高中数学基本思想

合集下载

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解
(2)在一维空间,实数与数轴上的点建立一一对应关系
在二维空间,实数对与坐标平面上的点建立一一对应关系
数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化
第三:分类与整合思想
(1)分类是自然科学乃至社会科学研究中的基本逻辑方法
(2)从具体出发,选取适当的分类标准
(5) 高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向
第六:有限与无限的思想:
(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路
(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向
(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用
(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查
第七:或然与必然的思想:
(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性
(2)偶然中找必然,再用必然规律解决偶然
(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点
(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化
第五: 特殊与一般思想
(1)通过对个例认识与研究,形成对事物的认识
(2)由浅入深,由现象到本质、由局部到整体、由实践到理论
(3)由特殊到一般,再由一般到特殊的反复认识过程
(4) 构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程
(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法

高中数学八大思想总结

高中数学八大思想总结

高中数学八大思想总结高中数学八大思想是指数学学科中的八个重要理念和思维方式,包括逻辑思维、抽象思维、归纳思维、演绎思维、模型思维、实用思维、探究思维和创新思维。

这些思想在高中数学学习中具有重要的指导意义,有助于培养学生的数学素养和数学思维能力。

下面将对这八大思想进行总结。

逻辑思维是数学思维的基本内容,也是数学推理的基础。

逻辑思维要求学生运用正确的逻辑推理方法,从已知条件出发,通过合理的推理得出结论。

逻辑思维的重点是培养学生的推理和证明能力,提高他们解决问题的能力。

抽象思维是数学思维的重要组成部分,也是数学建模的关键能力。

抽象思维要求学生将具体问题抽象为一般性问题,将复杂问题简化为简单问题,从而更好地理解问题的本质和规律。

抽象思维不仅有利于学生理解数学概念和定理,还有助于他们掌握数学方法和技巧。

归纳思维是数学思维的重要形式之一,是从具体到一般的思维方式。

归纳思维要求学生通过观察具体例子和实验数据,总结出一般规律和定理。

归纳思维有助于学生培养发现问题规律和解决问题的能力,提高他们的问题分析和解决能力。

演绎思维是数学思维的另一种重要形式,是从一般到具体的思维方式。

演绎思维要求学生通过已知条件和逻辑推理得出新的结论,从而解决新的问题。

演绎思维有助于学生培养运用已有知识和方法解决新问题的能力,提高他们的综合运用能力。

模型思维是数学思维的重要组成部分,是数学建模和实际问题解决的核心思维方式。

模型思维要求学生将实际问题抽象为数学模型,通过建立和求解模型,得出问题的解答和结论。

模型思维有助于学生将数学知识应用于实际问题,提高他们的实际问题解决能力。

实用思维强调数学知识和方法的实用性,要求学生学会运用数学知识和方法解决实际问题。

实用思维关注数学与现实生活的联系和应用,注重培养学生的数学素养和实践能力,提高他们的数学能力和综合素质。

探究思维是数学思维的重要内容,要求学生通过实践和探究,主动发现问题和解决问题。

探究思维鼓励学生提出问题、假设和猜想,通过实验和推理验证和证明,培养他们的问题解决技巧和创新能力。

高中数学七大数学基本思想方法

高中数学七大数学基本思想方法

高中数学七大数学基本思想方法数学是一门以逻辑推理为基础的学科,它不仅是一种学科,更是一种思维方式。

在高中数学学习中,我们需要掌握七大数学基本思想方法,它们分别是归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维。

本文将详细介绍这七大数学基本思想方法,并分析其在数学学习中的应用。

一、归纳法归纳法是一种从特殊到一般的思维方法,通过观察和总结特殊情况的共性来得到一般规律。

在数学学习中,我们经常使用归纳法来猜测数列、函数等的规律,并通过举例子来验证猜测的正确性,从而得到一般规律。

二、演绎法演绎法是一种从一般到特殊的思维方法,通过已知的一般规律得出特殊情况的结论。

在数学证明中,我们通常使用演绎法来推导定理和公式的正确性,从而得到具体问题的解答。

三、逆向思维逆向思维是一种从结果到原因的思维方法,通过倒推问题的解答过程来寻找问题的关键步骤。

在解决复杂数学问题时,我们可以运用逆向思维逐步分析问题,从已知的结论反推出问题的解答过程,找到问题的关键。

四、递归思维递归思维是一种通过推导和分解问题的方法来解决问题的思维方式。

在数列、函数、图形等问题中,我们常常使用递归思维来将复杂的问题分解为简单的子问题,通过子问题的解答来得到原问题的解答。

五、几何思维几何思维是一种通过观察和想象空间形象来解决问题的思维方法。

在几何学中,我们常常使用几何思维来推导定理、证明等,通过观察图形的性质和特点来解决问题。

六、数形结合思维数形结合思维是一种将数学概念与图形结合起来进行推导和证明的思维方式。

在数学学习中,我们可以通过数形结合思维来解决几何图形的性质、推导函数的变化规律等问题。

七、抽象思维抽象思维是一种将具体问题抽象为一般规律的思维方法。

在解决复杂数学问题时,我们可以通过抽象思维将具体的问题进行简化,找出问题的共性,并运用一般规律来解决问题。

总之,掌握高中数学七大数学基本思想方法对于提升数学学习能力至关重要。

通过运用归纳法、演绎法、逆向思维、递归思维、几何思维、数形结合思维和抽象思维,我们可以更加深入地理解数学的本质和规律,并能够灵活运用这些思维方法来解决各种数学问题。

高中数学重要数学思想

高中数学重要数学思想

一、高中数学重要数学思想一、函数方程思想函数方程思想就是用函数、方程的观点和方法处理变量或未知数之间的关系,从而解决问题的一种思维方式,是很重要的数学思想。

1.函数思想:把某变化过程中的一些相互制约的变量用函数关系表达出来,并研究这些量间的相互制约关系,最后解决问题,这就是函数思想;2.应用函数思想解题,确立变量之间的函数关系是一关键步骤,大体可分为下面两个步骤:(1)根据题意建立变量之间的函数关系式,把问题转化为相应的函数问题;(2)根据需要构造函数,利用函数的相关知识解决问题;(3)方程思想:在某变化过程中,往往需要根据一些要求,确定某些变量的值,这时常常列出这些变量的方程或(方程组),通过解方程(或方程组)求出它们,这就是方程思想;3.函数与方程是两个有着密切联系的数学概念,它们之间相互渗透,很多方程的问题需要用函数的知识和方法解决,很多函数的问题也需要用方程的方法的支援,函数与方程之间的辩证关系,形成了函数方程思想。

二、数形结合思想数形结合是中学数学中四种重要思想方法之一,对于所研究的代数问题,有时可研究其对应几何的性质使问题得以解决(以形助数);或者对于所研究的几何问题,可借助于对应图形的数量关系使问题得以解决(以数助形),这种解决问题的方法称之为数形结合。

1.数形结合与数形转化的目的是为了发挥形的生动性和直观性,发挥数的思路的规范性与严密性,两者相辅相成,扬长避短。

2.恩格斯是这样来定义数学的:“数学是研究现实世界的量的关系与空间形式的科学”。

这就是说:数形结合是数学的本质特征,宇宙间万事万物无不是数和形的和谐的统一。

因此,数学学习中突出数形结合思想正是充分把握住了数学的精髓和灵魂。

3.数形结合的本质是:几何图形的性质反映了数量关系,数量关系决定了几何图形的性质。

4.华罗庚先生曾指出:“数缺性时少直观,形少数时难入微;数形结合百般好,隔裂分家万事非。

”数形结合作为一种数学思想方法的应用大致分为两种情形:或借助于数的精确性来阐明形的某些属性,或者借助于形的几何直观性来阐明数之间的某种关系.5.把数作为手段的数形结合主要体现在解析几何中,历年高考的解答题都有关于这个方面的考查(即用代数方法研究几何问题)。

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解

高中数学七大基本思想方法讲解第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点。

高中数学函数四大思想总结

高中数学函数四大思想总结

高中数学函数四大思想总结高中数学函数四大思想是数学教学中的基本思想和方法,包括函数的观念、函数关系的建立、函数的性质及应用。

下面就这四个方面进行详细总结。

函数的观念是指将变量视为独立因素,变量间的依赖关系用函数来描述。

函数的观念的提出,是数学发展的一大突破,它将变量的处理提升到更高的层次。

通过函数的观念,数学家们能够处理更加复杂的问题,从而推动了数学理论的发展。

高中数学教学中,函数的观念贯穿始终,从初中起就开始引入函数的概念,帮助学生建立起独立变量和因变量之间的关系,为后续的学习打下了良好的基础。

函数关系的建立是指通过实际问题将数学和生活相联系,将问题抽象成函数关系的过程。

通过建立函数关系,可以将复杂的问题转化为简单的数学模型,帮助学生理解问题的本质和解决问题的方法。

在高中数学教学中,老师会经常以实际问题为基础,引导学生思考,建立函数关系,培养学生的抽象思维能力和解决问题的能力,提高学生的数学素养。

函数的性质是指函数在变量间的存在性、唯一性和有界性等方面的特点。

通过研究函数的性质,可以深入理解函数与其他数学对象的关系,为解决实际问题提供数学工具。

例如,函数的单调性可以帮助分析变量的变化趋势,函数的奇偶性可以帮助分析函数的对称性,函数的有界性可以帮助分析函数在一定范围内的取值情况。

在高中数学教学中,老师会讲解函数的性质,引导学生通过性质分析问题,加深对函数的理解和应用。

函数的应用是指将函数的理论与实际问题相结合,实现数学在现实中的应用价值。

数学函数在自然科学、社会科学和工程技术等领域中有着广泛的应用,比如经济学中的成本函数、物理学中的运动函数、工程学中的优化问题等等。

高中数学教学中,老师会引导学生将函数应用于实际问题的解决,培养学生的实际问题解决能力和创新能力,提高学生的数学建模能力。

总的来说,高中数学函数四大思想是高中数学教学的核心,它们互为补充、相辅相成。

函数的观念是建立其他三个思想的基础,函数关系的建立将函数的观念应用到实际问题的解决中,函数的性质帮助深入理解函数的本质和应用,函数的应用将函数理论与实际问题相连接。

高中数学四大数学思想

高中数学四大数学思想数学作为一门学科,具有其独特的思维方式和方法论。

在高中阶段,学生接触到了更加深入和复杂的数学知识,需要掌握一些基本的数学思想。

本文将向你介绍高中数学的四大数学思想,它们分别是抽象思想、推理思想、循环思想和应用思想。

一、抽象思想抽象思想是数学思维中最基本的思想之一。

它通过将具体的事物抽象为符号或概念,以便进行更深入和广泛的研究。

高中数学中的代数就是一个典型的应用抽象思想的例子。

代数通过使用字母和符号来表示未知数和运算关系,使得数学问题在更广泛的背景下得到了解决。

通过抽象思想,我们可以在不受具体物体限制的情况下进行推理和运算,拓宽了数学的应用范围。

二、推理思想推理思想是高中数学中最为重要的思想之一。

它是通过逻辑推理和推导来得出新的结论或解决问题的思维方式。

在数学证明中,推理思想被广泛运用。

我们可以通过假设、应用公理和定理等方法,一步一步地推导出结论的正确性。

推理思想还可以帮助我们解决实际生活中的问题,例如用数学推理去解决日常生活中的谜题或者逻辑难题。

推理思想培养了我们的逻辑思维和分析能力,帮助我们解决问题时更加清晰和准确。

三、循环思想循环思想是高中数学中的重要思维方式之一。

它通过观察和总结事物的循环规律,揭示了事物发展的规律性和特点。

在数列、函数和几何等数学概念中,循环思想起到了关键的作用。

通过观察数列中数字的排列规律,我们可以归纳出通项公式;通过观察图形的对称性和重复性,我们可以发现其特殊性质。

循环思想培养了我们的观察力和归纳能力,帮助我们理解和解决更加复杂的数学问题。

四、应用思想应用思想是高中数学中最具实践性的思维方式之一。

它将数学中的知识和方法应用于实际问题的解决中。

高中数学的各个分支,如数列、函数、统计等,都与实际生活息息相关。

通过学习这些数学概念和方法,我们可以解决现实生活中的各种问题。

例如,我们可以使用函数来建立生活中的数学模型,预测未来某种现象的发展趋势;我们可以使用统计学方法来分析数据,了解社会经济的变化。

高中数学新课标四基的含义


核心素养视域下的“四基”教学应体现的特征
● (3)注意发挥“四基”教学的各自长处,注重“四基”的整合效应.
● “四基”有各自的特点,它们在教学中的侧重点当然有所不同,在教学 中要注意发挥它们各自的长处.比如,高中生的数学知识面有了一定拓展, 学习理解力也有了一定提升,故对于基础知识、技能教学,要重视学生学 习能力的培养,重在引导学生自主理解与掌握.数学基本思想的教学,重 在引导学生感悟.数学基本思想作为认识主体的一种主观认识不是靠教学 中“硬灌”可以形成的,它需要“悟”,即需要学习者经历一个从相对模 糊、表面到相对清晰、深入的体会、认识过程,需要在不同的数学内容教 学和任务情境中通过提炼、总结、理解、应用等循环往复的过程逐步形成, 学生只有亲身经历这样的过程,多次、反复感悟,才能得其精髓。而数学 基本活动经验教学,重在活动中通过学生“做数学”逐步积累。
核心素养视域下的“四基”教学应体现的特征
● (2)“四基”教学要关注结构性,突出整体性.
● 之所以要强调关注课程内容的结构性、突出整体性,一方面是因为高中 数学课程中函数、几何与代数、概率与统计、数学建模活动与数学探究活 动4条主线交织,知识模块、主题多样,3种课型(必修、选择性必修、选 修课)并存,客观上需要从结构入手,注重整体,这样才能驾驭、把握数 学教学内容;另一方面也是更重要的原因是,服从于数学核心素养发展的 整合性、综合性、跨界性特点要求,需要克服原“双基”教学的局限性, 改变教师过分关注具体知识点、数学教学呈碎片现的特征
● (2)“四基”教学要关注结构性,突出整体性.
● 之所以要强调关注课程内容的结构性、突出整体性,一方面是因为高中 数学课程中函数、几何与代数、概率与统计、数学建模活动与数学探究活 动4条主线交织,知识模块、主题多样,3种课型(必修、选择性必修、选 修课)并存,客观上需要从结构入手,注重整体,这样才能驾驭、把握数 学教学内容;另一方面也是更重要的原因是,服从于数学核心素养发展的 整合性、综合性、跨界性特点要求,需要克服原“双基”教学的局限性, 改变教师过分关注具体知识点、数学教学呈碎片化的倾向.

高中数学的“四大思想”和“六大法则”

高中数学的“四大思想”和“六大法则”想要学好高中数学,需要树立正确的解题思想与提高解题能力,下面将向大伙介绍高中数学的四大思想和六大法则,让大家来学会运用这部分容易见到的思想和法则,进而形成正确的数学解题思维,帮提高高中数学成绩。

高中数学容易见到的六大法则1、配办法所谓的公式是用变换分析方程的同构办法,并将其中的一些分配给一个或多个多项式正整数幂的和形式。

通过配方解决数学问题的公式。

其中,用的最多的是配成完全平方法。

匹配办法是数学中不断变形的要紧办法,其应用很广泛,在分解,简化根,它一般用于求解方程,证明方程和不等式,找到函数的极值和分析表达式。

2、因式分解法因式分解是将多项式转换为几个积分商品的乘积。

分解是恒定变形的基础。

除去引入中学教科书中介绍的公因子法,公式法,群体分解法,交叉乘法法等外,还有大量办法可以进行因式分解。

还有一些项目,如拆除物品的用,根分解,替换,未确定的系数等等。

3、换元法替代办法是数学中一个尤为重要和广泛用的解决问题的办法。

大家一般称未知或变元。

用新的参数替换原始公式的一部分或重新构建原始公式可以更容易,更容易解决。

4、判别式法与韦达定理一元二次方程 ax2+ bx+ c=0根的判别, = b2-4 ac,不只用来确定根的性质,还作为一个问题解决办法,代数变形,求解方程(组),求解不等式,研究函数,甚至几何与三角函数都有很广泛的应用。

吠陀定理除去知晓二次方程的根外,还找到另一根;分析到两个数的和和乘积的容易应用并探寻这两个数,也可以找到根的对称函数并量化二次方程根的符号。

求解对称方程并解决一些与二次曲线有关的问题等,具备很广泛的应用。

5、待定系数法在解决数学问题时,假如大家第一判断大家所探寻的结果具备肯定的形式,其中包含某些未决的系数,然后依据问题的条件列出未确定系数的方程,最后找到未确定系数的值或这部分待定系数之间的关系。

为知道决数学问题,这种问题解决办法被叫做待定系数法。

高中四大数学基本思想总结

高中四大数学基本思想总结高中四大数学基本思想是数学思维的重要组成部分,也是高中数学学习的核心内容。

这四大数学基本思想包括:抽象、形象、严谨和应用。

以下是对这四大数学基本思想的总结。

抽象是数学的重要思想之一,它指的是将具体的事物抽象成符号、变量、运算等概念。

通过抽象,我们可以将复杂的问题简化,提取出其中的本质特征,进而进行更深入的研究。

例如,在代数中,我们可以用字母代表未知数,通过建立方程式来解决问题。

抽象思想使得数学变得更加简洁、高效,为我们解决实际问题提供了有力工具。

形象是指通过几何图形和图表等方式来进行数学思考的思想。

形象思想使得数学变得直观,有助于我们理解数学概念和关系。

例如,在几何学中,通过绘制图形,我们可以更直观地看到形状、角度、长度等几何概念之间的关系,从而更好地理解几何学原理。

形象思想能够提高我们的空间想象能力和几何直观感,为我们解决几何问题提供了重要思维工具。

严谨是数学的基本特征之一,它要求我们在推理过程中严密地使用逻辑和推理规则,保证推理的正确性。

严谨思想是数学学习的重要目标和基本要求,它要求我们用严格的证明来解决问题,确保推理过程正确无误。

例如,在数学证明中,我们需要严谨地运用数学定理、公理和定义,用逻辑推理的方法证明某个结论,保证推理的准确性和有效性。

严谨思想使得数学能够建立在坚实的逻辑基础上,具有高度的严密性和可靠性。

应用是数学的实际价值所在,它要求我们将数学知识应用于实际问题的解决中。

应用思想使得数学具有实际意义,能够帮助我们解决现实生活中的各种问题。

例如,在物理学中,我们可以通过数学模型来描述物理现象和过程,通过数学方法来分析和解决实际问题。

应用思想使得数学能够与其它学科相结合,发挥重要的作用,并且能够使数学成为一门强大的工具。

综上所述,高中四大数学基本思想包括抽象、形象、严谨和应用,它们是数学思维的重要组成部分。

抽象思想使得数学变得简洁、高效;形象思想使得数学变得直观、易于理解;严谨思想使得数学具有严密性和可靠性;应用思想使得数学具有实际价值和实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学应具备的基本思想
数形结合思想
数形结合思想在高考中占有非常重要的地位,其“数”与“形”结合,相互渗透,把代数式的精确刻划与几何图形的直观描述相结合,使代数问题、几何问题相互转化,使抽象思维和形象思维有机结合. 应用数形结合思想,就是充分考查数学问题的条件和结论之间的内在联系,既分析其代数意义又揭示其几何意义,将数量关系和空间形式巧妙结合,来寻找解题思路,使问题得到解决. 运用这一数学思想,要熟练掌握一些概念和运算的几何意义及常见曲线的代数特征.应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.
以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.
以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合. 分类讨论思想
分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决. 分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.
应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏. 如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.
常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等。

分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.
函数与方程思想
函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多. 函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决.
运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.
(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二
次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系. 掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.
转化与化归思想
化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想. 转化是将数学命
题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题. 转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中. 转化有等价转化与不等价转化. 等价转化后的新问题与原问题实质是一样的. 不等价转化则部
分地改变了原对象的实质,需对所得结论进行必要的修正.
应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化. 常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。

相关文档
最新文档