(完整版)高中数学四大思想方法
谈高中数学中四种简单的数学思想

谈高中数学中四种简单的数学思想数学学习离不开思维,数学探索需要通过思维来实现。
在我们学习数学的过程中,发现其中蕴含着许多重要的思想方法。
如果我们掌握了这些思想方法,能将他们灵活的应用于我们的解题过程中,会发现许多看似复杂的数学问题就会变得简单起来,我们的学习就会变得简单起来。
下面对几种常见的方法做一简单的说明。
一、分类讨论思想分类讨论的思想是一种重要的数学思想方法。
其基本思路是将一个较复杂的数学问题分解或分割成若干个基础性问题,通过对基础性问题的解答来实现解决原问题的思想策略。
对问题实行分类与整合,分类标准等于增加一个已知条件,实现了有效增设,将大问题或综合性问题分解为小问题或基础性问题,优化解题思路,降低问题难度。
分类讨论的原则是:要做到不重不漏,标准统一,层次分明,能不分类的要尽量避免或尽量推迟,决不无原则的讨论。
解分类讨论问题的步骤是:首先要确定分类讨论的对象,即对哪个变量或参数进行分类讨论。
其次对所讨论的对象进行合理的分类,逐步讨论,逐步解决。
最后还要归纳总结,将各类情况总结归纳在一起。
在高中数学中,分类讨论思想的应用主要有几个方面:绝对值概念的定义,一元二次方程根的判别式与实数根的情况;二次函数二次项系数与抛物线开口方向;指数、对数函数的单调性与底数a的关系;等比数列的求和公式q=1与q≠1的区别;解不等式等等。
下面举例来说明。
二、数形结合思想数形结合的数学思想包含“以形助数”和“以数辅形”两个方面。
运用数形结合思想分析解决问题时,要遵循三个原则:1等价性原则在数形结合时,代数性质和几何性质的转换必须是等价的,否则解题会出现漏洞。
2 双方性原则既要进行几何直观分析,又要进行相应的代数抽象探求,仅对代数问题进行几何分析容易出错。
3 简单性原则不要为了“数形结合”而数形结合,具体应用时,一要考虑是否可行和是否有利;二要选择好突破口,恰当设参用参,建立关系,做好转化;三要挖掘隐含条件,准确界定参变量的取值范围,特别是运用函数图象时应设法选择动直线与二次曲线。
高中数学四大思想方法

高中数学四大思想方法高中数学是数学学科的一部分,其主要涉及代数、几何、函数、概率和统计等内容。
在学习过程中,数学家们发展了许多思想方法,以解决和理解数学问题。
以下是高中数学中常见的四大思想方法。
1.抽象思维方法抽象思维方法是数学的核心思想之一、它通过剥离具体的数学问题中的不必要部分,从而将问题抽象化为更为一般的形式,并建立相应的模型。
例如,在代数中,我们可以将具体的算式和方程抽象为符号表示,以简化问题的描述和解决过程。
抽象思维方法能够提高学生的思维能力和数学抽象能力,培养学生的逻辑思维和推理能力。
2.归纳与演绎思维方法归纳与演绎思维方法是数学推理的重要方法。
归纳是通过观察事实和案例,找出普遍规律和规则。
例如,通过观察一系列数列,我们可以归纳出它们的通项公式。
演绎是通过已知条件和推理规则,从而推导出结论。
例如,通过已知两条平行线被一条横截线相交,我们可以演绎出对应角相等的结论。
归纳和演绎相辅相成,使学生能够更好地理解和应用数学定理和思想。
3.综合思维方法4.探究思维方法探究思维方法是数学学科中重要的思想方法之一、它强调学生通过实践探索和发现数学规律和定理。
例如,通过动手操作、观察和实验,学生可以发现一些几何定理或数学规律,并且对其原理和应用有更深入的理解。
探究思维方法能激发学生的学习兴趣,培养学生的发现问题和解决问题的能力。
同时,它也强调学生的自主学习和合作学习能力。
综上所述,高中数学中的四大思想方法包括抽象思维方法、归纳与演绎思维方法、综合思维方法和探究思维方法。
这些方法能够培养学生的数学思维和解决问题的能力,提高学生的数学水平和学习效果。
学生在学习和应用这些方法时,应结合实际问题进行思考和讨论,不断深化对数学的理解和应用。
高中数学常用四种数学思想

高中数学常用四种数学思想一、数形结合思想方法中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学中的知识,有的本身就可以看作是数形的结合。
如:锐角三角函数的定义是借助于直角三角形来定义的;任意角的三角函数是借助于直角坐标系或单位圆来定义的。
Ⅰ、再现性题组:1.设命题甲:0<x<5;命题乙:|x-2|<3,那么甲是乙的_____。
高中四大数学思想方法

高中四大数学思想方法高中四大数学思想方法一、数形结合思想应用数形结合的思想,应注意以下数与形的转化:(1)集合的运算及韦恩图;(2)函数及其图象;(3)数列通项及求和公式的`函数特征及函数图象;(4)方程(多指二元方程)及方程的曲线.以形助数常用的有:借助数轴;借助函数图象;借助单位圆;借助数式的结构特征;借助于解析几何方法.以数助形常用的有:借助于几何轨迹所遵循的数量关系;借助于运算结果与几何定理的结合.二、分类讨论思想分类讨论思想就是根据所研究对象的性质差异,分各种不同的情况予以分析解决.分类讨论题覆盖知识点较多,利于考查学生的知识面、分类思想和技巧;同时方式多样,具有较高的逻辑性及很强的综合性,树立分类讨论思想,应注重理解和掌握分类的原则、方法与技巧、做到“确定对象的全体,明确分类的标准,分层别类不重复、不遗漏的分析讨论”.应用分类讨论思想方法解决数学问题的关键是如何正确分类,即正确选择一个分类标准,确保分类的科学,既不重复,又不遗漏.如何实施正确分类,解题时需要我们首先明确讨论对象和需要分类的全体,然后确定分类标准与分类方法,再逐项进行讨论,最后进行归纳小结.常见的分类情形有:按数分类;按字母的取值范围分类;按事件的可能情况分类;按图形的位置特征分类等.分类讨论思想方法可以渗透到高中数学的各个章节,它依据一定的标准,对问题分类、求解,要特别注意分类必须满足互斥、无漏、最简的原则.三、函数与方程思想函数与方程思想是最重要的一种数学思想,高考中所占比重较大,综合知识多、题型多、应用技巧多.函数思想简单,即将所研究的问题借助建立函数关系式亦或构造中间函数,结合初等函数的图象与性质,加以分析、转化、解决有关求值、解(证)不等式、解方程以及讨论参数的取值范围等问题;方程思想即将问题中的数量关系运用数学语言转化为方程模型加以解决。
运用函数与方程的思想时,要注意函数,方程与不等式之间的相互联系和转化,应做到:(1)深刻理解函数f(x)的性质(单调性、奇偶性、周期性、最值和图象变换),熟练掌握基本初等函数的性质,这是应用函数思想解题的基础.(2)密切注意三个“二次”的相关问题,三个“二次”即一元二次函数、一元二次方程、一元二次不等式是中学数学的重要内容,具有丰富的内涵和密切的联系.掌握二次函数基本性质,二次方程实根分布条件,二次不等式的转化策略.四、转化与化归思想化归与转化的思想,就是在研究和解决数学问题时采用某种方式,借助某种函数性质、图象、公式或已知条件将,问题通过变换加以转化,进而达到解决问题的思想.转化是将数学命题由一种形式向另一种形式的变换过程,化归是把待解决的问题通过某种转化过程归结为一类已经解决或比较容易解决的问题.转化与化归思想是中学数学最基本的思想方法,堪称数学思想的精髓,它渗透到了数学教学内容的各个领域和解题过程的各个环节中.转化有等价转化与不等价转化.等价转化后的新问题与原问题实质是一样的.不等价转化则部分地改变了原对象的实质,需对所得结论进行必要的修正.应用转化与化归思想解题的原则应是化难为易、化生为熟、化繁为简,尽量是等价转化.常见的转化有:正与反的转化、数与形的转化、相等与不等的转化、整体与局部的转化、空间与平面相互转化、复数与实数相互转化、常量与变量的转化、数学语言的转化。
高中数学思想方法

高中数学思想方法高中数学思想方法高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的.分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法2近年来,高考命题方向很明显地朝着对知识网络交汇点、数学思想方法及对数学能力的考查发展,考生在复习的过程中,应对所学知识进行及时的梳理,这里既包含对基础知识的整理,也包括对数学思想方法的总结。
高中数学四种思想方法总结

高中数学四种思想方法总结高中数学涵盖了许多不同的思想方法,其中最常用的有四种:抽象思维、演绎推理、归纳思维和模型思维。
这些思维方法不仅在数学领域有着重要的应用,也能在其他学科和日常生活中发挥作用。
下面将对这四种思维方法进行详细的总结。
抽象思维是高中数学中最基本的思维方法之一。
它强调将具体的问题抽象成一般性的数学问题,以便研究和解决。
在解决数学问题时,我们经常需要忽略问题的细节,着重分析问题的本质。
通过抽象思维,我们能够发现不同问题之间的共同点和规律,从而建立数学概念和定理。
抽象思维的应用包括代数中的符号运算和函数概念,几何中的图形变换和空间关系等。
演绎推理是数学中另一种重要的思维方法。
它基于逻辑推理,从已知的条件推出结论。
通过演绎推理,我们能够运用数学定理和公理,从已有的知识出发,逐步推导出更深入的结果。
演绎推理要求我们严密的思维和逻辑推理的能力,能够从简单的前提出发,得出复杂的结论。
它在解决数学问题时起到了重要的作用,并在其他学科中也有广泛的应用。
归纳思维是从具体到一般的思维方法。
通过归纳思维,我们能够从一组具体的实例中总结和归纳出一般性的规律和定理。
在解决数学问题时,我们经常从特殊情况出发,通过观察和推理,找到问题的普遍解决方法。
归纳思维要求我们具备辨别规律的能力和总结归纳的能力,能够从具体的问题中抽象出一般的概念或定理。
模型思维是一种将实际问题转化为数学模型,并用数学方法研究和解决的思维方法。
通过建立合适的数学模型,我们能够更好地理解和分析实际问题,并预测其发展趋势和结果。
模型思维要求我们具备实际问题到数学问题的转化能力和数学方法在实际问题中的应用能力。
它在数学中的应用非常广泛,既能解决实际问题,也能推动数学理论的发展。
这四种思维方法在高中数学教学中相辅相成,也相互联系。
抽象思维和归纳思维一起构建了数学的概念体系和定理体系。
演绎推理则是数学证明的基本方法,用于推导和验证数学定理。
而模型思维则能将这些概念、定理和证明应用于实际问题中,使数学具有实际意义。
高中数学函数四大思想总结

高中数学函数四大思想总结高中数学中的函数最核心的思想可以总结为四个方面,分别是函数的定义域与值域思想、单调性思想、奇偶性思想和周期性思想。
第一,函数的定义域与值域思想。
在高中数学中,函数的定义域与值域的确定是非常重要的。
定义域指的是函数能够取到的自变量的值的范围,值域则是函数能够取到的因变量的值的范围。
这个思想在解决函数的范围和取值问题时非常关键。
第二,单调性思想。
单调性指的是函数在定义域内的变化趋势。
由于学生在学习中常常会遇到函数的增减性和凹凸性等问题,使用单调性思想可以更好地解决这些问题。
单调函数的概念和性质是高中数学中非常重要的内容,它不仅体现了函数的变化趋势,同时也反映了函数的导数的意义。
第三,奇偶性思想。
奇偶性在函数的对称性与图像的性质方面起到了重要的作用。
奇函数是指满足$f(-x)=-f(x)$的函数,而偶函数是指满足$f(-x)=f(x)$的函数。
通过利用奇偶性的性质,可以更好地简化函数的计算和图像的观察,同时也可以推导出更多的函数性质和结论。
第四,周期性思想。
周期函数是指满足$f(x+T)=f(x)$的函数,其中T称为函数的周期。
周期性思想在高中数学的解题中扮演了非常重要的角色。
通过刻画函数图像的周期性,可以更好地理解和分析函数的特点,推导出函数的周期和对称轴等性质,进一步简化问题。
综上所述,高中数学中的函数主要体现了函数的定义域与值域思想、单调性思想、奇偶性思想和周期性思想。
这四个思想在理论学习和实际问题中的应用非常广泛,是高中数学中的核心内容。
通过深入理解和应用这些思想,可以更好地掌握函数的概念和性质,提高数学解题的能力。
最全的高中数学思想方法

最全的高中数学思想方法1、函数与方程的思想著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。
一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。
函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。
所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。
函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。
函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。
高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程的思想的基本运用,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力的关系角度进行综合考查。
在解题时,要学会思考这些问题:(1)是不是需要把字母看作变量?(2)是不是需要把代数式看作函数?如果是函数它具有哪些性质?(3)是不是需要构造一个函数把表面上不是函数的问题化归为函数问题?(4)能否把一个等式转化为一个方程?对这个方程的根有什么要求?……2、数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。
“数”与“形”两者之间并不是孤立的,而是有着密切的联系。
数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。
数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学四大思想方法————读《什么是数学》笔记《什么是数学》这本书是一本数学经典名著,它收集了许多闪光的数学珍品。
它的目标之一是反击这样的思想:"数学不是别的东西,而只是从定义和公理推导出来的一组结论,而这些定义和命题除了必须不矛盾外,可以由数学家根据他们的意志随意创造。
"简言之,这本书想把真实的意义放回数学中去。
但这是与物质现实非常不同的那种意义。
数学对象的意义说的是"数学上'不加定义的对象'之间的相互关系以及它们所遵循的运算法则"。
数学对象是什么并不重要,重要的是做了什么。
这样,数学就艰难地徘徊在现实与非现实之间;它的意义不存在于形式的抽象中,也不存在于具体的实物中。
对喜欢梳理概念的哲学家,这可能是个问题,但却是数学的巨大力量所在--我们称它为,所谓的"非现实的现实性"。
数学联结了心灵感知的抽象世界和完全没有生命的真实的物质世界。
我根据自己在数学方面的兴趣,基于已有的数学背景知识,选取一部分和高中有关的内容进行舒心愉快的阅读。
重新总结了高中数学中的数学四大思想方法:函数与方程、转化与化归、分类讨论、数形结合;函数与方程函数思想,是指用函数的概念和性质去分析问题、转化问题和解决问题。
方程思想,是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型(方程、不等式、或方程与不等式的混合组),然后通过解方程(组)或不等式(组)来使问题获解。
有时,还实现函数与方程的互相转化、接轨,达到解决问题的目的。
笛卡尔的方程思想是:实际问题→数学问题→代数问题→方程问题。
宇宙世界,充斥着等式和不等式。
我们知道,哪里有等式,哪里就有方程;哪里有公式,哪里就有方程;求值问题是通过解方程来实现的……等等;不等式问题也与方程是近亲,密切相关。
而函数和多元方程没有什么本质的区别,如函数y=f(x),就可以看作关于x、y的二元方程f(x)-y=0。
可以说,函数的研究离不开方程。
列方程、解方程和研究方程的特性,都是应用方程思想时需要重点考虑的。
函数描述了自然界中数量之间的关系,函数思想通过提出问题的数学特征,建立函数关系型的数学模型,从而进行研究。
它体现了“联系和变化”的辩证唯物主义观点。
一般地,函数思想是构造函数从而利用函数的性质解题,经常利用的性质是:f(x)、f (x)的单调性、奇偶性、周期性、最大值和最小值、图像变换等,要求我们熟练掌握的是一次函数、二次函数、幂函数、指数函数、对数函数、三角函数的具体特性。
在解题中,善于挖掘题目中的隐含条件,构造出函数解析式和妙用函数的性质,是应用函数思想的关键。
对所给的问题观察、分析、判断比较深入、充分、全面时,才能产生由此及彼的联系,构造出函数原型。
另外,方程问题、不等式问题和某些代数问题也可以转化为与其相关的函数问题,即用函数思想解答非函数问题。
函数知识涉及的知识点多、面广,在概念性、应用性、理解性都有一定的要求,所以是高考中考查的重点。
我们应用函数思想的几种常见题型是:遇到变量,构造函数关系解题;有关的不等式、方程、最小值和最大值之类的问题,利用函数观点加以分析;含有多个变量的数学问题中,选定合适的主变量,从而揭示其中的函数关系;实际应用问题,翻译成数学语言,建立数学模型和函数关系式,应用函数性质或不等式等知识解答;等差、等比数列中,通项公式、前n项和的公式,都可以看成n的函数,数列问题也可以用函数方法解决。
等价转化等价转化是把未知解的问题转化到在已有知识范围内可解的问题的一种重要的思想方法。
通过不断的转化,把不熟悉、不规范、复杂的问题转化为熟悉、规范甚至模式法、简单的问题。
历年高考,等价转化思想无处不见,我们要不断培养和训练自觉的转化意识,将有利于强化解决数学问题中的应变能力,提高思维能力和技能、技巧。
转化有等价转化与非等价转化。
等价转化要求转化过程中前因后果是充分必要的,才保证转化后的结果仍为原问题的结果。
非等价转化其过程是充分或必要的,要对结论进行必要的修正(如无理方程化有理方程要求验根),它能给人带来思维的闪光点,找到解决问题的突破口。
我们在应用时一定要注意转化的等价性与非等价性的不同要求,实施等价转化时确保其等价性,保证逻辑上的正确。
著名的数学家,莫斯科大学教授C.A.雅洁卡娅曾在一次向数学奥林匹克参赛者发表《什么叫解题》的演讲时提出:“解题就是把要解题转化为已经解过的题”。
数学的解题过程,就是从未知向已知、从复杂到简单的化归转换过程。
等价转化思想方法的特点是具有灵活性和多样性。
在应用等价转化的思想方法去解决数学问题时,没有一个统一的模式去进行。
它可以在数与数、形与形、数与形之间进行转换;它可以在宏观上进行等价转化,如在分析和解决实际问题的过程中,普通语言向数学语言的翻译;它可以在符号系统内部实施转换,即所说的恒等变形。
消去法、换元法、数形结合法、求值求范围问题等等,都体现了等价转化思想,我们更是经常在函数、方程、不等式之间进行等价转化。
可以说,等价转化是将恒等变形在代数式方面的形变上升到保持命题的真假不变。
由于其多样性和灵活性,我们要合理地设计好转化的途径和方法,避免死搬硬套题型。
在数学操作中实施等价转化时,我们要遵循熟悉化、简单化、直观化、标准化的原则,即把我们遇到的问题,通过转化变成我们比较熟悉的问题来处理;或者将较为繁琐、复杂的问题,变成比较简单的问题,比如从超越式到代数式、从无理式到有理式、从分式到整式…等;或者比较难以解决、比较抽象的问题,转化为比较直观的问题,以便准确把握问题的求解过程,比如数形结合法;或者从非标准型向标准型进行转化。
按照这些原则进行数学操作,转化过程省时省力,有如顺水推舟,经常渗透等价转化思想,可以提高解题的水平和能力。
分类讨论在解答某些数学问题时,有时会遇到多种情况,需要对各种情况加以分类,并逐类求解,然后综合得解,这就是分类讨论法。
分类讨论是一种逻辑方法,是一种重要的数学思想,同时也是一种重要的解题策略,它体现了化整为零、积零为整的思想与归类整理的方法。
有关分类讨论思想的数学问题具有明显的逻辑性、综合性、探索性,能训练人的思维条理性和概括性,所以在高考试题中占有重要的位置。
引起分类讨论的原因主要是以下几个方面:①问题所涉及到的数学概念是分类进行定义的。
如|a|的定义分a>0、a=0、a<0三种情况。
这种分类讨论题型可以称为概念型。
②问题中涉及到的数学定理、公式和运算性质、法则有范围或者条件限制,或者是分类给出的。
如等比数列的前n项和的公式,分q=1和q≠1两种情况。
这种分类讨论题型可以称为性质型。
③解含有参数的题目时,必须根据参数的不同取值范围进行讨论。
如解不等式ax>2时分a>0、a=0和a<0三种情况讨论。
这称为含参型。
另外,某些不确定的数量、不确定的图形的形状或位置、不确定的结论等,都主要通过分类讨论,保证其完整性,使之具有确定性。
进行分类讨论时,我们要遵循的原则是:分类的对象是确定的,标准是统一的,不遗漏、不重复,科学地划分,分清主次,不越级讨论。
其中最重要的一条是“不漏不重”。
解答分类讨论问题时,我们的基本方法和步骤是:首先要确定讨论对象以及所讨论对象的全体的范围;其次确定分类标准,正确进行合理分类,即标准统一、不漏不重、分类互斥(没有重复);再对所分类逐步进行讨论,分级进行,获取阶段性结果;最后进行归纳小结,综合得出结论。
数形结合中学数学的基本知识分三类:一类是纯粹数的知识,如实数、代数式、方程(组)、不等式(组)、函数等;一类是关于纯粹形的知识,如平面几何、立体几何等;一类是关于数形结合的知识,主要体现是解析几何。
数形结合是一个数学思想方法,包含“以形助数”和“以数辅形”两个方面,其应用大致可以分为两种情形:或者是借助形的生动和直观性来阐明数之间的联系,即以形作为手段,数为目的,比如应用函数的图像来直观地说明函数的性质;或者是借助于数的精确性和规范严密性来阐明形的某些属性,即以数作为手段,形作为目的,如应用曲线的方程来精确地阐明曲线的几何性质。
恩格斯曾说过:“数学是研究现实世界的量的关系与空间形式的科学。
”数形结合就是根据数学问题的条件和结论之间的内在联系,既分析其代数意义,又揭示其几何直观,使数量关的精确刻划与空间形式的直观形象巧妙、和谐地结合在一起,充分利用这种结合,寻找解题思路,使问题化难为易、化繁为简,从而得到解决。
“数”与“形”是一对矛盾,宇宙间万物无不是“数”和“形”的矛盾的统一。
华罗庚先生说过:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休。
数形结合的思想,其实质是将抽象的数学语言与直观的图像结合起来,关键是代数问题与图形之间的相互转化,它可以使代数问题几何化,几何问题代数化。
在运用数形结合思想分析和解决问题时,要注意三点:第一要彻底明白一些概念和运算的几何意义以及曲线的代数特征,对数学题目中的条件和结论既分析其几何意义又分析其代数意义;第二是恰当设参、合理用参,建立关系,由数思形,以形想数,做好数形转化;第三是正确确定参数的取值范围。
数学一直在发展,但书中选取的、有关历史上的著名发现的专题,都是很难抛弃的.对定理,你不可能不加以证明。
事实上,你可能偶然间发现一个长期被接受的论证是错误的--这曾经发生过的。
但这只表明,从一开始证明就是错误的。
然而,新的观点通常会导致旧的论证过时,或对旧的事实不再感兴趣。
《什么是数学》这本书没有过时,是因为所选取的材料展示出了无限完美的数学品位。
作为数学教育工作者,可以去读一读这本书。