麦克斯韦方程和亥姆霍兹方程

合集下载

第二章 光纤光学的基本方程

第二章 光纤光学的基本方程
第二章 光纤光学的基本方程
麦克斯韦方程与亥姆霍兹方程 程函方程与射线方程 波导场方程 模式及其基本性质
波动光学理论
❖ 用几何光学方法虽然可简单直观地得到光线在光 纤中传输的物理图象,但由于忽略了光的波动性 质,不能了解光场在纤芯、包层中的结构分布及 其它许多特性。
❖ 采用波动光学的方法,把光作为电磁波来处理, 研究电磁波在光纤中的传输规律,可得到光纤中 的传播模式、场结构、传输常数及截止条件。

n r


dr ds
dn ds
❖ 上两矢量式点乘,第二项因两矢量正交为零,故有
K

1
R
eR

n r nr
❖ 因曲率半径总是正的,所以等式右边必须为正:
n r nr

0时,eR 与er 夹角小于

2

n r n r

0时,eR
与er
夹角大于

2

A B C A C B A B C
❖ 得到
{S r • S r }E0 n 2E0 0

S r • S r n 2 程函方程
或 S 2 n 2, S(r ) n r


S r
eR
❖ 即光线前进时,向折射率高的一侧弯曲。
n’ n dr/ds
n’ >n
例3:光线在圆柱体中的传播
z
光线方程:d ds
n(r)

dr ds


n(r)
r
0
光线方程在圆柱坐标中可分解成三个标量方程:
设折射率分布横截面为中心对称分布,纵向不变,则:

由麦克斯韦方程组推导亥姆霍兹方程

由麦克斯韦方程组推导亥姆霍兹方程

由麦克斯韦方程组推导亥姆霍兹方程麦克斯韦方程组:\nabla \cdot \mathrm{E} = \frac{1}{\epsilon_0} \rho\nabla \cdot \mathrm{B} = 0\nabla \times \mathrm{E} = - \frac{\partial\mathrm{B}}{\partial t}\nabla \times \mathrm{B} = \mu_0 \mathrm{J} + \mu_0\epsilon_0 \frac{\partial \mathrm{E}}{\partial t}其中,- \mathrm{E} 表示电场强度;- \mathrm{B} 表示磁场强度;- \rho 表示电荷密度;- \mathrm{J} 表示电流密度;- \epsilon_0 表示真空介电常数;- \mu_0 表示真空磁导率。

根据法拉第电磁感应定律,有\nabla \times \mathrm{E} = - \frac{\partial\mathrm{B}}{\partial t}将其代入第四个式子中,得\nabla \times \mathrm{B} = \mu_0 \mathrm{J} - \mu_0\epsilon_0 \frac{\partial \mathrm{E}}{\partial t}对两个式子分别取旋度,得\nabla \times (\nabla \times \mathrm{E}) = -\frac{\partial}{\partial t} \nabla \times \mathrm{B} \nabla \times (\nabla \times \mathrm{B}) = \mu_0 \nabla \times \mathrm{J} - \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathrm{E})根据矢量恒等式\nabla \times (\nabla \times \mathrm{A}) = \nabla(\nabla \cdot \mathrm{A}) - \nabla^2 \mathrm{A}得到\nabla(\nabla \cdot \mathrm{E}) - \nabla^2 \mathrm{E} = -\frac{\partial}{\partial t} (\nabla \times \mathrm{B}) \nabla(\nabla \cdot \mathrm{B}) - \nabla^2 \mathrm{B} = \mu_0 \nabla \times \mathrm{J} - \mu_0 \epsilon_0\frac{\partial}{\partial t} (\nabla \times \mathrm{E}) 由于磁场无源,即 \nabla \cdot \mathrm{B} = 0,因此第二个式子可以简化为\nabla^2 \mathrm{B} = - \mu_0 \nabla \times \mathrm{J} + \mu_0 \epsilon_0 \frac{\partial}{\partial t} (\nabla \times \mathrm{E})对第一个式子取散度,得\nabla^2 \mathrm{E} = \frac{1}{\epsilon_0} \nabla \cdot \rho - \frac{\partial}{\partial t} (\nabla \times \mathrm{B}) 将第一个式子和上式代入第二个式子中,得到\nabla^2 \mathrm{E} = \frac{1}{\epsilon_0} \nabla \cdot \rho - \mu_0 \epsilon_0 \frac{\partial^2 \mathrm{E}}{\partial t^2} + \mu_0 \frac{\partial}{\partial t} (\nabla \times\mathrm{J})因为电荷守恒方程为 \nabla \cdot \mathrm{J} = -\frac{\partial \rho}{\partial t},所以上式可以进一步化简为\nabla^2 \mathrm{E} = \frac{1}{\epsilon_0} \nabla \cdot \rho - \mu_0 \epsilon_0 \frac{\partial^2 \mathrm{E}}{\partial t^2} - \mu_0 \frac{\partial^2 \mathrm{J}}{\partial t^2} 这就是亥姆霍兹方程。

高等数学场论基本概念

高等数学场论基本概念

数学物理基础梯度、散度和旋度梯度、散度和旋度是矢量分析里的重要概念。

之所以是“分析”,因为三者是三种偏导数计算形式。

这里假设读者已经了解了三者的定义。

它们的符号分别记作如下:从符号中可以获得这样的信息:①求梯度是针对一个标量函数,求梯度的结果是得到一个矢量函数。

这里φ称为势函数;②求散度则是针对一个矢量函数,得到的结果是一个标量函数,跟求梯度是反一下的;③求旋度是针对一个矢量函数,得到的还是一个矢量函数。

这三种关系可以从定义式很直观地看出,因此可以求“梯度的散度”、“散度的梯度”、“梯度的旋度”、“旋度的散度”和“旋度的旋度”,只有旋度可以连续作用两次,而一维波动方程具有如下的形式(1)其中a为一实数,于是可以设想,对于一个矢量函数来说,要求得它的波动方程,只有求它的“旋度的旋度”才能得到。

下面先给出梯度、散度和旋度的计算式:(2)(3)(4)旋度公式略显复杂。

这里结合麦克斯韦电磁场理论,来讨论前面几个“X度的X度”。

I.梯度的散度:根据麦克斯韦方程有:而(5)则电势的梯度的散度为这是一个三维空间上的标量函数,常记作(6)称为泊松方程,而算符▽2称为拉普拉斯算符。

事实上因为定义所以有当然,这只是一种记忆方式。

当空间内无电荷分布时,即ρ=0,则称为拉普拉斯方程当我们仅需要考虑一维情况时,比如电荷均匀分布的无限大平行板电容器之间(不包含极板)的电场,我们知道该电场只有一个指向,场强处处相等,于是该电场满足一维拉普拉斯方程,即这就是说如果那边平行板电容器的负极板接地,则板间一点处的电压与该点距负极板的距离呈线性关系。

II.散度的梯度:散度的梯度,从上面的公式中可以看到结果会比较复杂,但是它的物理意义却是很明确的,因为从麦克斯韦方程可以看出空间某点处电场的散度是该点处的电荷密度,那么再求梯度就是空间中电荷密度的梯度。

这就好比说清水中滴入一滴红墨水,起初水面红色浓度最高,杯底浓度最低,这样水面与杯底形成一个浓度梯度,红墨水由水面向杯底扩散,最后均匀。

工程电磁场要点

工程电磁场要点

梯度:标量场的梯度是一个矢量场,它的方向是标量u 增加最快的方向、大小等于其最大方向导数。

xy z u u u u x y z∂∂∂∇=++∂∂∂e e e散度:一个矢量场的散度是一个标量,表示该点的散度源。

=y x z F F F x y z∂∂∂∇⋅++∂∂∂F旋度:一个矢量场的旋度是一个矢量,表示该点的旋度源。

x y z xy zx y z F F F ∂∂∂∇⨯=∂∂∂e e e F 斯托克斯定理d d CS=∇⨯⎰⎰F l F S高斯散度定理d d SVV =∇⎰⎰F S Fd d d cSS t∂=+∂⎰⎰⎰DHl J S Sd 0S =⎰B Sd d cS t∂=-∂⎰⎰BE l Sd d SVV ρ=⎰⎰D St∂∇⨯=+∂D H J 0∇=B t∂∇⨯=-∂B E ρ∇=D εμσ===D E B H J E边界条件()()()12n121212 ()00 n S n n sρ⨯-=⨯-=-=-=e H H J e E E e B B e D De 方向由2指1恒定电场d d SV V tρ∂⋅=-∂⎰⎰J S0∇=J d 0C=⎰E l0∇⨯=Eσ=J E位函数 ϕ=-∇E位函数满足的微分方程20ϕ∇= 场量的边界条件()()12120n n -=⨯-=e J J e E E位函数的边界条件 121212n n ϕϕσσϕϕ∂∂=∂∂=静电比拟法E 恒↔E 静 ϕ恒↔ϕ静 J ↔ D I ↔ qσ ↔ ε功率损耗密度p =J E 电导I G U=波动方程(有麦克斯韦方程推导出的,E 和H 在无源区满足的微分方程) 2220t με∂∇-=∂E E 2220tμε∂∇-=∂H H矢量位与标量位tϕ∂=∇⨯=--∇∂AB A E 洛仑兹规范 tϕμε∂∇=-∂A 矢量位与标量位满足的微分方程——达朗贝尔方程222tμεμ∂∇-=-∂AA J2221t ϕϕμερε∂∇-=-∂坡印亭矢量S (能流密度矢量),其方向表示能量的流动方向,其大小表示单位面积上的功率,单位是W/m2。

电磁场与电磁波第四章时变电磁场

电磁场与电磁波第四章时变电磁场
电磁场与电磁波
第 4 章 时变电磁场
电磁场与电磁波第四章时变电磁 场..
电磁场与电磁波
第 4 章 时变电磁场
2
4.1 电磁场波动方程
麦克斯韦方程 —— 一阶矢量微分方程组,描述电场与磁场 间的相互作用关系。
波动方程 —— 二阶矢量微分方程,揭示电磁场的波动性。
麦克斯韦方程组
波动方程。
无源区域中电磁场波动方程
时变电磁场唯一性定理
在以闭曲面S为边界的有界区域V 中,
V
如果给定t=0 时刻的电场强度和磁场强度 S
的初始值,并且当t 0 时,给定边界面S
上的电场强度或者磁场强度的切向分量已知,那么,在 t > 0 的
任何时刻,区域V 中的电磁场都由麦克斯韦方程组唯一确定。
唯一性定理指出了获得唯一解所必须给定的边界条件。
第 4 章 时变电磁场
17
4.5.1 简谐电磁场的复数表示
简谐场量的复数表示形式
设 A(r,t)是一个以角频率 随时间t 作余弦变化的场量,它
可以是电场或磁场的任意一个分量,也可以是电荷或电流等变量,
它与时间的变化关系可以表示为:
A ( r ,t) A 0 c o s [t ( r ) ]
实数表示法 或称瞬时表示法
只要把微分算子 用 j 代替,就可把麦克斯韦方程转换为
t
简谐电磁场复矢量之间的关系,而得到简谐场的麦克斯韦方程。
H
J D t
E
B t
B 0
D
Hm
Jm
j D m
Em
j B m
Bm 0
D m m
H J j D
E j B
D
式中A0代表振幅、 ( r )为与坐标有关的相位因子。

光纤光学2-1

光纤光学2-1

S(x,y,z) 是光程函数,代入亥姆赫兹方程得:
根据光线理论的几何光学近似条件,有
,则
——光程函数方程
若已知折射率分布,可由上述方程求出光程函数S,则可确定 光线的轨迹。
8 刘德明:光纤光学 华中科技大学·光电子工程
射线方程的推导
n(2)射线方程(光线方程)
由光程函数方程可推得光线方程:
物理意义: • 将光线轨迹(由r描述)和空间折射率分布(n)联系起来; • 由光线方程可以直接求出光线轨迹表达式; • dr/dS=cosθ,对于均匀波导,n为常数,光线以直线形式传播 ; 对于渐变波导,n是r的函数,则dr/dS为一变量,这表明光线将 发生弯曲。 • 可以证明,光线总是向折射率高的区域弯曲。
e=e0n2
为梯度算符,在直角坐标系与圆柱坐标系中分别为:
边界条件:在两种介质交界面上电磁场矢量的E(x,y)和H(x,y)切向分量要连续: E1t=E2t; H1t=H2t; B1n=B2n; D1n=D2n
5 刘德明:光纤光学 华中科技大学·光电子工程
分离变量:电矢量与磁矢量分离
n
得到只与电场强度E(x,y,z,t)有关的方程式及只与 磁场强度H(x,y,z,t)有关的方程式:波动方程
光线总是向折射率高的区域弯曲
n由光线方程可以证明下列关系式成立:
课后作业题:证明上式。 提示:
12 刘德明:光纤光学 华中科技大学·光电子工程
典型光线传播轨迹
13
刘德明:光纤光学 华中科技大学·光电子工程
§2.4 波导场方程
分离变量:空间坐标纵横分离:
n
前提条件:光纤中传播的电磁波是“行波”,场分布 沿轴向只有相位变化,没有幅度变化;
纵模

麦克斯韦亥姆霍兹方程

麦克斯韦亥姆霍兹方程

麦克斯韦亥姆霍兹方程
麦克斯韦亥姆霍兹方程是物理学中的一组基本方程,描述了电磁场的演化规律。

它由四个方程组成,分别是麦克斯韦方程和亥姆霍兹方程。

麦克斯韦方程是描述电磁场的基本方程,它包括电场和磁场的产生和演化规律。

其中,安培定律和法拉第电磁感应定律描述了电磁场的演化规律,高斯定理和法拉第电磁感应定律描述了电磁场的产生规律。

亥姆霍兹方程是描述电磁场的波动性质的方程,它可以描述电磁波在介质中的传播规律。

亥姆霍兹方程的解可以得到电磁波的传播速度、波长和频率等特性。

麦克斯韦亥姆霍兹方程是电磁学领域的基础方程之一,对于研究电磁场的产生、演化规律和波动特性具有重要的意义。

它不仅在电子学、电磁波学等领域得到广泛应用,也在原子物理学和相对论等领域中发挥着重要作用。

- 1 -。

绝对原创 Maxvell麦克斯韦方程组总结

绝对原创 Maxvell麦克斯韦方程组总结

5
E .d l
s
B .dS 6 t

B 0 7
v

D
s
dV
8
1 和 5 是修正后的麦克斯韦方程,表明电流和时变电场都可以激发磁场。2 和 6 是法拉第电磁感应定律,表明时变磁场产生电场。这 4 个公式是麦克斯韦方程的核 心,说明时变电场和时变磁场互相激发,时变电磁场可以脱离场源而独立存在,在 空间形成电磁波。
利用哈密顿微分算子,可以证明,散度运算符合以下: A B A B 斯定理)
矢量场 A 的散度代表的是其通量的体密度,矢量场 A 散度的体积分等于该矢量 穿过包围该体积的封闭曲面的总通量,即

A dS S
A dl
l

它将矢量旋度的面积分转换成该矢量的线积分, 将矢量 A 的线积分转换为该矢 量旋度的面积分。
六.亥姆霍兹定理
散度表示矢量场中各点场与通量源的关系,而旋度表示场中各点场与漩涡源的关 系。故场的散度和旋度一确定,则通量源和漩涡元也就是确定的。既然场是由源激 发的,通量源和漩涡源的确定便意味着场也确定,则亥姆霍兹定律成立。 亥姆霍兹定律的简答表达是:若矢量场 F 在无限空间中处处单值,且其导数连续有 界,而源分布在有限空间区域中,则矢量场由其散度和旋度唯一确定,并且可以表 示为一有界函数的梯度和一个矢量的旋度之和,即:


s 0
A dl lim
l
s
此极限值的意义是环量的面密度,称为环路强度。为此引入如下定义,称为矢 量场 A 的旋度,记为 rotA;
l A dl max rotA n lim s 0 S
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

麦克斯韦方程和亥姆霍兹方程
麦克斯韦方程和亥姆霍兹方程是电磁学中的两个重要方程。

麦克斯韦方程描述了电磁场的行为和相互作用,而亥姆霍兹方程则描述了电磁波的传播和态度的变化。

这两个方程在电磁学领域的研究中有着广泛的应用和影响。

麦克斯韦方程由詹姆斯·克拉克·麦克斯韦在19世纪中期首先发现,并在之后的研究中不断完善。

麦克斯韦方程分为四个部分,分别描述了电场和磁场的产生、变化和相互作用。

其中,高斯定理描述了电荷对电场的产生和作用,法拉第电磁感应定律描述了磁场对电场的变化和作用,安培环路定理描述了电场对磁场的变化和作用,而麦克斯韦方程的最后一部分描述了电磁场对电荷的行为和相互作用。

亥姆霍兹方程是以德国物理学家赫尔曼·冯·亥姆霍兹的名字命名的,它描述了电场和磁场波的传播和态度的变化。

亥姆霍兹方程描述了电场和磁场在空间中的传播,并且可以得到它们的速度、波长和能量等重要参数。

亥姆霍兹方程的形式具有旋转不变性,因此它是研究电磁波行为的基本工具。

麦克斯韦方程和亥姆霍兹方程在现代科学技术中应用广泛。

随着科学技术的快速发展,人们对电磁场的研究和应用也在不断升级。

电磁波
的应用包括通讯、雷达、医学、能源和交通等领域。

在这些应用中,
麦克斯韦方程和亥姆霍兹方程被广泛应用和改进。

总之,麦克斯韦方程和亥姆霍兹方程是电磁学领域最基本的公式,它
们描述了电磁场的行为和相互作用,以及电磁波的传播和态度的变化。

这两个方程在现代科学技术的应用中发挥着重要的作用。

相关文档
最新文档