动量与能量

合集下载

动量与能量的转化

动量与能量的转化

动量与能量的转化动量和能量是力学中两个重要的物理量,它们在物理系统中相互转化,并且共同决定了物体的运动状态。

本文将通过探讨动量和能量的定义、守恒定律以及它们之间的数学关系,来阐述动量与能量的转化过程。

一、动量的定义与守恒动量是物体运动状态的基本属性,它与物体的质量和速度有关。

根据牛顿第二定律可以得出动量的定义:动量(momentum)等于物体的质量乘以速度。

用数学符号表示为:动量(p)= 质量(m)×速度(v)。

动量守恒定律是指在一个孤立系统中,所有物体的动量总和保持不变。

即在没有外力作用的情况下,一个物体的动量变化量等于零。

这是因为力学系统满足能量守恒定律,一个物体的动能可以转化为另一物体的动能。

二、能量的定义与守恒能量是物理系统中的另一个重要属性,它描述了物体进行工作或产生效果的能力。

能量的单位是焦耳(J)。

在运动过程中,物体不仅会具有动量,还会具有能量。

能量有多种形式,例如动能(物体运动产生的能量)、势能(物体在力场中由于位置而具有的能量)等。

动能(kinetic energy)是物体运动时所具有的能量,它与物体的质量和速度平方成正比。

用数学符号表示为:动能(K)= 1/2 ×质量(m)×速度的平方(v^2)。

能量守恒定律是指在一个封闭系统中,能量的总和保持不变。

即能量既不能被创造也不能被消灭,只能在不同形式之间转化。

三、动量和能量的转化动量和能量之间存在着一定的关系。

在物体相互作用的过程中,动能可以转化为动量,而动量也可以转化为动能。

例如,当一个运动的物体碰撞到静止的物体时,它的动能会转化为被碰撞物体的动能,同时它们的动量会根据动量守恒定律保持相等。

另外,当一个物体受到外力作用时,物体会发生加速运动,其速度增加,从而使动能增加。

这表明动能的增加是由外力对物体做功所引起的,并且动能的增加等于外力所做的功。

总结起来,动量和能量之间的转化是通过物体的运动过程实现的。

相对论:能量和动量的变换

相对论:能量和动量的变换
乘积
相对论能量:物体在相对论中 的能量,包括静止能量和动能
相对论动量:物体在相对论中 的动量,等于其能量与速度的来自比值能量和动量的关系式
E^2
=
m^2c^4 +
p^2c^2
E^2
=
m^2c^4 +
(pc)^2
E^2
=
m^2c^4 +
(γm^2 -
m^2)c^2
E^2
=
m^2c^4 +
(γm^2 -
m^2)c^2 +
领域
引力波探测:利用相对论原理 探测引力波,研究宇宙起源和
演化
相对论中能量和 动量的实验验证
原子能与核能的实验验证
原子能实验:通过核裂变和核聚变 实验,验证了相对论中能量和动量 的关系
粒子加速器实验:通过粒子加速器 实验,验证了相对论中能量和动量 的关系
添加标题
添加标题
添加标题
添加标题
核能实验:通过核反应堆实验,验 证了相对论中能量和动量的关系
相对论中的能量和动量的物理意义
相对论的基本原理:光速不变原理 和相对性原理
相对论中的能量和动量的变换:在 相对论中,能量和动量不再是独立 的物理量,而是相互关联的
添加标题
添加标题
添加标题
添加标题
能量与动量的关系:能量是动量的 函数,动量是能量的时间导数
能量守恒定律:在相对论中,能量 守恒定律仍然成立,但需要修改为 能量-动量守恒定律
能量和动量变换 的应用
核能与核反应
核反应的类型和过程
核能的定义和特点
核能与核反应在能量和动量 变换中的应用
核能与核反应的安全性和环 保性考虑
粒子加速器

相对论中能量和动量的关系式为

相对论中能量和动量的关系式为

相对论中能量和动量的关系式为1. 能量与动量的基础知识在聊能量和动量之前,咱们先来个小引子。

想象一下,你在公园里看到一个小孩推着滑板车,哇,那推力可是大了!这小家伙冲得飞快,简直像个小火箭!这时候,大家可能会想,为什么滑板车能跑得那么快?这就要提到能量和动量的关系了。

能量就像是小孩的“燃料”,而动量则是那种“冲劲”。

简单来说,能量和动量就像是两个好朋友,永远在一起,互相帮助。

1.1 能量的定义能量,听上去高大上,但其实就是物体所拥有的能力。

无论是动能、势能,还是其他类型的能量,都是为了让物体能动起来、能改变状态。

打个比方,就像你饿的时候需要吃饭,吃饱了才能有力气去玩耍一样,物体也需要能量才能动。

1.2 动量的定义再说说动量,动量其实就是物体运动的“重头戏”。

它的大小和物体的质量还有速度有关。

简单来说,质量大、速度快的物体,动量就大,反之亦然。

就像你一脚踩上去的泥巴,越重越难动,越快越滑!这就是真实的动量作用。

2. 相对论的魅力现在我们把视角转到相对论上。

爱因斯坦真的是个天才!他的相对论把我们对时间和空间的理解完全颠覆了。

就像是打开了一扇新世界的大门,里面满是神奇的东西。

特别是能量和动量的关系式,更是让人耳目一新。

2.1 公式背后的故事在相对论中,能量和动量的关系可以用一个公式来表达,简直像是数学界的魔法咒语!这个公式说的就是:能量等于动量乘以光速,再加上静止质量的能量。

听起来有点复杂?其实它想告诉我们,物体的能量和动量并不是孤立的,它们总是紧紧联系在一起。

2.2 生活中的例子我们来点生活中的例子,假设你在超市推购物车。

购物车越满,你推起来越费力,对吧?这就是因为动量和能量在起作用。

你推的力度(能量)和购物车的速度(动量)都在影响着你购物的体验。

想象一下,等你推到结账的地方,满载而归,心里那种成就感,简直无与伦比!3. 深入理解能量与动量的关系最后,我们来深入挖掘一下这对好朋友的关系。

能量和动量就像是一对密不可分的恋人,互相依赖,互相促进。

相对论能量动量关系

相对论能量动量关系

相对论能量动量关系相对论能量动量关系是狭义相对论中的一个重要概念,它描述了物体的能量和动量之间的相互关系。

根据相对论的观点,能量和动量不再是独立的物理量,而是相互联系的。

在经典力学中,能量和动量分别被定义为物体的质量和速度的函数。

然而,在相对论中,质量不再是一个固定的值,而是与速度相关的量。

根据相对论的质能关系,物体的能量与其质量之间存在着等价关系,即E=mc²,其中E代表能量,m代表物体的质量,c代表光速。

根据质能关系,我们可以推导出相对论能量动量关系的公式。

根据狭义相对论的基本原理,物体的能量和动量应该满足以下关系:E² = (pc)² + (mc²)²,其中p代表物体的动量。

通过推导和计算,我们可以得到相对论能量动量关系的具体表达式:E² = (mc²)² + (pc)²,其中E代表物体的能量,m代表物体的质量,p代表物体的动量,c代表光速。

相对论能量动量关系的一个重要结论是,物体的能量和动量不再是线性关系,而是非线性的。

当物体的速度接近光速时,能量和动量的增长速度也会趋于无穷大。

这意味着,相对论效应在高速运动物体的能量和动量中发挥了重要作用。

相对论能量动量关系不仅对粒子物理学和高能物理学有着重要的实际应用,也对我们理解宇宙的起源和演化提供了深刻的见解。

通过研究物体的能量和动量之间的关系,我们可以更好地理解宇宙中各种粒子的运动和相互作用,从而揭示宇宙的奥秘。

在实际应用中,相对论能量动量关系被广泛应用于核能源、粒子加速器和粒子物理实验等领域。

通过测量物体的能量和动量,科学家们可以推断物体的质量和速度,进而研究物体的性质和相互作用规律。

相对论能量动量关系是狭义相对论中的一个重要概念,描述了物体的能量和动量之间的相互关系。

相对论能量动量关系的推导和应用使我们对物质世界有了更深入的理解,为我们解开宇宙奥秘和推动科学技术的发展提供了重要的理论基础。

动量与能量的概念与计算

动量与能量的概念与计算

动量与能量的概念与计算在物理学的广阔天地中,动量和能量是两个极为重要的概念,它们不仅在理论研究中占据着关键地位,也在我们日常生活和各种实际应用中发挥着不可或缺的作用。

让我们先来聊聊动量。

动量,简单来说,就是物体运动的一种“冲量”。

它的定义是物体的质量乘以其速度。

如果一个物体的质量很大,速度也很快,那么它的动量就会很大。

想象一下一辆高速行驶的重型卡车,与一辆缓慢行驶的小型汽车相比,卡车显然具有更大的动量。

因为卡车的质量大,速度也不低。

动量是一个矢量,这意味着它不仅有大小,还有方向。

就像一辆向前行驶的车和一辆向后倒车的车,它们的动量方向是完全相反的。

动量的计算非常直接。

假设一个物体的质量用 m 表示,速度用 v 表示,那么它的动量 p 就可以用公式 p = mv 来计算。

这里要注意的是,速度 v 是一个矢量,所以在计算时要考虑其方向。

如果物体的运动方向发生了改变,那么动量也会相应地发生变化。

再来说说能量。

能量的形式多种多样,比如动能、势能、热能、电能等等。

我们先从大家比较熟悉的动能说起。

动能就是物体由于运动而具有的能量。

一个运动速度越快、质量越大的物体,它所具有的动能就越大。

想象一下一颗飞速射出的子弹,它具有很大的动能,能够造成巨大的破坏力。

动能的计算可以用公式 E_k = 1/2 mv²来表示。

其中 m 是物体的质量,v 是物体的速度。

从这个公式可以看出,速度对动能的影响更大,因为速度是平方的关系。

势能则与物体所处的位置有关。

比如,一个被举高的物体具有重力势能。

把它举得越高,它的重力势能就越大。

当这个物体下落时,重力势能会逐渐转化为动能。

在实际生活中,动量和能量的概念无处不在。

比如在体育运动中,足球运动员射门时,脚与球接触的瞬间,运动员给球施加了一个力,改变了球的动量,使其以一定的速度飞向球门。

而球在飞行过程中具有动能,如果守门员成功挡住球,球的动能会转化为守门员和球的内能等其他形式的能量。

动量守恒和能量守恒公式

动量守恒和能量守恒公式

动量守恒和能量守恒公式动量守恒(momentum conservation)和能量守恒(energy conservation)是物理学中两个非常重要的定律。

首先,我们来了解一下动量守恒。

动量是描述物体运动状态的物理量,它是质量(m)乘以速度(v),即p=mv。

根据牛顿第二定律,物体的动量变化率等于作用在物体上的力产生的冲量,即F=dp/dt,其中F是力,dp/dt是动量的变化率。

根据动量守恒定律,当物体间的外力为零时,物体的总动量保持不变。

当有两个物体发生碰撞时,这个系统的总动量在碰撞前后是守恒的。

换句话说,如果一个物体的动量增加,那么另一个物体的动量必然减小,这就是动量守恒的基本原理。

这个原理被广泛应用在各个领域,例如交通事故、运动中的球类运动和飞行器的设计等。

接下来,我们来讨论能量守恒。

能量是物体进行工作或引起变化的能力,是物理系统的基本属性。

根据能量守恒定律,一个系统的总能量在任意时刻都是保持不变的。

能量可以分为各种形式,包括动能、势能、热能等。

动能是物体运动的能量,由于速度和质量的平方成正比。

势能是物体由于位置而具有的能量,如重力势能和弹性势能。

热能是物体内部粒子运动产生的能量。

在一个封闭系统中,能量守恒定律表明,系统的总能量是一个恒定值,一旦系统能量从一种形式转化为另一种形式,总能量保持不变,只是能量在不同形式之间的转化。

例如,考虑一个物体自由下落的情况。

当物体下落时,势能转化为动能。

当物体触地时,物体的动能转化为热能和声能,但总能量不变。

总结一下,动量守恒和能量守恒是物理学中的两个重要定律。

动量守恒表明在一个封闭系统中,系统的总动量在任意时刻都保持不变。

能量守恒表明系统的总能量在各种能量形式之间转化时保持不变。

这些定律在解释和预测物理现象和事件方面起着关键的作用,并在许多领域的科学研究和技术应用中发挥着重要作用。

动量与能量守恒

动量与能量守恒

动量与能量守恒动量和能量是物理学中两个重要的守恒量,它们对于理解和描述各种物理现象都具有重要作用。

本文将介绍动量和能量守恒的概念、原理以及在实际应用中的重要性。

一、动量守恒动量是物体运动中的基本物理量,定义为物体的质量乘以其速度。

动量的大小和方向与物体的质量和速度有关。

当一个物体不受外力作用时,它的动量保持不变,这就是动量守恒的基本原理。

动量守恒定律可以用数学公式表示如下:\[ m_{1}v_{1}+m_{2}v_{2}=m_{1}v'_{1}+m_{2}v'_{2} \]其中,m和v分别代表物体的质量和速度。

这个公式表示了两个物体碰撞前后动量的守恒关系。

根据动量守恒定律,系统内外力的合力为零时,系统的总动量保持不变。

动量守恒在许多物理问题中都有广泛的应用,例如汽车碰撞、弹道学、运动物体的跳跃等。

通过分析动量守恒,可以预测物体运动的轨迹和速度变化。

二、能量守恒能量是物体运动和变化的基本原因,它存在于各种物理系统中。

能量守恒定律指出,在一个封闭系统中,能量既不能被创造也不能被消灭,只能从一种形式转化为另一种形式,总能量保持不变。

能量守恒定律可以用数学公式表示如下:\[ E_{i} = E_{f} \]其中,\(E_{i}\)代表系统的初始能量,\(E_{f}\)代表系统的最终能量。

这个公式表明,在一个封闭系统中,能量总量在时间上保持不变。

能量守恒在物理学中起着重要的作用,它可以解释和预测各种物理现象,例如机械能守恒、热能守恒和化学能守恒等。

通过分析能量守恒,可以计算物体的动能、势能和热能的变化。

三、动量与能量守恒的关系动量和能量守恒是物理学中两个独立但相互联系的概念。

它们在某些情况下可以相互转化,但在大多数情况下是独立守恒的。

例如,在完全弹性碰撞中,动量守恒和能量守恒同时成立。

动量守恒可以用来确定碰撞物体的速度变化,而能量守恒可以用来确定碰撞物体的动能变化。

在这种情况下,动量和能量都守恒,并且可以相互转化。

动量与能量结合的公式

动量与能量结合的公式

动量与能量结合的公式在咱们的物理世界里,动量与能量的结合那可是相当有趣且重要的一部分。

先来说说动量,它可以简单理解为物体运动的“冲击力”。

想象一下,一辆高速行驶的汽车,就算你能瞬间挡住它不让它再往前移动一厘米,但你依然能感受到它那种强大的“冲劲儿”,这就是动量。

而能量呢,就像是物体的“本事”。

比如一个被举高的重物,它就具有了重力势能,一旦松开手,它就能依靠这份“本事”往下掉落,产生各种效果。

当动量和能量结合起来,那公式就登场啦!动量与能量结合的公式就是:$E_{k} = \frac{p^2}{2m}$ 。

这里的 $E_{k}$ 表示动能,$p$ 是动量,$m$ 是物体的质量。

为了更好地理解这个公式,我想起之前给学生们上课时候的一件事。

当时我在课堂上讲这个知识点,有个特别调皮的学生,总是坐不住,注意力不集中。

我就拿了个小皮球,问大家:“如果我把这个皮球用力扔出去,它的动量会怎样?能量又会怎样?” 这时候,那个调皮的学生眼睛一下子亮了起来,开始认真思考。

我接着说:“大家想想,如果这个皮球质量变大,按照咱们的公式,它的动能又会怎么变化?” 同学们纷纷讨论起来,那个调皮学生也积极参与,还争着回答问题。

咱们再深入一点,这个公式在实际生活中的应用那可多了去了。

就比如说在交通事故中,车辆的碰撞就是动量和能量的相互作用。

车速越快,动量越大,碰撞时产生的能量也就越大,造成的破坏也就越严重。

这也是为什么要限制车速,就是为了减少事故中的动量和能量,降低危害。

还有在体育比赛里,像打乒乓球、羽毛球,运动员击球的力量和速度,其实都涉及到动量和能量的变化。

运动员要根据球的来势,巧妙地控制自己的力量和击球时机,以达到最佳的效果。

这背后,动量与能量的结合公式可是默默发挥着作用呢。

再说说火箭发射,那更是动量与能量结合的精彩展示。

火箭燃料燃烧产生巨大的推力,让火箭获得极大的动量,同时也赋予了它巨大的能量,从而能够挣脱地球引力,飞向太空。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八、动量与能量1.动量 2.机械能1.两个“定理”(1)动量定理:F ·t =Δp 矢量式 (力F 在时间t 上积累,影响物体的动量p )(2)动能定理:F ·s =ΔE k 标量式 (力F 在空间s 上积累,影响物体的动能E k ) 动量定理与动能定理一样,都是以单个物体为研究对象.但所描述的物理内容差别极大.动量定理数学表达式:F 合·t =Δp ,是描述力的时间积累作用效果——使动量变化;该式是矢量式,即在冲量方向上产生动量的变化.例如,质量为m 的小球以速度v 0与竖直方向成θ角打在光滑的水平面上,与水平面的接触时间为Δt ,弹起时速度大小仍为v 0且与竖直方向仍成θ角,如图所示.则在Δt 内:以小球为研究对象,其受力情况如图所示.可见小球所受冲量是在竖直方向上,因此,小球的动量变化只能在竖直方向上.有如下的方程:F ′击·Δt -mg Δt =mv 0cos θ-(-mv 0cos θ)小球水平方向上无冲量作用,从图中可见小球水平方向动量不变.综上所述,在应用动量定理时一定要特别注意其矢量性.应用动能定理时就无需作这方面考虑了.Δt 内应用动能定理列方程:W 合=m υ02/2-m υ02 /2 =02.两个“定律”(1)动量守恒定律:适用条件——系统不受外力或所受外力之和为零公式:m 1v 1+m 2v 2=m 1v 1′+m 2v 2 ′或 p =p ′(2)机械能守恒定律:适用条件——只有重力(或弹簧的弹力)做功公式:E k2+E p2=E k1+E p1 或 ΔE p = -ΔE k3.动量守恒定律与动量定理的关系一、知识网络二、画龙点睛 规律动量守恒定律的数学表达式为:m 1v 1+m 2v 2=m 1v 1′+m 2v 2′,可由动量定理推导得出. 如图所示,分别以m 1和m 2为研究对象,根据动量定理:F 1Δt = m 1v 1′- m 1v 1 ①F 2Δt = m 2v 2′- m 2v 2 ②F 1=-F 2 ③∴ m 1v 1+m 2v 2=m 1v 1′+m 2v 2′ 可见,动量守恒定律数学表达式是动量定理的综合解.动量定理可以解决动量守恒问题,只是较麻烦一些.因此,不能将这两个物理规律孤立起来.4.动能定理与能量守恒定律关系——理解“摩擦生热”(Q =f ·Δs )设质量为m 2的板在光滑水平面上以速度υ2运动,质量为m 1的物块以速度υ1在板上同向运动,且υ1>υ2,它们之间相互作用的滑动摩擦力大小为f ,经过一段时间,物块的位移为s 1,板的位移s 2,此时两物体的速度变为υ′1和υ′2由动能定理得:-fs 1=m 1υ1′2/2-m 1υ12/2 ①fs 2=m 2υ2′2/2-m 2υ22/2 ②在这个过程中,通过滑动摩擦力做功,机械能不断转化为内能,即不断“生热”,由能量守恒定律及①②式可得:Q =(m 1υ12/2+m 2υ22/2)-(m 1υ1′2/2-m 2υ2′2/2)=f (s 1-s 2)= f ·Δs ③由此可见,在两物体相互摩擦的过程中,损失的机械能(“生热”)等于摩擦力与相对位移的乘积。

特别要指出,在用Q = f ·Δs 计算摩擦生热时,正确理解是关键。

这里分两种情况:(1)若一个物体相对于另一个物体作单向运动,Δs 为相对位移;(2)若一个物体相对于另一个物体作往返运动,Δs 为相对路程。

5.相互作用中的动量与能量,三类碰撞中能量的变化: (1)(2) 设两物体发生完全弹性碰撞,其中m 1以v 1匀速运动,m 2静止。

据⎪⎩⎪⎨⎧++=+=''''222211211221111212121v m v m v m v m v m v m 可得⎪⎪⎩⎪⎪⎨⎧+='+-='2112121212m m m v m m m m v 讨论:(a)当m 1>m 2时,v 1′与v 1方向一致;(b)当m 1=m 2时,v 1′=0,v 2′=v 1,即m 1与m 2交换速度(c)当m 1<m 2时,v 1′反向,v 2′与v 1同向。

(3)非完全弹性碰撞:为一般情况,只有动量守恒,机械能有损失,损失量不最大,亦不最小。

6. 功和能的关系例题: 质量为M 的楔形物块上有圆弧轨道,静止在水平面上。

质量为m 的小球以速度v 1向物块运动。

不计一切摩擦,圆弧小于90°且足够长。

求小球能上升到的最大高度H 和物块的最终速度v 。

解析:解析:系统水平方向动量守恒,全过程机械能也守恒。

在小球上升过程中,由水平方向系统动量守恒得:()v m M mv '+=1由系统机械能守恒得:()mgH v m M mv +'+=2212121 解得()gm M Mv H +=221 全过程系统水平动量守恒,机械能守恒,得12v m M m v += 本题和上面分析的弹性碰撞基本相同,唯一的不同点仅在于重力势能代替了弹性势能。

例题:动量分别为5kg ∙m/s 和6kg ∙m/s 的小球A 、B 沿光滑平面上的同一条直线同向运动,A 追上B 并发生碰撞后。

若已知碰撞后A 的动量减小了2kg ∙m/s ,而方向不变,那么A 、B 质量之比的可能范围是什么?解析:A 能追上B ,说明碰前v A >v B ,∴BA m m 65>;碰后A 的速度不大于B 的速度,B A m m 83≤;又因为碰撞过程系统动能不会增加, BA B A m m m m 282326252222+≥+,由以上不等式组解得:7483≤≤B A m m 此类碰撞问题要考虑三个因素:①碰撞中系统动量守恒;②碰撞过程中系统动能不增加;③碰前、碰后两个物体的位置关系(不穿越)和速度大小应保证其顺序合理。

例题:设质量为m 的子弹以初速度v 0射向静止在光滑水平面上的质量为M 的木块,并留在木块中不再射出,子弹钻入木块深度为d 。

求木块对子弹的平均阻力的大小和该过程中木块前进的距离。

解析:子弹和木块最后共同运动,相当于完全非弹性碰撞。

从动量的角度看,子弹射入木块过程中系统动量守恒:()v m M mv +=0 从能量的角度看,该过程系统损失的动能全部转化为系统的内能。

设平均阻力大小为f ,设子弹、木块的位移大小分别为s 1、s 2,如图所示,显然有s 1-s 2=d 对子弹用动能定理:22012121mv mv s f -=⋅ ……① 对木块用动能定理:2221Mv s f =⋅ ……② ①、②相减得:()()2022022121v mM Mm v m M mv d f +=+-=⋅ ……③ 这个式子的物理意义是:f ∙d 恰好等于系统动能的损失;根据能量守恒定律,系统动能的损失应该等于系统内能的增加;可见Q d f =⋅,即两物体由于相对运动而摩擦产生的热(机械能转化为内能),等于摩擦力大小与两物体相对滑动的路程的乘积(由于摩擦力是耗散力,摩擦生热跟路径有关,所以这里应该用路程,而不是用位移)。

由上式不难求得平均阻力的大小:()dm M Mmv f +=220 至于木块前进的距离s 2,可以由以上②、③相比得出:d mM m s +=2 从牛顿运动定律和运动学公式出发,也可以得出同样的结论。

由于子弹和木块都在恒力作用下做匀变速运动,位移与平均速度成正比:()d m M m s mm M v v s d v v v v v v s d s +=+==∴+=+=+2020022,,2/2/ 一般情况下mM >>,所以s 2<<d 。

这说明,在子弹射入木块过程中,木块的位移很小,可以忽略不计。

这就为分阶段处理问题提供了依据。

象这种运动物体与静止物体相互作用,动量守恒,最后共同运动的类型,全过程动能的损失量可用公式:()202v m M Mm E k +=∆…④ 当子弹速度很大时,可能射穿木块,这时末状态子弹和木块的速度大小不再相等,但穿透过程中系统动量仍然守恒,系统动能损失仍然是ΔE K = f d (这里的d 为木块的厚度),但由于末状态子弹和木块速度不相等,所以不能再用④式计算ΔE K 的大小。

做这类题目时一定要画好示意图,把各种数量关系和速度符号标在图上,以免列方程时带错数据。

以上所列举的人、船模型的前提是系统初动量为零。

如果发生相互作用前系统就具有一定的动量,那就不能再用m 1v 1=m 2v 2这种形式列方程,而要利用(m 1+m 2)v 0= m 1v 1+ m 2v 2列式。

例题:在距地面高为h ,同时以相等初速V 0分别平抛,竖直上抛,竖直下抛一质量相等的物体m ,当它们从抛出到落地时,比较它们的动量的增量△P ,有[ ]A .平抛过程较大B .竖直上抛过程较大C .竖直下抛过程较大D .三者一样大的。

解析:1.由动量变化图中可知,△P 2最大,即竖直上抛过程动量增量最大,所以应选B 。

2、由动量定理可知I 合=ΔP ,而I 合=mgt ,竖起上抛过程t 2为最大)(22h H g gv t m o ++=,而mg 均相同。

所以ΔI 2为最大。

正确答案为B【小结】 对于动量变化问题,一般要注意两点:(1)动量是矢量,用初、末状态的动量之差求动量变化,一定要注意用矢量的运算法则,即平行四边形法则。

(2) 由于矢量的减法较为复杂,如本题解答中的第一种解法,因此对于初、末状态动量不在一条直线上的情况,通常采用动量定理,利用合外力的冲量计算动量变化。

如本题解答中的第二种解法,但要注意,利用动量定理求动量变化时,要求合外力一定为恒力。

例题: 向空中发射一物体.不计空气阻力,当物体的速度恰好沿水平方向时,物体炸裂为a,b 两块.若质量较大的a 块的速度方向仍沿原来的方向则 [ ]A .b 的速度方向一定与原速度方向相反B .从炸裂到落地这段时间里,a 飞行的水平距离一定比b 的大C .a ,b 一定同时到达地面D .炸裂的过程中,a 、b 中受到的爆炸力的冲量大小一定相等解析: 物体炸裂过程发生在物体沿水平方向运动时,由于物体沿水平方向不受外力,所以沿水平方向动量守恒,根据动量守恒定律有:(m A +m B )v = m A v A +m B v B当v A 与原来速度v 同向时,v B 可能与v A 反向,也可能与v A 同向,第二种情况是由于v A 的大小没有确定,题目只讲的质量较大,但若v A 很小,则m A v A 还可能小于原动量(m A +m B )v 。

这时,v B 的方向会与v A 方向一致,即与原来方向相同所以A 不对。

a , b 两块在水平飞行的同时,竖直方向做自由落体运动即做平抛运运动,落地时间由gh t 2 决定。

相关文档
最新文档