得x<3.诊断:去括号时,当括号前面是“-”时,去掉括号和前面的“-”,括号内的各项都要改变符号.错解在去括号时,没有将括号内的项全改变符号.正解: 去括号,得5x-6x+3>-6,所以-x>-9,所以x<9.三、移项时,不改变符号【例3】解不等式4x-5<2x-9.错解: 移项,得4x+2x<-9-5,即6x<-14,所以诊断: 一元一次不等式中的移项和一元一次方程中的移项一样,移项就要改变符号,错解忽略了这一点.正解: 移项,得4x-2x<-9+5,解得2x<-4,所以x<-2.四、去分母时,忽视分数线的括号作用【例4】解不等式错解: 去分母,得6x-2x-5>14,解得诊断: 去分母时,如果分子是一个整式,去掉分母后要用括号将分子括起来.错解在去掉分母时,忽视了分数线的括号作用.正解: 去分母,得6x-(2x-5)>14,去括号,得6x-2x+5>14,解得五、不等式两边同除以负数,不改变方向【例5】解不等式3x-6<1+7x.错解:移项,得3x-7x<1+6,即-4x<7,所以诊断:将不等式-4x<7的系数化为1时,不等式两边同除以-4后,根据不等式的基本性质:不等式两边同乘以或同除以同一个负数,不等号要改变方向,因此造成了错解.正解:移项,得3x-7x<1+6,即-4x<7,所以x>【例6】 x2与a的和不是正数用不等式表示.错解及分析: x2+a<0. 对“不是正数”理解不清.x2与a的和是0或负数.正解: x2+a≤0.【例7】求不等式的非负整数解.错解及分析:整理得,3x≤16,所以故其非负整数解是1,2,3,4,5.本例的解题过程没有错误,错在对“非负整数”的理解.正解:整理得,3x≤16,所以故其非负整数解是0,1,2,3,4,5.【例8】解不等式3-5(x-2)-4(-1+5x)<0.错解及分析:去括号,得3-x-2-4+5x<0,即4x<3,所以本题一是去括号后各项没有改变符号;二是一个数乘以一个多项式时应该把这个数和多项式的每一项相乘.正解:去括号得3-x+10+4-20x<0,即-21x<-17,所以【例9】解不等式7x-6<4x-9.错解及分析:移项,得7x+4x<-9-6,即11x<-15,所以一元一次不等式中移项和一元一次方程中的移项一样,都要改变符号.正解:移项,得7x-4x<-9+6,即3x<-3,所以x<-1.【例10】解不等式错解及分析:去分母,得3+2(2-3x)≤5(1+x).即11x≥2,所以错误的原因是在去分母时漏乘了不含分母的一项“3”.正解:去分母,得30+2(2-3x)≤5(1+x).即11x≥29,所以【例11】解不等式6x-6≤1+7x.错解及分析:移项,得6x-7x≤1+6.即-x≤7,所以x<-7.将不等式-x≤7的系数化为1时,不等式两边同除以-1,不等号没有改变方向,因此造成了错解.正解:移项,得6x-7x<1+6.即-x≤7,所以x≥-7.【例12】解关于x的不等式m(x-2)>x-2.错解: 化简,得(m-1)x>2(m-1),所以x>2.诊断: 错解默认为m-1>0,实际上m-1还可能小于或等于0.正解: 化简,得(m-1)x>2(m-1),①当m-1>0时,x>2;②当m-1<0时,x<2;③当m-1=0时,无解.【例13】解不等式(a-1)x>3.错解:系数化为1,得x>.诊断:此题的未知数系数含有字母,不能直接在不等式两边同时除以这个系数,应该分类讨论.正解:①当a-1>0时,x>;②当a=1时,0×x>3,不等式无解;③当a-1<0时,x<.【例14】不等式组的解集为 .错解:两个不等式相加,得 x-1<0,所以x<1.诊断:这是解法上的错误,它把解不等式组与解一次方程组的方法混为一谈,不等式组的解法是分别求出不等式组中各个不等式的解集,然后在数轴上表示出来,求得的公共部分就是不等式组的解集,而不能用解方程组的方法来求解正解:解不等式组,得.在同一条数轴上表示出它们的解集,如图,所以不等式组的解集为:0<x<【例15】解不等式组错解:因为5x-3>4x+2,且4x+2>3x-2,所以 5x-3>3x-2.移项,得5x-3x>-2+3.解得 x>.诊断:上面的解法套用了解方程组的方法,是否正确,我们可以在x>的条件下,任取一个x的值,看是否满足不等式组.如取x=1,将它代入5x-3>4x+2,得2>6(不成立).可知x>不是原方程组的解集,其造成错误的原因是由原不等式组变形为一个新的不等式时,改变了不等式的解集.正解:由5x-3>4x+2,得x>5.由4x+2>3x-2,得x>-4.综合x>5和x>-4,得原不等式组的解集为x>5.【例16】解不等式组错解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组的解集为2>x>3.诊断:由不等式性质可得,2>3,这是不可能的.正解:由不等式2x+3<7可得x<2.由不等式5x-6>9可得x>3.所以原不等式组无解.【例17】解不等式错解:去分母,得3-4x-1>9x.移项,得-4x-9x>1-3合并,得-13x>-2系数化为1,得诊断:本题忽视了分数线的双重作用,去分母时,若分子为多项式,应对其加上括号.正解:去分母,得3-(4x-1)>9x去括号,得3-4x+1>9x.移项,得-4x-9x>-1-3合并,得-13x>-4系数化为1,得【例18】若不等式组的解集为x>2,则a的取值X围是().A. a<2B. a≤2C. a>2D. a≥2错解及分析:原不等式组可分为得a<2,故选A.当a=2时,原不等式组变为解集也为x>2.正解:应为a≤2 ,故选B.【例19】解不等式组错解:②-①,得不等式组的解集为x<-13.诊断:错解中把方程组的解法套用到不等式组中.正解:由不等式2x<7+x得到x<7.由不等式3x<x-6得到x<-3.所以原不等式组的解集为x<-3.第四节、思维点拨一、巧用乘法【例1】解不等式0.125x<3.【思考与分析】此不等式是一元一次不等式的一般形式,只需不等式两边同时除以0.125,就可以化系数为“1”,但是较繁.不如利用不等式的性质2两边同乘以8要比两边同除以0.125解得简捷.解:两边同乘以8,得x<24.二、巧去分母【例2】解不等式【思考与分析】常规方法是先去分母,但仔细观察就会发现,可先进行移项.解:移项,得合并同类项,得x≥-1.【例3】解不等式【思考与分析】常规方法是去分母,两边同乘以分母的最小公倍数.但我们会注意到“0.25×4=1,0.5×2=1”,则利用分数的性质,对左边第一项分子、分母同乘以4,第二项分子、分母同乘以2,这样就可以化去分母并且系数为整数.解:利用分数的性质(即左边第一项分子、分母同乘以4,第二项分子、分母同乘以2),得8x+4-2(x-2)≤2,去括号,得8x+4-2x+4≤2,移项,合并同类项,得6x≤-6两边同时除以6得x≤-1.三、根据已知条件取特殊值【例4】设a、b是不相等的任意正数,又x=,则x、y这两个数一定是() A.都不大于2B.都不小于2C.至少有一个大于2D.至少有一个小于2【思考与分析】不妨取a=1,b=3,得x=10,y=从而排除A、B,再取a=3,b=4,得,从而排除D,故选C.答案:C.【反思】用特殊值法解选择题时,如果所取的特殊值使部分选项取得相同的结果,则应另选特殊值再验,直至选出答案.四、根据数轴取特殊值【例5】不等式组的解集在数轴上表示出来是如下图中的()【思考与分析】本题的常规方法是先解不等式组,然后再对照各选项选出正确答案,由于这样做要解不等式组,比较麻烦.仔细观察各选项中的数轴,有两个特殊数2,-1,不妨先取x=2,代入不成立,故可排除A、B.再取x=0,代入不成立,又可排除C,从而选D,这样做不仅节省了时间,而且又减少了出错的机会﹒答案:D.【反思】用特殊值法解选择题时,要综合运用验证法,排除法等技巧,快速选出正确答案﹒比较两个数或两个代数式的大小,可以运用求差法:如果a-b>0,则a>b;如果a-b<0,则a<b.运用求差法比较大小的一般步骤是:(1)作差;(2)判断差的符号;(3)确定大小.【例6】设x>y,试比较代数式-(8-10x)与-(8-10y)的大小,如果较大的代数式为正数,则其中最小的正整数x或y的值是多少?【思考与分析】根据求差法的步骤我们先求出两个式子的差,然后再根据已知条件x>y,来判断这个差的符号,从而比较两个代数式的大小.解:由两式作差得-(8-10x)-[-(8-10y)]=-8+10x+8-10y=10x-10y.因为x>y,所以10x>10y,即10x-10y>0.所以-(8-10x)>-(8-10y).又由题意得-(8-10x)>0,即x>,所以x最小的正整数值为1.【例7】有一个三口之家准备在假期出外旅行,咨询时了解到东方旅行社规定:若父母各买一X全票则孩子可以按全票的七折购票;而光明旅行社则规定:三人均可按团体票计价,即按全票的80%收费.若两家旅行社的票价相同,则实际哪家收费较低呢?【思考与分析】要比较哪家旅行社的收费低,我们可以先用含有未知数的式子表示出两家旅行社需要的费用,然后根据求差法的步骤,求出两个式子的差,再根据已知条件判断这个差的符号即可比较出哪个旅行社的费用低.解:设这两家旅行社全票的价格为a元,依题意东方旅行社的收费为2a+70%a=,光明旅行社的收费为3a×80%=.因为-=>0,所以实际上光明旅行社的收费较低.【反思】在解题时我们为什么设这两家旅行社全票的价格为a元呢?因为如果不设的话,我们即使知道用求差法比较大小,也无从下手.五、巧去括号【例8】【思考与分析】观察题目中的括号及数字的特点可先考虑去中括号,再去小括号,这样会使运算简便.解:去中括号,得去分母,得 3x+60<28+8x,移项,合并同类项,得-5x<-32,【思考与分析】观察题目中的括号及数字的特点可从里向外去小括号,给后面的运算带来方便.解:去小括号,得六、巧用“整体思想”【例9】解不等式:【思考与分析】观察题目中括号内外可知都有相同的项:2x-1,我们把2x-1视为整体,再去中括号和分母,则可使运算简捷.解: 3(2x-1)-9(2x-1)-9<5.合并同类项得-6×(2x-1)<14.解得反思:我们在解带有括号的一元一次不等式时,我们要善于观察题目的特点,巧去括号可使运算简便. 【例10】在欧洲足球锦标赛中,共有16支队伍参加比赛,争夺象征欧洲足球最高荣誉的“德劳内杯”.16支队伍被分成4个小组,进行单循环赛(即每个队需同其他三个队各赛一场),胜一场积3分,平一场积1分,负一场积0分,每组按照积分的前两名出线进入前八强,每个队在小组赛中需积多少分,才能确保出线?【思考与分析】根据题意,只有小组赛中的积分的前两名才能出线,我们可以分几种情况来讨论出线积分的多少.(1)若某一队三战全胜积9分,则同组的另一小队需保证小组第二才有出线的希望,在剩下的两场比赛中,它有六种可能:两场全胜积6分,一胜一平积4分,一胜一负积3分,两平积2分,一平一负积1分,两负积0分.(三场比赛,肯定有一场负)因此,在这种情况中,至少积6分才能确保出线;(2)若某一队三战两胜一平积7分,则小组第二至少要两胜积6分才能出线;(3)若某一队三战两胜一负积6分,则其他两个队也可能三战两胜一负积6分,这样三队同积6分,不能确保小组出线.由以上思考讨论可知,在小组赛中,积分可能出现三个队积分相同,为了确保出线,至少需积7分,才能保证以小组第二的身份出线.解:需7分.【小结】通过解题过程我们知道做这类题的时候要注意:在足球比赛中,一般按积分多少排名次;积分相等的两队,净胜球数多的队名次在前;积分、净胜球数都相等的球队,进球数多的队名次在前;分析有关足球比赛的问题时,不能单纯的利用不等关系判断,还要注意到相互之间的胜负关系.第五节、竞赛数学【例1】满足的x的值中,绝对值不超过11的那些整数之和等于 .【思考与分析】要求出那些整数之和,必须求出不等式的绝对值不超过11的整数解,因此我们应该先解不等式.解:原不等式去分母,得3(2+x)≥2(2x-1),去括号,移项,合并同类项,得-x≥-8,即x≤8.满足x≤8且绝对值不超过11的整数有0,±1,±2,±3,±4,±5,±6,±7,±8,-9,-10,-11.这些整数的和为(-9)+(-10)+(-11)=-30.【例2】如果关于x的一元一次方程3(x+4)=2a+5的解大于关于x的方程的解,那么().【思考与分析】这道题把方程问题转化为解不等式问题,利用了转化的数学思想.由于第一个方程的解大于第二个方程的解,只要先分别解出关于x的两个方程的解(两个解都是关于a的式子),再令第一个方程的解大于第二个方程的解,就可以求出问题的答案.解:关于x的方程3(x+4)=2a+5的解为关于x的方程的解为由题意得,解得.因此选D.【例3】如果,2+c>2,那么().A. a-c>a+cB. c-a>c+aC. ac>-acD. 3a>2a【思考与分析】已知两个不等式分别是关于a和c的不等式,求得它们的解集后,便可以找到正确的答案.解: 由所以a<0.由2+c>2,得c>0,则有-c<c.两边都加上a,得a-c<a+c,排除A;由a<0,c>0,得ac<0,-ac>0,从而ac<-ac,排除C;由a<0,两边都加上2a,得3a<2a,排除D.答案应该选B,事实上,由a<0,得-a>0,从而-a>a,两边同时加上c,可得c-a>c+a.【例4】四个连续整数的和为S,S满足不等式,这四个数中最大数与最小数的平方差等于 .【思考与分析】由于四个数是连续整数,我们欲求最大值与最小值,故只须知四数之一就行了,由它们的和满足的不等式就可以求出.解:设四个连续整数为m-1,m,m+1,m+2,它们的和为S=4m+2.由<19,解得7<m<9.由于m为整数,所以m=8,则四个连续整数为7,8,9,10,因此最大数与最小数的平方的差为102-72=51.从数轴上看,一个数的绝对值就是表示这个数的点离开原点的距离.但除零以外,绝对值都是表示两个数的绝对值,即一个数与它相反数的绝对值是一样的.由于这个性质,含有绝对值号的不等式的求解过程出现了一些新特点.一个实数a的绝对值记作∣a∣,指的是由a所惟一确定的非负实数:含绝对值的不等式的性质:(1)∣a∣≥∣b∣b≤|a|或b≥-|a|,∣a∣≤∣b∣∣b∣≤a≤∣b∣;(2)∣a∣-∣b∣≤∣a+b∣≤∣∣a∣+∣b∣;(3)∣a∣-∣b∣≤∣a-b∣≤∣a∣+∣b∣.由于绝对值的定义,含有绝对值号的代数式无法进行统一的代数运算.通常的手法是按照绝对值符号内的代数式取值的正、负情况,去掉绝对值符号,转化为不含绝对值号的代数式进行运算,即含有绝对值号的不等式的求解,常用分类讨论法.在进行分类讨论时,要注意所划分的类别之间应该不重、不漏.下面结合例题予以分析.【例5】解不等式|x-5|-|2x+3|<1.【分析】关键是去掉绝对值符号前后的变号.分三个区间讨论:解:(1)当当x≤时,原不等式化为-(x-5)-[-(2x+3)]<1,解得x<-7,结合x≤,故x<-7是原不等式的解;(2)当<x≤5时,原不等式化为-(x-5)-(2x+3)<1,解得是原不等式的解;(3)当x>5时,原不等式化为:x-5-(2x+3)<1,解得x>-9,结合x>5,故x>5是原不等式的解.综合(1),(2),(3)可知,是原不等式的解.第六节、本章训练基础训练题1.不等式x+3<6的非负整数解为().A. 1,2B. 1,2,3C. 1,2,0D. 1,2,3,02.已知三个连续奇数的和不超过27且大于10,这样的数组共有().A. 1个B. 2个C. 3个D. 4个3.的值不小于-2,则a的取值X围是().+2x的值不大于8-的值,那么x的正整数解是 .5.小明准备用26元钱买火腿肠和方便面,已知一根火腿肠2元,一盒方便面3元,他买了5盒方便面,还可以买多少根火腿肠?6.小华用最小刻度是1厘米的刻度尺,测量一本书的长,测得结果是17.5厘米,这0.5厘米是他估计的,并不准确,若设他所测量的书的长为x厘米,那么x应该满足的不等式是什么?答案1. C2. B3. C4. 1,2,35.解:设还可以买x根火腿肠.由题意我们可列不等式5×3+2x≤26,解得因为x必须为正整数,所以x=1,2,3,4,5.答:小明还可以买火腿肠的数目不超过5根.6.解:17<x<18.提高训练题2.李明在第一次数学测验中得76分,在第二次测验中得92分,设第三次测验的分数为x,且三次的平均分不低于85分,求x的取值X围.3.小强去超市买某种牌子的衬衣,该种衬衣单价为每件100元,小强想买的衬衣数不少于5件,路上交通费为10元,小强准备钱时有以下几种选择:准备400元,准备500元,准备510元,准备610元.请你说明哪种方案可行?4.某商城以单价260元购进一批DVD机,出售时标价398元,由于销售不好,商场准备降价出售,但要保证利润不低于10%.小明说:“可降价100元.”小英说:“可降价150元.”小华说:“降价不能超过112元.”你同意他们谁的说法?5. 巧解下列不等式:(1) 0.375x-2≤0.5x(2)(4)6. 解下列不等式:(1) 9-2(x-2)≥6(2) 12-3x<8-2x7. 已知答案2.解:由题意得我们可列不等式≥85,解得x≥87.3.解:设小明准备了x元钱.我们由题意可列不等式≥5.解得x≥510.所以准备510元或准备610元都可以.4.解:设降价x元.5. (1)x≥-16(提示:不等式两边同乘8);我们可以由题意列不等式398-x-260≥260×10%.解得x≤112.所以小明和小华的说法是正确的.强化训练题1. 若实数a>1,则实数M=a,N=的大小关系是().A. P>N>M B. M>N>PC. N>P>M D. M>P>N2. 若0<a<1,则下列四个不等式中正确的是().3. a、b、c在数轴上的对应点的位置如图所示,下列式子正确的有().① b+c>0;② a+b>a+c;③ bc>ac;④ ab>ac.A.1个B.2个 C.3个 D.4个.4.我市某初中举行“八荣八耻”知识抢答赛,总共50道抢答题.抢答规定:抢答对1题得3分,抢答错1题扣1分,不抢答得0分.小军参加了抢答比赛,只抢答了其中的20道题,要使最后得分不少于50分,问小军至少要答对几道题?5.已知前年物价涨幅(即前年物价比上一年,也就是大前年物价增加的百分比)为20%,去年物价涨幅为15%,预计今年物价涨幅降低5个百分点,为了使明年物价比大前年物价涨幅不高出55%,明年物价涨幅必须比今年物价涨幅至少再降低x个百分点(x为整数)则x=().A. 6B. 7C. 8D. 96.某商场计划投入一笔资金,采购紧销商品.经调查发现,如月初出售,可获利15%,并可用本和利再投资其他商品,则月末又可获利10%;如等到月末出售可获利30%,但需要支付仓储费用700元.请问根据商场资金多少,如何购销获利较多?7.小王家里装修,他去商店买灯,商店柜台里现有功率100瓦的白炽灯和40瓦的节能灯,它们的单价分别为2元和32元,经了解知道这两种灯的照明效果和使用寿命都是一样的.已知小王家所在地的电价为每度0.5元,请问当这两种灯的使用寿命超过多长时间时,小王选择节能灯才合算。
人教版七年级下册数学第9章 不等式与不等式组全章课件

(2)“提前完成任务”是什么意思?
10天的工作量 ≥ 500件
(三)深入探究,阶段小结
解:每个小组每天生产x件产品,
依题意得: 3×10x<500, ① 3×10(x+1)>500. ②
①式解得:x
<
16
2 3
②式解得:x
>15
2 3
∴不等式组的解集为
15
2 3
<x
< 16
问题3:
从刚才的练习中你发现了什么?请你把你的发现和合作小组的同学 交流.
⑴ 5>3, 5+2 > 3+2, 5-2 > 3-2; ⑵ -1<3, -1+2 < 3+2,-1-3< 3-3; ⑶ 6<2, 6×5 < 2×5,
6×(-5) >2×(-5); ⑷ -2<3, (-2)×6 < 3×6,
依题意得:40x≤2400 且 40x≥2000
(二)概念认识
c>10-3 且 c<10+3
c >10-3 c <10+3
一元一次 不等式组
40x≤2400 且 40x≥2000
40x≤2400
【问题3】
40x≥2000
请大家判断一下,下列式子是一元一次不等式
组吗?一元一次不等式组有什么特点?
x - 3 >0
23 从图中可以找到两个不等式解集的公共部分, 得不等式组的解集是: x >3
(五)练习巩固
【问题 7】完成课本 140 页练习 1.
(六)课堂小结
【问题 8】本节课你学到了哪些知识?
第九章 不等式与不等式组
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
x>1 且 x<100
讲授新课
一 不等式的概念
问题引导 问题1 如图所示,处于平衡状态的托盘天平的右盘放 上一质量为50g的砝码,左盘放上一个圆球后向左倾斜, 问圆球的质量x g与质量为50g的砝码之间具有怎样的 关系?
例2 已知一支圆珠笔x元,签字笔与圆珠笔相比每 支贵y元. 小华想要买3支圆珠笔和10支签字笔,若付 50元仍找回若干元,则如何用含x,y的不等式来表 示小华所需支付的金额与50元之间的关系?
解 3x+10(x+y)<50
三 不等式的解与解集
交流:下面给出的数中,能使不等式x>50成立吗?你 还能找出其他的数吗?
20, 40, 50, 100.
解 当x=20,20<50, 不成立; 当x=40,40<50, 不成立; 当x=50,50=50, 不成立; 当x=100,100>50, 成立.
概念学习 我们曾经学过“使方程两边相等的未知数的值
就是方程的解”,与方程类似 , 能使不等式成立
的未知数的值叫不等式的解. 例如:100是x>50的解. 代入法是检验某个值是否是不等式的解的简单、
观察由上述问题得到的关系式:x>1 , x<100, x>50,s>60x,s<100x ,它们有什么共同的特点?
左右不相等
总结归纳 一般地,用不等号“>”,“<”连接而成的式
子叫做不等式.像a≠2这样的式子也叫做不等式.
练一练 判断下列式子是不是不等式: (1)-3>0; (2)4x+3y<0; (3)x=3; (4) x2+xy+y2; (5)x≠5; (6)x+2>y+5.
我们很容易知道圆球 的质量大于砝码的质量, 即x > 50.
问题2 一辆轿车在一条规定车速应高于60km/h,且 低于100 km/h的高速公路上行驶,如何用式子来表 示轿车在该高速公路上行驶的路程s(km)与行驶时间 x(h)之间的关系呢?
根据路程与速度、时 间之间的关系可得:
s>60x,且s<100x.
第九章 不等式与不等式组
9.1 不等式
9.1.1 不等式及其解集
学习目标
1.了解不等式及其解的概念; 2.学会并准确运用不等式表示数量关系,形成在表
达中渗透数形结合的思想.(难点) 3.理解不等式的解集及解不等式的意义.(重点)
导入新课
图片引入
谁快谁慢
谁长谁短
谁赢谁输
谁重谁轻
导入新课
情境引入 摩拜单车在2017年3月推出了红包车的运动.用
实用的方法.
练一练 判断下列数中哪些是不等式 2 x > 50 的解:60,73,
3
74.9,75.1,76,79,80,90.你还能找出这个不等式
的其他解吗?这个不等式有多少个解? 无数个
xx 60 73 74.9 75.1 76 79 80 90
2 x > 50 不 不 不 是 是 是 是 是
画一画: 利用数轴来表示下列不等式的解集.
空心圆圈表 (1)x>-1 ;
示不含此点
(2)
x<
1 2
.
表示
1 2
的点
-1 0
表示-1的点
方向向右
01
方向向左
变式:
已知x的解集在数轴上表示如图,你能写出x的
解集吗?
-2
0
x<-2
总结归纳 用数轴表示不等式的解集,应记住下面的规律:
1.大于向右画,小于向左画; 2.>,<画空心圆圈.
解 : (1)(2)(5)(6)是不等式; (3)(4)不是不等式.
二 用不等式表示数量关系
合作与交流
例1 用不等式表示下列数量关系:
(1)x的5倍大于-7; (2)a与b的和的一半小于-1;
5x >-7
(3)长、宽分别为xcm,ycm的长方形的面积小于 边长为acm的正方形的面积. xy < a2
例3:直接写出x+4<6的解集,并在数轴上表示出来. 解:x<2. 这个解集可以在数轴上表示为:
012 变式1:已知x的解集如图所示,你能写出x的解集吗?
(1)
-4 0
解:(1)x<-4;
(2) 04
(2)x>4.
变式2:直接写出不等式2x>8的解集,并在数轴上表 示出来.
解:x>4. 这个解集在数轴上表示为:
04 变式3:直接写出不等式-2x>8的解集.
解:x<-4.
当堂练习
1. 用不等式表示下列数量关系: (1)a是正数; a > 0. (2)x比-3小; x <-3.
练一练
2.判断下列说法是否正确?
(1) x=2是不等式x+3<4的解;
(× )
(2) 不等式x+1<2的解有无穷多个; (√ )
(3) x=3是不等式3x<9的解
(× )
(4) x=2是不等式3x<7的解集; ( ×)
四 在数轴上表示不等式的解集
问题1 如何在数轴上表示出不等式x>2的解集呢?
则都点点大表因不A于示此等;2边样2表. 所表示有示的的数 先在数轴上标出表示2的点A
把表示2 的点A
画成空心圆圈,表 示解集不包括2.
A -1 0 1 2 3 4 5 6
解集的表示方法: 第一种:用式子(如x>2),即用最简形式的不等式 (如x>a或x<a)来表示.
第二种:用数轴,一般标出数轴上某一区间,其中的 点对应的数值都是不等式的解. 用数轴表示不等式的解集的步骤: 第一步:画数轴; 第二步:定界点; 第三步:定方向.
不等式的解
不等式的解集
定义 满足一个不等式的 满足一个不等式的
区别
未知数的某个值 未知数的所有值
特点
个体
形式 如:x=3是2x-3<7 的一个解
联系 某个解定是解集中
的一员
全体 如:x<5是2x-3<7 的解集
解集一定包括了 某个解
练一练
1.下列说法正确的是( A ) A. x=3是2x+1>5的解 B. x=3是2x+1>5的唯一解 C. x=3不是2x+1>5的解 D. x=3是2x+1>5的解集
3
是是 是
(1)你发现了哪些数是这个不等式的解? (2)你从表格中发现了什么规律?
概念学习 一般的,一个含有未知数的不等式的所有的解,
组成这个不等式的解集.
求不等式的解集的过程叫解不等式.
想一想:
1.不等式的解和不等式的解集是一样的吗?
2.不等式的解与解不等式一样吗?
概念区分 不等式的解与不等式的解集的区别与联系