最新高一上学期期末数学(必修一)函数难题压轴题汇编
最新高一数学必修一函数选择填空难题突破练习(含解析)期末函数压轴题汇编

最新高一数学必修一函数选择填空难题突破练习一.选择题(共16小题)1.已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)2.函数的零点个数为()A.0 B.1 C.2 D.33.偶函数f(x)和奇函数g(x)的图象如图所示,若关于x的方程f(g(x))=1,g(f(x))=2的实根个数分别为m、n,则m+n=()A.16 B.14 C.12 D.104.已知函数f(x)=,若始终存在实数b,使得函数g(x)=f(x)﹣b的零点不唯一,则a的取值范围是()A.[2,3) B.(﹣∞,2)C.(﹣∞,3)D.(﹣∞,3]5.若函数f(x)=4x﹣m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为()A.(﹣2,2)B.(6,+∞)C.(2,6) D.(2,+∞)6.若函数f(x)=ae x﹣x﹣2a有两个零点,则实数a的取值范围()A.(﹣)B.(0,)C.(﹣∞,o)D.(0,+∞)7.已知函数y=g(x)满足g(x+2)=﹣g(x),若y=f(x)在(﹣2,0)∪(0,2)上为偶函数,且其解析式为,则g(﹣2017)的值为()A.﹣1 B.0 C.D.8.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.19.已知函数f(x)=﹣mx有两个零点,则实数m的取值范围是()A.(0,)B.(0,)C.()D.()10.已知函数的值域是(m,n),则f(m+n)=()A.22018B.C.2 D.011.已知函数f(x)是定义域在(﹣∞,0)∪(0,+∞)上的偶函数,当x >0时,f(x)=,则函数g(x)=f(x)﹣2的零点个数为()A.2 B.4 C.6 D.812.已知函数f(x)=log a(x2﹣2ax)在[4,5]上为增函数,则a的取值范围是()A.(1,4) B.(1,4]C.(1,2) D.(1,2]13.已知a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1•a2•…•a n为整数的数n 叫做“劣数”,则在n∈(1,2018)内的所有“劣数”的和为()A.1016 B.2018 C.2024 D.202614.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,则实数a的取值范围是()A.B.C.D.15.已知函数f(x)=ln(x+1),g(x)=kx(k∈N*),若对任意的x∈(0,t)(t>0),恒有|f(x)﹣g(x)|<x2,那么k的取值集合是()A.{1}B.{2}C.{1,2}D.{1,2,3}16.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A.(0,)B.(﹣∞,)C.(0,] D.(﹣∞,]二.填空题(共16小题)17.设函数f(x)=,对任意x1、x2∈(0,+∞),不等式恒成立,则正数k的取值范围是.18.设关于x的方程x2﹣ax﹣2=0和x2﹣x﹣1﹣a=0得实根分别为x1,x2和x3,x4,若x1<x3<x2<x4,则a的取值范围是.19.已知函数f(x)=函数g(x)=x2,若函数y=f(x)﹣g(x)有4个零点,则实数a的取值范围为.20.已知函数,若存在实数x1,x2,x3,当0≤x1<x2<x3≤3时,f(x1)=f(x2)=f(x3),则(x1+x2)x2f(x3)的取值范围是.21.已知函数f(x)=则关于x的不等式f(f(x))≤3的解集为.22.对于函数y=f(x),若在其定义域内存在x0,使得x0•f(x0)=1成立,则称x0为函数f(x)的“反比点”.下列函数中具有“反比点”的是.①f(x)=﹣2x+2;②f(x)=sinx,x∈[0,2π];③f(x)=x+,x∈(0,+∞);④f(x)=e x;⑤f(x)=﹣2lnx.23.设定义在R上的函数,g(x)=f(x)﹣a,则当实数a满足0<a<1时,函数y=g(x)的零点个数为个.24.函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是.25.已知幂函数f(x)=k•xα的图象过点(,2),则k+α=.26.已知点A(x1,lgx1),B(x2,lgx2)是函数f(x)=lgx的图象上任意不同两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的下方,因此有结论<lg()成立.运用类比思想方法可知,若点A (x1,),B(x2,)是函数g(x)=2x的图象上的不同两点,则类似地有成立.27.已知函数f(x)=|lg(x+1)|,实数a,b满足:,则f(8a+2b+11)取最小值时,a+b的值为.28.对于函数y=f(x),如果f(x0)=x0,我们就称实数x0是函数f(x)的不动点.设函数f(x)=3+log2x,则函数f(x)的不动点一共有个.29.函数y=log(3x2﹣ax+5)在[﹣1,+∞)上是减函数,则实数a的取值范围是.30.已知a>0,b>0,且2﹣log2a=3﹣log3b=log6,则+=.31.函数f(x)=log cos(2x﹣)的单调递增区间为.32.已知不论a为何正实数,y=a x+2﹣3的图象恒过定点,则这个定点的坐标是.三.解答题(共8小题)33.设函数f(x)=|2x﹣1|(1)解关于x的不等式f(2x)≤f(x+1)(2)若实数a,b满足a+b=2,求f(a2)+f(b2)的最小值.34.已知函数f(x)=|2x+1|+|x﹣1|.(1)解不等式f(x)≤3;(2)若函数g(x)=|2x﹣2018﹣a|+|2x﹣2019|,若对于任意的x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.35.已知函数f(x)=(1)若m∈(﹣2,2),求函数y=f(x)的单调区间;(2)若m∈(0,],则当x∈[0,m+1]时,函数y=f(x)的图象是否总在直线y=x上方,请写出判断过程.36.已知函数f(x)=log2(x+a);(1)当a=1时,若,求x的取值范围;(2)若定义在R上奇函数g(x)满足g(x+2)=﹣g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[﹣3,﹣1]上的反函数h(x);(3)对于(2)中的g(x),若关于x的不等式在R 上恒成立,求实数t的取值范围.37.已知函数f(x)=log2(x+a).(Ⅰ)当a=1时,若f(x)+f(x﹣1)>0成立,求x的取值范围;(Ⅱ)若定义在R上奇函数g(x)满足g(x+2)=﹣g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[﹣3,﹣1]上的解析式,并写出g(x)在[﹣3,3]上的单调区间(不必证明);(Ⅲ)对于(Ⅱ)中的g(x),若关于x的不等式g()≥g(﹣)在R上恒成立,求实数t的取值范围.38.设a>0,函数(1)若a=1,求f(x)的反函数f﹣1(x)(2)求函数y=f(x)•f(﹣x)的最大值(用a表示)(3)设g(x)=f(x)﹣f(x﹣1).若对任意x∈(﹣∞,0],g(x)≥g(0)恒成立,求a的取值范围39.已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.(I)求f(0)的值和实数m的值;(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.40.已知函数,函数x.(1)若g(mx2+2x+m)的定义域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m、n,使得函数的定义域为[m,n],值域为[2m,2n],若存在,求出m、n的值;若不存在,则说明理由.参考答案与试题解析一.选择题(共16小题)1.已知函数f(x)=,g(x)=f(x)+x+a.若g(x)存在2个零点,则a的取值范围是()A.[﹣1,0)B.[0,+∞)C.[﹣1,+∞)D.[1,+∞)【解答】解:由g(x)=0得f(x)=﹣x﹣a,作出函数f(x)和y=﹣x﹣a的图象如图:当直线y=﹣x﹣a的截距﹣a≤1,即a≥﹣1时,两个函数的图象都有2个交点,即函数g(x)存在2个零点,故实数a的取值范围是[﹣1,+∞),故选:C.2.函数的零点个数为()A.0 B.1 C.2 D.3【解答】解:根据题意,对于函数,其对应的方程为x﹣﹣2=0,令t=,有t≥0,则有t2﹣t﹣2=0,解可得t=2或t=﹣1(舍),即方程x﹣﹣2=0有一个根4,则函数有1个零点;故选:B.3.偶函数f(x)和奇函数g(x)的图象如图所示,若关于x的方程f(g(x))=1,g(f(x))=2的实根个数分别为m、n,则m+n=()A.16 B.14 C.12 D.10【解答】解:若方程f(g(x))=1则g(x)=﹣1或g(x)=1,此时方程有2个解,m=6;若g(f(x))=2则f(x)=﹣a,或f(x)=1,此时方程有4个解;即m=6,n=4,∴m+n=10,故选:D.4.已知函数f(x)=,若始终存在实数b,使得函数g(x)=f(x)﹣b的零点不唯一,则a的取值范围是()A.[2,3) B.(﹣∞,2)C.(﹣∞,3)D.(﹣∞,3]【解答】解:由题可知函数g(x)=f(x)﹣b的零点不唯一,等价于两函数y=f(x)与y=b图象的交点个数不唯一.因为m(x)=﹣x2+ax的图象是开口向下、对称轴的抛物线,n(x)=2ax﹣4的图象是恒过(0,﹣4)的直线,注意到m(1)=a﹣1、n(1)=2a﹣4,所以分a≤0、0<a≤2、a>2三种情况讨论:又因为y=m(x)在(﹣∞,)上单调递增、在(,1)上单调递减,y=n(x)在(0,+∞)上单调递减(当a=0时为常数函数),所以y=f(x)在(﹣∞,)上单调递增、在(,1)上单调递减,所以始终存在实数b使得在(﹣∞,0)上y=f(x)的图象与y=b图象的交点个数不唯一;②当0<a≤2时,y=m(x)在(﹣∞,)上单调递增、在(,1)上单调递减,由于y=n(x)在(0,+∞)上单调递增,且n(1)≤0,所以始终存在正实数b使得在(﹣∞,+∞)上y=f(x)的图象与y=b图象的交点个数不唯一;③当a>2时,y=m(x)在(﹣∞,1)上单调递增,y=n(x)在(1,+∞)上单调递增,欲使始终存在实数b使得在(﹣∞,0)上y=f(x)的图象与y=b图象的交点个数不唯一,则必有m(1)>n(1),即a﹣1>2a﹣4,解得:a<3.综上所述,a的取值范围是(﹣∞,3).故选:C.5.若函数f(x)=4x﹣m•2x+m+3有两个不同的零点x1,x2,且x1+x2>0,x1x2>0,则实数m的取值范围为()A.(﹣2,2)B.(6,+∞)C.(2,6) D.(2,+∞)【解答】解:设t=2x,∵x1+x2>0,x1x2>0,∴t>1,∴函数f(t)=t2﹣mt+m+3有两个不同的零点,且大于1,∴,∴m>6,故选:B.6.若函数f(x)=ae x﹣x﹣2a有两个零点,则实数a的取值范围()A.(﹣)B.(0,)C.(﹣∞,o)D.(0,+∞)【解答】解:函数f(x)=ae x﹣x﹣2a的导函数f′(x)=ae x﹣1,当a≤0时,f′(x)≤0恒成立,函数f(x)在R上单调,不可能有两个零点;当a>0时,令f′(x)=0,得x=﹣lna,函数在(﹣∞,﹣lna)递减,在(ln ,+∞)递增,所以f(x)的最小值为f(﹣lna)=1+lna﹣2a=1+lna﹣2a,令g(a)=1+lna﹣2a,(a>0),g′(a)=﹣2,a∈(0,),g(a)递增,a∈(,+∞)递减,g(a)max=g()=﹣ln2<0∴f(x)的最小值为f(﹣lna)<0恒成立,函数f(x)=ae x﹣x﹣2a有两个零点;综上实数a的取值范围是:(0,+∞),故选:D.7.已知函数y=g(x)满足g(x+2)=﹣g(x),若y=f(x)在(﹣2,0)∪(0,2)上为偶函数,且其解析式为,则g(﹣2017)的值为()A.﹣1 B.0 C.D.【解答】解:∵函数y=g(x)满足g(x+2)=﹣g(x),∴g(x+4)=﹣g(x+2)=g(x),∴函数y=g(x)的周期为4,∴g(﹣2017)=g(﹣1)=f(﹣1),∵y=f(x)在(﹣2,0)∪(0,2)上为偶函数,∴f(﹣1)=f(1)=0,∴g(﹣2017)=0,故选:B.8.已知:m>0,若方程有唯一的实数解,则m=()A.B.C.D.1【解答】解:方法一:验证,当时,f(x)=lnx与g(x)=x2﹣x在点(1,0)处有共同的切线y=x﹣1.方法二:将方程整理得,设,则由题意,直线是函数f(x)的一条切线,不妨设切点为(x0,y0),则有:,解之得:x0=1,y0=1,.故选:B.9.已知函数f(x)=﹣mx有两个零点,则实数m的取值范围是()A.(0,)B.(0,)C.()D.()【解答】解:函数f(x)=﹣mx有两个零点,也就是方程﹣mx=0有两个不等实数根,即函数y=的图象与y=mx的图象有两个不同交点,由y=,得y′=(x>0),∴当x∈(0,e)时,y′>0,当x∈(e,+∞)时,y′<0.∴y=在(0,e)上为增函数,在(e,+∞)上为减函数,作出函数y=与y=mx的图形如图:设过原点的直线与y=相切于(),则,则切线方程为.把O(0,0)代入,可得,解得.∴切点坐标为(,).则原点与切点连线的斜率为k=.则函数f(x)=﹣mx有两个零点的实数m的取值范围是(0,).故选:A.10.已知函数的值域是(m,n),则f(m+n)=()A.22018B.C.2 D.0【解答】解:因为是奇函数,所以的最大值与最小值互为相反数,从而得m+n=0,所以f(m+n)=f(0)=0.故选:D.11.已知函数f(x)是定义域在(﹣∞,0)∪(0,+∞)上的偶函数,当x >0时,f(x)=,则函数g(x)=f(x)﹣2的零点个数为()A.2 B.4 C.6 D.8【解答】解:∵函数f(x)是定义域在(﹣∞,0)∪(0,+∞)上的偶函数,当x>0时,f(x)=,则函数f(x)的图象如下图所示:由图可得:f(x)与y=2的图象有4个交点,即函数g(x)=f(x)﹣2的零点个数为4,故选:B.12.已知函数f(x)=log a(x2﹣2ax)在[4,5]上为增函数,则a的取值范围是()A.(1,4) B.(1,4]C.(1,2) D.(1,2]【解答】解:由题意可得g(x)=x2﹣2ax的对称轴为x=a①当a>1时,由复合函数的单调性可知,g(x)在[4,5]单调递增,且g(x)>0在[4,5]恒成立则∴1<a<2②0<a<1时,由复合函数的单调性可知,g(x)在[4,5]单调递增,且g (x)>0在[4,5]恒成立则此时a不存在综上可得,1<a<2故选:C.13.已知a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1•a2•…•a n为整数的数n叫做“劣数”,则在n∈(1,2018)内的所有“劣数”的和为()A.1016 B.2018 C.2024 D.2026【解答】解:a1•a2•…•a n=…×==log2(n+2)=k,则2k=n+2.n=2时,k=1;…;n=1022时,k=10;若k=11,则n=2048﹣2=2026>2018,不满足题意.在n∈(1,2018)内的所有“劣数”的和=22﹣2+23﹣2+…+210﹣2=﹣18=2026.故选:D.14.设f(x)=|lnx|,若函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,则实数a的取值范围是()A.B.C.D.【解答】解:∵函数g(x)=f(x)﹣ax在区间(0,e2)上有三个零点,∴y=f(x)与y=ax在区间(0,e2)上有三个交点;由函数y=f(x)与y=ax的图象可知,k1==;f(x)=lnx,(x>1),f′(x)=,设切点坐标为(t,lnt),则=,解得:t=e.∴k2=.则直线y=ax的斜率a∈(,).故选:D.15.已知函数f(x)=ln(x+1),g(x)=kx(k∈N*),若对任意的x∈(0,t)(t>0),恒有|f(x)﹣g(x)|<x2,那么k的取值集合是()A.{1}B.{2}C.{1,2}D.{1,2,3}【解答】解:令k=1,令h(x)=f(x)﹣g(x)=ln(x+1)﹣x,(x>0),则h′(x)=﹣1=﹣,∵x≥0,∴h′(x)≤0,∴h(x)在[0,+∞)上单调递减,∴当x∈(0,+∞)时,有h(x)<h(0)=0,∴x>0时,f(x)<x;故当k>1时,对于任意x∈(0,+∞),g(x)>x>f(x),故g(x)>f(x),|f(x)﹣g(x)|=g(x)﹣f(x)=kx﹣ln(1+x),令M(x)=kx﹣ln(1+x)﹣x2,x∈(0,+∞),则有M′(x)=k﹣﹣2x=,故当x∈(0,)时,M′(x)>0,M(x)在[0,)上单调递增,故M(x)>M(0)=0,即|f(x)﹣g(x)|>x2,∴满足题意的t不存在.当k<1时,令G(x)=f(x)﹣g(x)=ln(1+x)﹣kx,x∈(0,+∞),则有G′(x)=﹣k=,当k≤0时,G′(x)>0,∴G(x)在(0,+∞)上单调递增,∴G(x)>G(0)=0,故对任意正实数x0均满足题意.当0<k<1时,令G′(x)=0,得x==﹣1>0,取x0=﹣1,对任意x∈(0,x0),恒有G′(x)>0,∴G(x)在(0,x0)上单调递增,G(x)>G(0)=0,即f(x)>g(x).故存在x0>0,使得对任意的x∈(0,x0),f(x)>g(x).此时|f(x)﹣g(x)|=f(x)﹣g(x)=ln(1+x)﹣kx,令N(x)=ln(1+x)﹣kx﹣x2,x∈[0,+∞),则有N′(x)=﹣k﹣2x=,故当x∈(0,)时,N′(x)>0,N(x)在[0,)上单调递增,故N(x)>N(0)=0,即f(x)﹣g(x)>x2,记x0与中较小的为x1,则当x∈(0,x1)时,恒有|f(x)﹣g(x)|>x2,故满足题意的t不存在.当k=1,由(1)知,当x∈(0,+∞)时,|f(x)﹣g(x)|=g(x)﹣f(x)=x﹣ln(1+x),令H(x)=x﹣ln(1+x)﹣x2,x∈[0,+∞),则有H′(x)=1﹣﹣2x=,当x>0,H′(x)<0,∴H(x)在[0,+∞)上单调递减,故H(x)<H(0)=0,故当x>0时,恒有|f(x)﹣g(x)|<x2,满足t>0的实数t存在.综上,k=1,故选:A.16.设函数f(x)的定义域为D,若函数f(x)满足条件:存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],则称f(x)为“倍缩函数”,若函数f(x)=log2(2x+t)为“倍缩函数”,则实数t的取值范围是()A.(0,)B.(﹣∞,)C.(0,] D.(﹣∞,]【解答】解:∵函数f(x)=f(x)=log2(2x+t)为“倍缩函数”,且满足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[,],∴f(x)在[a,b]上是增函数;∴,即,∴a,b是方程2x﹣+t=0的两个根,设m==,则m>0,此时方程为m2﹣m+t=0即方程有两个不等的实根,且两根都大于0;∴,解得:0<t<,∴满足条件t的范围是(0,),故选:A.二.填空题(共16小题)17.设函数f(x)=,对任意x1、x2∈(0,+∞),不等式恒成立,则正数k的取值范围是k≥1.【解答】解:∵当x>0时,==2e∴x1∈(0,+∞)时,函数f(x1)有最小值2e∵∴=当x<1时,g′(x)>0,则函数g(x)在(0,1)上单调递增当x>1时,g′(x)<0,则函数在(1,+∞)上单调递减∴x=1时,函数g(x)有最大值g(1)=e则有x1、x2∈(0,+∞),f(x1)min=2e>g(x2)max=e∵恒成立且k>0,∴∴k≥1故答案为k≥118.设关于x的方程x2﹣ax﹣2=0和x2﹣x﹣1﹣a=0得实根分别为x1,x2和x3,x4,若x1<x3<x2<x4,则a的取值范围是(﹣1,1).【解答】解:由x2﹣ax﹣2=0,得,由x2﹣x﹣1﹣a=0,得a=x2﹣x﹣1.在同一个坐标系中画出和y=x2﹣x﹣1的图象如图:由,化简得x3﹣2x2﹣x+2=0,此方程显然有根x=2,∴x3﹣2x2﹣x+2=(x+1)(x﹣1)(x﹣2)=0,解得x=﹣1或x=1或x=2,当x=2,或x=﹣1时,y=1;当x=1时,y=﹣1,由题意可知,﹣1<a<1.∴a的取值范围是(﹣1,1).故答案为:(﹣1,1).19.已知函数f(x)=函数g(x)=x2,若函数y=f(x)﹣g(x)有4个零点,则实数a的取值范围为(5,] .【解答】解:当x>0时,y=2x与g(x)=x2有两个交点(2,4),(4,16).要使函数y=f(x)﹣g(x)有4个零点,只需:x≤0时,y=a|x+|﹣与g(x)=x2有两个交点即可(如图).过点(﹣,﹣)作g(x)=x2(x<0)的切线,设切点为(m,m2)切线方程为y﹣m2=2m(x﹣m),把点(﹣,﹣)代入上式得m=﹣,∴切线斜率为2m=5.,解得a,∴实数a的取值范围为(5,].故答案为(5,].20.已知函数,若存在实数x1,x2,x3,当0≤x1<x2<x3≤3时,f(x1)=f(x2)=f(x3),则(x1+x2)x2f(x3)的取值范围是[,).【解答】解:分别画出y=|x﹣1|与y=()x﹣1的图象,如图所示所以x1+x2=2,1﹣x1=x2﹣1=(),得x2=()+1,得则(x1+x2)x2f(x3)=2(()+1)•(),令t═(),x3∈(2,3],得t∈[,),又y=2(t+1)t=2t2+2t,则y的取值范围为[,).故答案为:[,).21.已知函数f(x)=则关于x的不等式f(f(x))≤3的解集为(﹣∞,2] .【解答】解:不等式f(f(x))≤3,令f(t)≤3,若t≤0,则2﹣t﹣1≤3,2﹣t≤4,解得﹣2≤t≤0;若t>0,则﹣t2+t≤3,t2﹣t+3≥0,解得t>0,∴t≥﹣2,即原不等式等价于或,解得x≤2.故答案为:(﹣∞,2].22.对于函数y=f(x),若在其定义域内存在x0,使得x0•f(x0)=1成立,则称x0为函数f(x)的“反比点”.下列函数中具有“反比点”的是①②④.①f(x)=﹣2x+2;②f(x)=sinx,x∈[0,2π];③f(x)=x+,x∈(0,+∞);④f(x)=e x;⑤f(x)=﹣2lnx.【解答】解:①由x=1得:,则①具有“反比点”.②设h(x)=xsinx﹣1,∵h(0)=﹣1<0,,∴h(x)=xsinx﹣1=0⇒xsinx=1在上有解,所以②具有“反比点”.③由∉(0,+∞),所以③不具有“反比点”;④若xe x=1令g(x)=xe x﹣1,g(0)=﹣1<0,g(1)=e﹣1>0④具有“反比点”⑤若在(0,+∞)上有解,令h(x)=xlnx⇒h'(x)=lnx+1=0⇒x=e﹣1,可得h(x)在x=e﹣1有最小值﹣e﹣1,而,所以⑤不具有“反比点”,故答案为:①②④23.设定义在R上的函数,g(x)=f(x)﹣a,则当实数a满足0<a<1时,函数y=g(x)的零点个数为3个.【解答】解:定义在R上的函数,函数的图象如图:g(x)=f(x)﹣a,则当实数a满足0<a<1时,函数y=g(x)的零点个数,就是y=f(x)与y=a图象的交点个数,由图象可知,零点个数为3个.故答案为:3.24.函数f(x)=x3﹣x2﹣x+k的图象与x轴刚好有三个交点,则k的取值范围是(﹣,1).【解答】解:f′(x)=3x2﹣2x﹣1,令f′(x)=0得x=﹣或x=1,∴当x<﹣或x>1时,f′(x)>0,当﹣<x<1时,f′(x)<0,∴f(x)在(﹣∞,﹣)上单调递增,在(﹣,1)上单调递减,在(1,+∞)上单调递增,∴当x=﹣时,f(x)取得极大值f(﹣)=+k,当x=1时,f(x)取得极小值f(1)=k﹣1.∵f(x)的图象与x轴刚好有三个交点,∴,解得:﹣<k<1.故答案为:(﹣,1).25.已知幂函数f(x)=k•xα的图象过点(,2),则k+α=0.【解答】解:∵幂函数f(x)=k•xα的图象过点(,2),∴k=1,2=k,解得k=1,α=﹣1.∴k+α=0.故答案为:0.26.已知点A(x1,lgx1),B(x2,lgx2)是函数f(x)=lgx的图象上任意不同两点,依据图象可知,线段AB总是位于A,B两点之间函数图象的下方,因此有结论<lg()成立.运用类比思想方法可知,若点A (x1,),B(x2,)是函数g(x)=2x的图象上的不同两点,则类似地有成立.【解答】解:A(x1,lgx1),B(x2,lgx2)是函数f(x)=lgx的图象上任意不同两点,线段AB总是位于A,B两点之间函数图象的下方,有结论<lg()成立.类比上式可得:若点A(x1,),B(x2,)是y=g(x)上两点,而线段AB两点总是位于A,B两点之间函数图象的上方,有结论:.故答案为:.27.已知函数f(x)=|lg(x+1)|,实数a,b满足:,则f(8a+2b+11)取最小值时,a+b的值为.【解答】解:因为f(a)=f(﹣),所以|lg(a+1)|=|lg(﹣+1)|=|lg ()|=|lg(b+2)|,所以a+1=b+2,或(a+1)(b+2)=1,又因为a<b,所以a+1≠b+2,所以(a+1)(b+2)=1.又由f(a)=|lg(a+1)|有意义知a+1>0,从而0<a+1<b+1<b+2,于是0<a+1<1<b+2.所以8a+2b+11=8(a+1)+2(b+2)﹣1=2(b+2)+﹣1>1.从而f(8a+2b+11)=|lg[2(b+2)+]|=lg[2(b+2)+]≥3lg2,当且仅当b=0,a=﹣时取等号.∴a+b=.故答案为﹣.28.对于函数y=f(x),如果f(x0)=x0,我们就称实数x0是函数f(x)的不动点.设函数f(x)=3+log2x,则函数f(x)的不动点一共有2个.【解答】解:由题意得:3+log2x=x,即log2x=x﹣3,画出函数y=log2x和y=x﹣3的图象,如图示:,结合图象,函数有2个交点,即函数f(x)的不动点一共有2个,故答案为:2.29.函数y=log(3x2﹣ax+5)在[﹣1,+∞)上是减函数,则实数a的取值范围是(﹣8,﹣6] .【解答】解:∵函数在[﹣1,+∞)上是减函数,∴,解得﹣8<a≤﹣6,故实数a的取值范围是(﹣8,﹣6],故答案为(﹣8,﹣6].30.已知a>0,b>0,且2﹣log2a=3﹣log3b=log6,则+=.【解答】解:∵正数a,b满足2﹣log2a=3﹣log3b=log6,∴﹣2+log2a=﹣3+log3b=log6(a+b)设∴﹣2+log2a=﹣3+log3b=log6(a+b)=x则a=2x+2,b=3x+3,a+b=6x,∴+====故答案为:31.函数f(x)=log cos(2x﹣)的单调递增区间为(kπ+,kπ+)(k∈Z).【解答】解:∵对于函数g(x)=cos(2x﹣)的单调减区间为2kπ≤2x﹣≤2kπ+π,即kπ+≤x≤kπ+,而cos(2x﹣)>0,故函数g(x)的单调减区间为(kπ+,kπ+)(k∈Z),根据复合函数的同增异减的原则,得:f(x)在(kπ+,kπ+)(k∈Z)递增,故答案为:(kπ+,kπ+)(k∈Z).32.已知不论a为何正实数,y=a x+2﹣3的图象恒过定点,则这个定点的坐标是(﹣2,﹣2).【解答】解:令x+2=0,则x=﹣2,y=﹣2,故y=a x+2﹣3的图象恒过定点(﹣2,﹣2),故答案为:(﹣2,﹣2)三.解答题(共8小题)33.设函数f(x)=|2x﹣1|(1)解关于x的不等式f(2x)≤f(x+1)(2)若实数a,b满足a+b=2,求f(a2)+f(b2)的最小值.【解答】解:(1)|4x﹣1|≤|2x+1|⇔16x2﹣8x+1≤4x2+4x+1⇔12x2﹣12x≤0,解得x∈[0,1],故原不等式的解集为[0,1].(2)f(a2)+f(b2)=|2a2﹣1|+|2b2﹣1|≥|2(a2+b2)﹣2|,由柯西不等式:2(a2+b2)=(12+12)(a2+b2)≥(a+b)2=4.从而2(a2+b2)﹣2≥2,即f(a2)+f(b2)≥2,取等条件为a=b=1.故f(a2)+f(b2)的最小值为2.34.已知函数f(x)=|2x+1|+|x﹣1|.(1)解不等式f(x)≤3;(2)若函数g(x)=|2x﹣2018﹣a|+|2x﹣2019|,若对于任意的x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.【解答】解:(1)当x≤﹣时,不等式f(x)≤3可化为:﹣(2x+1)﹣(x﹣1)≤3,解得x≥﹣1,即﹣1≤x≤﹣;当﹣<x<1时,不等式f(x)≤3可化为(2x+1)﹣(x﹣1)≤3,解得x≤1,即﹣<x<1;当x≥1时,不等式f(x)≤3可化为(2x+1)+(x﹣1)≤3,解得x≤1,即x=1;综上可得:不等式f(x)≤3的解集为[﹣1,1];(2)若g(x)=|2x﹣2018﹣a|+|2x﹣2019|,则g(x)=|2x﹣2018﹣a|+|﹣2x+2019|≥|(2x﹣2018﹣a)+(﹣2x+2019)|=|1﹣a|=|a﹣1|,f(x)=,则当x=﹣时,函数f(x)取最小值为,若对于任意的x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,则|a﹣1|≤,解得﹣≤a≤;∴实数a的取值范围是[﹣,].35.已知函数f(x)=(1)若m∈(﹣2,2),求函数y=f(x)的单调区间;(2)若m∈(0,],则当x∈[0,m+1]时,函数y=f(x)的图象是否总在直线y=x上方,请写出判断过程.【解答】解:(Ⅰ)函数定义域为R,f′(x)=①当m+1=1,即m=0时,f′(x)≥0,此时f(x)在R递增,②当1<m+1<3即0<m<2x∈(﹣∞,1)时,f′(x)>0,f(x)递增,x∈(1,m+1)时,f′(x)<0,f(x)递减,x∈(m+1,+∞)时,f′(x)>0,f(x)递增;③0<m+1<1,即﹣1<m<0时,x∈(﹣∞,m+1)和(1,+∞),f′(x)>0,f(x)递增,x∈(m+1,1)时,f′(x)<0,f(x)递减;综上所述,①m=0时,f(x)在R递增,②0<m<2时,f(x)在(﹣∞,1),(m+1,+∞)递增,在(1,m+1)递减,③﹣2<m<0时,f(x)在(﹣∞,m+1),(1,+∞)递增,在(m+1,1)递减;(Ⅱ)当m∈(0,]时,由(1)知f(x)在(0,1)递增,在(1,m+1)递减,令g(x)=x,①当x∈[0,1]时,f(x)min=f(0)=1,g(x)max=1,所以函数f(x)图象在g(x)图象上方;②当x∈[1,m+1]时,函数f(x)单调递减,所以其最小值为f(m+1)=,g(x)最大值为m+1,所以下面判断f(m+1)与m+1的大小,即判断e x与(1+x)x的大小,其中x=m+1∈(1,],令m(x)=e x﹣(1+x)x,m′(x)=e x﹣2x﹣1,令h(x)=m′(x),则h′(x)=e x﹣2,因x=m+1∈(1,],所以h′(x)=e x﹣2>0,m′(x)单调递增;所以m′(1)=e﹣3<0,m′()=﹣4>0,故存在x0∈(1,]使得m′(x0)=e x0﹣2x0﹣1=0,所以m(x)在(1,x0)上单调递减,在(x0,)单调递增所以m(x)≥m(x0)=e x0﹣x02﹣x0=2x0+1﹣﹣x0=﹣+x0+1,所以x0∈(1,]时,m(x0)=﹣+x0+1>0,即e x>(1+x)x也即f(m+1)>m+1,所以函数f(x)的图象总在直线y=x上方.36.已知函数f(x)=log2(x+a);(1)当a=1时,若,求x的取值范围;(2)若定义在R上奇函数g(x)满足g(x+2)=﹣g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[﹣3,﹣1]上的反函数h(x);(3)对于(2)中的g(x),若关于x的不等式在R 上恒成立,求实数t的取值范围.【解答】解:(1)原不等式可化为0<log2(2﹣2x)﹣log2(x+1)<,∴1<<,且2﹣2x>0,且x+1>0,得3﹣2<x<.(2)∵g(x)是奇函数,∴g(0)=0,得a=1,当x∈[﹣3,﹣2]时,﹣x﹣2∈[0,1],g(x)=﹣g(x+2)=g(﹣x﹣2)=log2(﹣x﹣1),此时g(x)∈[0,1],x=﹣2g(x)﹣1,h(x)=﹣2x﹣1(x∈[0,1]).当x∈(﹣2,﹣1]时,﹣x﹣2∈[﹣1,0),x+2∈(0,1],g(x)=﹣g(x+2)=﹣log2(x+3),此时,g(x)∈[﹣1,0),x=2﹣g(x)﹣3,h(x)=2﹣x﹣3.(x∈[﹣1,0)).∴h(x)=.(3)∵关于x的不等式g()≥1﹣log23在R上恒成立,∴记u=)=﹣+,∵关于x的不等式g()≥1﹣log23在R上恒成立,∴g()≥log2=﹣log2=﹣log2(1+)=﹣g()=g(﹣)在R上恒成立,当t+1≥0时,u∈(﹣,﹣+)=(﹣,),∴(﹣,)∈[﹣,],解得t∈[﹣1,20].当t+1<0时,u∈(﹣+,﹣)=(,﹣),由g()≥log2=﹣log2=﹣log2(1+)=﹣g()=g(﹣)在R上恒成立,得(,﹣)∈[﹣,],解得t∈[﹣4,﹣1).综上所述,实数t的取值范围是[﹣4,20].37.已知函数f(x)=log2(x+a).(Ⅰ)当a=1时,若f(x)+f(x﹣1)>0成立,求x的取值范围;(Ⅱ)若定义在R上奇函数g(x)满足g(x+2)=﹣g(x),且当0≤x≤1时,g(x)=f(x),求g(x)在[﹣3,﹣1]上的解析式,并写出g(x)在[﹣3,3]上的单调区间(不必证明);(Ⅲ)对于(Ⅱ)中的g(x),若关于x的不等式g()≥g(﹣)在R上恒成立,求实数t的取值范围.【解答】解:(Ⅰ)当a=1时,f(x)=log2(x+1).∴f(x﹣1)=log2x,∴f(x)+f(x﹣1)=log2(x+1)+log2x=log2[x(x+1)],若f(x)+f(x﹣1)>0,则,解得:x∈(,+∞),即x的取值范围为(,+∞);(Ⅱ)∵函数g(x)是定义在R上奇函数,故g(0)=0,又∵当0≤x≤1时,g(x)=f(x)=log2(x+a).故a=1,当x∈[﹣2,﹣1]时,x+2∈[0,1],∴g(x)=﹣g(x+2)=﹣log2(x+3).当x∈[﹣3,﹣2]时,x+2∈[﹣1,0],﹣(x+2)∈[0,1],∴g(x)=﹣g(x+2)=g[﹣(x+2)]=log2[﹣(x+2)+1]=log2(﹣x﹣1).故g(x)=,g(x)在[﹣3,﹣1]和[1,3]上递减,在[﹣1,1]上递增;(III)记u==﹣+,当t+1≥0时,u∈(﹣,﹣+)=(﹣,),由g()≥g(﹣)在R上恒成立可得:(﹣,)∈[.],解得:t∈[﹣1,20].当t+1<0时,u∈(﹣+,﹣)=(,﹣),由g()≥g(﹣)在R上恒成立可得:(,﹣)∈[.],解得:t∈[﹣4,﹣1).综上所述实数t的取值范围为[﹣4,20].38.设a>0,函数(1)若a=1,求f(x)的反函数f﹣1(x)(2)求函数y=f(x)•f(﹣x)的最大值(用a表示)(3)设g(x)=f(x)﹣f(x﹣1).若对任意x∈(﹣∞,0],g(x)≥g(0)恒成立,求a的取值范围【解答】解:(1)当a=1时,f(x)=,∴1+2x=,即2x=﹣1=,则0<y<1,∴x=log2();故f(x)的反函数f﹣1(x)=log2(),x∈(0,1)(2)∵y=f(x)•f(﹣x)=•=,设y=2x+2﹣x,易知,函数y=2x+2﹣x在(﹣∞,0)上单调递减,在(0,+∞)上单调递增,则当x=0时,y=2x+2﹣x有最小值,最小值为2,∴当x=0时,y=f(x)•f(﹣x)有最大值,∴y max==;(3)g(x)=f(x)﹣f(x﹣1)=﹣,令t=a•2x,∵x∈(﹣∞,0],a>0,∴0<t≤a.∴h(t)=,当时h(t)在(0,a]上单调递减,所以∵对任意x∈(﹣∞,0],g(x)≥g(0)恒成立,且g(0)=﹣,∴恒成立,∴0当时,,令=不恒成立,舍去综上,a的取值范围是(0,].39.已知函数(a>0,a≠1,m≠﹣1),是定义在(﹣1,1)上的奇函数.(I)求f(0)的值和实数m的值;(II)当m=1时,判断函数f(x)在(﹣1,1)上的单调性,并给出证明;(III)若且f(b﹣2)+f(2b﹣2)>0,求实数b的取值范围.【解答】解:(I)∵f(0)=log a1=0.因为f(x)是奇函数,所以:f(﹣x)=﹣f(x)⇒f(﹣x)+f(x)=0∴log a+log a=0;∴log a=0⇒=1,即∴1﹣m2x2=1﹣x2对定义域内的x都成立.∴m2=1.所以m=1或m=﹣1(舍)∴m=1.(II)∵m=1∴f(x)=log a;设设﹣1<x1<x2<1,则∵﹣1<x1<x2<1∴x2﹣x1>0,(x1+1)(x2+1)>0∴t1>t2.当a>1时,log a t1>log a t2,即f(x1)>f(x2).∴当a>1时,f(x)在(﹣1,1)上是减函数.当0<a<1时,log a t1<log a t2,即f(x1)<f(x2).∴当0<a<1时,f(x)在(﹣1,1)上是增函数.(III)由f(b﹣2)+f(2b﹣2)>0得f(b﹣2)>﹣f(2b﹣2),∵函数f(x)是奇函数∴f(b﹣2)>f(2﹣2b),∴0<a<1由(II)得f(x)在(﹣1,1)上是增函数∴∴∴b的取值范围是40.已知函数,函数x.(1)若g(mx2+2x+m)的定义域为R,求实数m的取值范围;(2)当x∈[﹣1,1]时,求函数y=[f(x)]2﹣2af(x)+3的最小值h(a);(3)是否存在非负实数m、n,使得函数的定义域为[m,n],值域为[2m,2n],若存在,求出m、n的值;若不存在,则说明理由.【解答】解:(1)∵,∴,令u=mx2+2x+m,则,当m=0时,u=2x,的定义域为(0,+∞),不满足题意;当m≠0时,若的定义域为R,则,解得m>1,综上所述,m>1 …(4分)(2)=,x ∈[﹣1,1],令,则,y=t2﹣2at+3,∵函数y=t2﹣2at+3的图象是开口朝上,且以t=a为对称轴的抛物线,故当时,时,;当时,t=a时,;当a>2时,t=2时,h(a)=y min=7﹣4a.综上所述,…(10分)(3),假设存在,由题意,知解得,∴存在m=0,n=2,使得函数的定义域为[0,2],值域为[0,4]…(12分)。
【压轴卷】高中必修一数学上期末试卷及答案

【压轴卷】高中必修一数学上期末试卷及答案一、选择题1.已知奇函数()y f x =的图像关于点(,0)2π对称,当[0,)2x π∈时,()1cos f x x =-,则当5(,3]2x ππ∈时,()f x 的解析式为( ) A .()1sin f x x =-- B .()1sin f x x =- C .()1cos f x x =-- D .()1cos f x x =- 2.设6log 3a =,lg5b =,14log 7c =,则,,a b c 的大小关系是( ) A .a b c <<B .a b c >>C .b a c >>D .c a b >>3.已知0.2633,log 4,log 2a b c ===,则,,a b c 的大小关系为 ( )A .c a b <<B .c b a <<C .b a c <<D .b c a <<4.在实数的原有运算法则中,补充定义新运算“⊕”如下:当a b ≥时,a b a ⊕=;当a b <时,2a b b ⊕=,已知函数()()()[]()1222,2f x x x x x =⊕-⊕∈-,则满足()()13f m f m +≤的实数的取值范围是( )A .1,2⎡⎫+∞⎪⎢⎣⎭B .1,22⎡⎤⎢⎥⎣⎦C .12,23⎡⎤⎢⎥⎣⎦D .21,3⎡⎤-⎢⎥⎣⎦5.根据有关资料,围棋状态空间复杂度的上限M 约为3361,而可观测宇宙中普通物质的原子总数N 约为1080.则下列各数中与MN最接近的是 (参考数据:lg3≈0.48) A .1033 B .1053 C .1073 D .10936.函数y =的定义域是( ) A .(-1,2]B .[-1,2]C .(-1 ,2)D .[-1,2)7.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( ) A .1ln||y x = B .3y x = C .||2x y =D .cos y x =8.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫⎪⎝⎭9.已知[]x 表示不超过实数x 的最大整数,()[]g x x =为取整函数,0x 是函数()2ln f x x x=-的零点,则()0g x 等于( )A .1B .2C .3D .410.若函数()[)[]1,1,0{44,0,1xx x f x x ⎛⎫∈- ⎪=⎝⎭∈,则f (log 43)=( ) A .13B .14C .3D .411.设函数()1x2,x 12f x 1log x,x 1-≤⎧=->⎨⎩,则满足()f x 2≤的x 的取值范围是( )A .[]1,2-B .[]0,2C .[)1,∞+D .[)0,∞+ 12.下列函数中,既是偶函数又存在零点的是( ) A .B .C .D .二、填空题13.如果函数()22279919mm y m m x--=-+是幂函数,且图像不经过原点,则实数m =___________.14.()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,若(0,3)x ∈时,()lg f x x x =+,则()f x 在(6,3)--上的解析式是______________.15.已知函数()f x 满足对任意的x ∈R 都有11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x 成立,则 127...888f f f ⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭= . 16.已知函数1()41xf x a =+-是奇函数,则的值为________. 17.函数2sin 21=+++xy x x 的最大值和最小值之和为______ 18.2()2f x x x =+(0x ≥)的反函数1()f x -=________19.已知函数()211x x xf -=-的图象与直线2y kx =+恰有两个交点,则实数k 的取值范围是________.20.已知11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,若幂函数()af x x =为奇函数,且在()0,∞+上递减,则a的取值集合为______.三、解答题21.已知函数22()21x xa f x ⋅+=-是奇函数. (1)求a 的值;(2)求解不等式()4f x ≥; (3)当(1,3]x ∈时,()2(1)0f txf x +->恒成立,求实数t 的取值范围.22.随着我国经济的飞速发展,人们的生活水平也同步上升,许许多多的家庭对于资金的管理都有不同的方式.最新调查表明,人们对于投资理财的兴趣逐步提高.某投资理财公司做了大量的数据调查,调查显示两种产品投资收益如下: ①投资A 产品的收益与投资额的算术平方根成正比; ②投资B 产品的收益与投资额成正比.公司提供了投资1万元时两种产品的收益,分别是0.2万元和0.4万元.(1)分别求出A 产品的收益()f x 、B 产品的收益()g x 与投资额x 的函数关系式; (2)假如现在你有10万元的资金全部用于投资理财,你该如何分配资金,才能让你的收益最大?最大收益是多少?23.设函数()3x f x =,且(2)18f a +=,函数()34()ax x g x x R =-∈. (1)求()g x 的解析式;(2)若方程()g x -b=0在 [-2,2]上有两个不同的解,求实数b 的取值范围. 24.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y (y 值越大产品的性能越好)与这种新合金材料的含量x (单位:克)的关系为:当0≤x <7时,y 是x 的二次函数;当x ≥7时,1()3x m y -=.测得部分数据如表:(1)求y 关于x 的函数关系式y =f (x );(2)求该新合金材料的含量x 为何值时产品的性能达到最佳.25.药材人工种植技术具有养殖密度高、经济效益好的特点.研究表明:人工种植药材时,某种药材在一定的条件下,每株药材的年平均生长量(v 单位:千克)是每平方米种植株数x 的函数.当x 不超过4时,v 的值为2;当420x <≤时,v 是x 的一次函数,其中当x 为10时,v 的值为4;当x 为20时,v 的值为0.()1当020x <≤时,求函数v 关于x 的函数表达式;()2当每平方米种植株数x 为何值时,每平方米药材的年生长总量(单位:千克)取得最大值?并求出这个最大值.(年生长总量=年平均生长量⨯种植株数) 26.已知.(1)若函数的定义域为,求实数的取值范围; (2)若函数在区间上是递增的,求实数的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【解析】 【分析】 当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,结合奇偶性与对称性即可得到结果. 【详解】因为奇函数()y f x =的图像关于点,02π⎛⎫⎪⎝⎭对称,所以()()0f x f x π++-=, 且()()f x f x -=-,所以()()f x f x π+=,故()f x 是以π为周期的函数.当5,32x ππ⎛⎤∈⎥⎝⎦时,30,2x ππ⎡⎫-∈⎪⎢⎣⎭,故()()31cos 31cos f x x x ππ-=--=+ 因为()f x 是周期为π的奇函数,所以()()()3f x f x f x π-=-=- 故()1cos f x x -=+,即()1cos f x x =--,5,32x ππ⎛⎤∈ ⎥⎝⎦故选C 【点睛】本题考查求函数的表达式,考查函数的图象与性质,涉及对称性与周期性,属于中档题.2.A解析:A 【解析】 【分析】构造函数()log 2x xf x =,利用单调性比较大小即可. 【详解】构造函数()21log 1log 212log xx x f x x==-=-,则()f x 在()1,+∞上是增函数, 又()6a f =,()10b f =,()14c f =,故a b c <<. 故选A 【点睛】本题考查实数大小的比较,考查对数函数的单调性,考查构造函数法,属于中档题.3.B解析:B 【解析】 【分析】先比较三个数与零的大小关系,确定三个数的正负,然后将它们与1进行大小比较,得知1a >,0,1b c <<,再利用换底公式得出b 、c 的大小,从而得出三个数的大小关系.【详解】函数3xy =在R 上是增函数,则0.20331a =>=,函数6log y x =在()0,∞+上是增函数,则666log 1log 4log 6<<,即60log 41<<, 即01b <<,同理可得01c <<,由换底公式得22393log 2log 2log 4c ===, 且96ln 4ln 4log 4log 4ln 9ln 6c b ==<==,即01c b <<<,因此,c b a <<,故选A . 【点睛】本题考查比较数的大小,这三个数的结构不一致,这些数的大小比较一般是利用中间值法来比较,一般中间值是0与1,步骤如下:①首先比较各数与零的大小,确定正负,其中正数比负数大;②其次利用指数函数或对数函数的单调性,将各数与1进行大小比较,或者找其他中间值来比较,从而最终确定三个数的大小关系.4.C解析:C 【解析】当21x -≤≤时,()1224f x x x =⋅-⨯=-; 当12x <≤时,()23224f x x x x =⋅-⨯=-;所以()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,易知,()4f x x =-在[]2,1-单调递增,()34f x x =-在(]1,2单调递增,且21x -≤≤时,()max 3f x =-,12x <≤时,()min 3f x =-,则()f x 在[]22-,上单调递增, 所以()()13f m f m +≤得:21223213m m m m-≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得1223m ≤≤,故选C .点睛:新定义的题关键是读懂题意,根据条件,得到()34,214,12x x f x x x --≤≤⎧=⎨-<≤⎩,通过单调性分析,得到()f x 在[]22-,上单调递增,解不等式()()13f m f m +≤,要符合定义域和单调性的双重要求,则21223213m m m m -≤+≤⎧⎪-≤≤⎨⎪+≤⎩,解得答案.5.D解析:D 【解析】试题分析:设36180310M x N == ,两边取对数,36136180803lg lg lg3lg10361lg38093.2810x ==-=⨯-=,所以93.2810x =,即M N 最接近9310,故选D.【名师点睛】本题考查了转化与化归能力,本题以实际问题的形式给出,但本质就是对数的运算关系,以及指数与对数运算的关系,难点是令36180310x =,并想到两边同时取对数进行求解,对数运算公式包含log log log a a a M N MN +=,log log log a a aM M N N-=,log log n a a M n M =.6.A解析:A 【解析】 【分析】根据二次根式的性质求出函数的定义域即可. 【详解】 由题意得:2010x x -≥⎧⎨+>⎩解得:﹣1<x≤2,故函数的定义域是(﹣1,2], 故选A . 【点睛】本题考查了求函数的定义域问题,考查二次根式的性质,是一道基础题.常见的求定义域的类型有:对数,要求真数大于0即可;偶次根式,要求被开方数大于等于0;分式,要求分母不等于0,零次幂,要求底数不为0;多项式要求每一部分的定义域取交集.7.A解析:A 【解析】本题考察函数的单调性与奇偶性由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增 0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A8.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确. 考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.9.B解析:B 【解析】 【分析】根据零点存在定理判断023x <<,从而可得结果. 【详解】 因为()2ln f x x x=-在定义域内递增, 且()2ln 210f =-<,()23ln 303f =->, 由零点存在性定理可得023x <<,根据[]x 表示不超过实数x 的最大整数可知()02g x =, 故选:B. 【点睛】本题主要考查零点存在定理的应用,属于简单题.应用零点存在定理解题时,要注意两点:(1)函数是否为单调函数;(2)函数是否连续.10.C解析:C 【解析】 【分析】根据自变量范围代入对应解析式,化简得结果. 【详解】f (log 43)=log434=3,选C. 【点睛】本题考查分段函数求值,考查基本求解能力,属基础题.11.D解析:D 【解析】 【分析】分类讨论:①当x 1≤时;②当x 1>时,再按照指数不等式和对数不等式求解,最后求出它们的并集即可. 【详解】当x 1≤时,1x 22-≤的可变形为1x 1-≤,x 0≥,0x 1∴≤≤. 当x 1>时,21log x 2-≤的可变形为1x 2≥,x 1∴≥,故答案为[)0,∞+. 故选D . 【点睛】本题主要考查不等式的转化与求解,应该转化特定的不等式类型求解.12.A解析:A 【解析】 由选项可知,项均不是偶函数,故排除,项是偶函数,但项与轴没有交点,即项的函数不存在零点,故选A. 考点:1.函数的奇偶性;2.函数零点的概念.二、填空题13.3【解析】【分析】根据幂函数的概念列式解得或然后代入解析式看指数的符号负号就符合正号就不符合【详解】因为函数是幂函数所以即所以所以或当时其图象不过原点符合题意;当时其图象经过原点不合题意综上所述:故解析:3 【解析】 【分析】根据幂函数的概念列式解得3m =,或6m =,然后代入解析式,看指数的符号,负号就符合,正号就不符合. 【详解】因为函数()22279919mm y m m x--=-+是幂函数,所以29191m m -+=,即29180m m -+=, 所以(3)(6)0m m --=, 所以3m =或6m =-, 当3m =时,12()f x x-=,其图象不过原点,符合题意;当5m =时,21()f x x =,其图象经过原点,不合题意. 综上所述:3m =. 故答案为:3 【点睛】本题考查了幂函数的概念和性质,属于基础题.14.【解析】【分析】首先根据题意得到再设代入解析式即可【详解】因为是上的奇函数且满足所以即设所以所以故答案为:【点睛】本题主要考查函数的奇偶性和对称性的综合题同时考查了学生的转化能力属于中档题 解析:()6lg(6)f x x x =---+【解析】 【分析】首先根据题意得到(6)()f x f x +=-,再设(6,3)x ∈--,代入解析式即可. 【详解】因为()f x 是R 上的奇函数且满足(3)(3)f x f x -=+,所以[3(3)][3(3)]f x f x ++=-+,即(6)()()f x f x f x +=-=-. 设(6,3)x ∈--,所以6(0,3)x +∈.(6)6lg(6)()f x x x f x +=+++=-,所以()6lg(6)f x x x =---+. 故答案为:()6lg(6)f x x x =---+ 【点睛】本题主要考查函数的奇偶性和对称性的综合题,同时考查了学生的转化能力,属于中档题.15.7【解析】【分析】【详解】设则因为所以故答案为7解析:7 【解析】【分析】 【详解】 设, 则,因为11222⎛⎫⎛⎫++-= ⎪ ⎪⎝⎭⎝⎭f x f x , 所以,,故答案为7.16.【解析】函数是奇函数可得即即解得故答案为解析:12【解析】 函数()141x f x a =+-是奇函数,可得()()f x f x -=-,即114141x xa a -+=----,即41214141x x x a =-=--,解得12a =,故答案为1217.4【解析】【分析】设则是奇函数设出的最大值则最小值为求出的最大值与最小值的和即可【详解】∵函数∴设则∴是奇函数设的最大值根据奇函数图象关于原点对称的性质∴的最小值为又∴故答案为:4【点睛】本题主要考解析:4 【解析】 【分析】 设()2sin 1xg x x x =++,则()g x 是奇函数,设出()g x 的最大值M ,则最小值为M -,求出2sin 21=+++xy x x 的最大值与最小值的和即可. 【详解】∵函数2sin 21=+++xy x x , ∴设()2sin 1x g x x x =++,则()()2sin 1xg x x g x x --=-=-+, ∴()g x 是奇函数, 设()g x 的最大值M ,根据奇函数图象关于原点对称的性质,∴()g x 的最小值为M -, 又()max max 22g x y M =+=+,()min min 22g x y M =+=-, ∴max min 224y y M M +=++-=, 故答案为:4. 【点睛】本题主要考查了函数的奇偶性与最值的应用问题,求出()2sin 1xg x x x =++的奇偶性以及最值是解题的关键,属于中档题.18.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对1(0x ≥) 【解析】 【分析】设()22f x y x x ==+(0x ≥),求出x =()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2+20,x x y x -=∴=±因为x≥0,所以x =()11f x -=.因为x≥0,所以y≥0,所以反函数()11f x -=,0x ()≥.1,0x ()≥ 【点睛】本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.【解析】【分析】根据函数解析式分类讨论即可确定解析式画出函数图像由直线所过定点结合图像即可求得的取值范围【详解】函数定义域为当时当时当时画出函数图像如下图所示:直线过定点由图像可知当时与和两部分图像 解析:(4,1)(1,0)--⋃-【解析】 【分析】根据函数解析式,分类讨论即可确定解析式.画出函数图像,由直线所过定点,结合图像即可求得k 的取值范围. 【详解】函数()211x x xf -=-定义域为{}1x x ≠当1x ≤-时,()2111x x x f x -==---当11x -<<时,()2111x x x f x -==+-当1x <时,()2111x x xf x -==---画出函数图像如下图所示:直线2y kx =+过定点()0,2由图像可知,当10k -<<时,与1x ≤-和11x -<<两部分图像各有一个交点; 当41-<<-k 时,与11x -<<和1x <两部分图像各有一个交点. 综上可知,当()()4,11,0k ∈--⋃-时与函数有两个交点 故答案为:()()4,11,0--⋃- 【点睛】本题考查了分段函数解析式及图像画法,直线过定点及交点个数的求法,属于中档题.20.【解析】【分析】由幂函数为奇函数且在上递减得到是奇数且由此能求出的值【详解】因为幂函数为奇函数且在上递减是奇数且故答案为:【点睛】本题主要考查幂函数的性质等基础知识考查运算求解能力考查函数与方程思想 解析:{}1-【解析】 【分析】由幂函数()af x x =为奇函数,且在(0,)+∞上递减,得到a 是奇数,且0a <,由此能求出a 的值. 【详解】因为11,,1,2,32a ⎧⎫∈-⎨⎬⎩⎭,幂函数为奇()af x x =函数,且在(0,)+∞上递减,a ∴是奇数,且0a <, 1a ∴=-.故答案为:1-. 【点睛】本题主要考查幂函数的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.三、解答题21.(1)2a =;(2)}{20log 3x x <≤;(3)1,4t ⎛⎫∈-∞-⎪⎝⎭【解析】 【分析】(1)由奇函数的性质得出a 的值;(2)结合()f x 的解析式可将()4f x ≥化为32021xx -≥-,解不等式即可得出答案;(3)利用函数()f x 在(1,3]x ∈上的单调性以及奇偶性将()2(1)0f tx f x +->化为21tx x <-,分离参数t 结合二次函数的性质得出实数t 的取值范围.【详解】(1)根据题意,函数222222()()211212x x x x x xa a a f x f x --⋅++⋅⋅+-===-=--- ∴2a =.(2)222()421x xf x ⋅+=≥-,即21221x x +≥-,即2132202121x x x x +--=≥-- 即()()32210210x xx ⎧--≥⎪⎨-≠⎪⎩,解得:132x <≤,得20log 3x <≤.(3)22222244()2212121x x x x xf x ⋅+⋅-+===+--- 故()f x 在(1,3]x ∈上为减函数2()(1)0f tx f x +->,即2()(1)(1)f tx f x f x >--=-即21tx x <-,221111124t x x x ⎛⎫<-=-- ⎪⎝⎭又(1,3]x ∈,11,13x ⎡⎫∈⎪⎢⎣⎭,故14t <- 综上1,4t ⎛⎫∈-∞- ⎪⎝⎭. 【点睛】本题主要考查了由函数的奇偶性求解析式以及利用单调性解不等式,属于中档题.22.(1)()) 0f x x =≥,()()2 05g x x x =≥;(2) 当投资A 产品116万元,B 产品15916万元时,收益最大为16140. 【解析】 【分析】(1)设出函数解析式,待定系数即可求得;(2)构造全部收益关于x 的函数,求函数的最大值即可. 【详解】(1)由题可设:()f x k =,又其过点()1,0.2, 解得:10.2k =同理可设:()2g x k x =,又其过点()1,0.4, 解得:20.4k =故())0f x x =≥,()()205g x x x =≥ (2)设10万元中投资A 产品x ,投资B 产品10x -,故:总收益()()10y f x g x =+-()2105x - 7a +t =,则t ⎡∈⎣,则: 221455y t t =-++=2211615440t ⎛⎫--+ ⎪⎝⎭故当且仅当14t =,即116x =时,取得最大值为16140. 综上所述,当投资A 产品116万元,B 产品15916万元时,收益最大为16140. 【点睛】本题考查待定系数法求函数解析式、以及实际问题与函数的结合,属函数基础题. 23.(1)()24x xg x =-,(2)31,164b ⎡⎫∈⎪⎢⎣⎭【解析】试题分析:(1);本题求函数解析式只需利用指数的运算性质求出a 的值即可, (2)对于同时含有2,xxa a 的表达式,通常可以令进行换元,但换元的过程中一定要注意新元的取值范围,换元后转化为我们熟悉的一元二次的关系,从而解决问题.试题解析:解:(1)∵()3xf x =,且(2)18f a +=∴⇒∵∴(2)法一:方程为令,则144t ≤≤- 且方程为在有两个不同的解.设2211()24y t t t =-=--+,y b =两函数图象在1,44⎡⎤⎢⎥⎣⎦内有两个交点由图知31,164b ⎡⎫∈⎪⎢⎣⎭时,方程有两不同解. 法二: 方程为,令,则144t ≤≤ ∴方程在1,44⎡⎤⎢⎥⎣⎦上有两个不同的解.设21(),,44f t t t b t ⎡⎤=-+-∈⎢⎥⎣⎦1=1-40413{0416(4)012b b f b f b ∆>⇒<⎛⎫∴≤⇒≥⎪⎝⎭≤⇒≥- 解得31,164b ⎡⎫∈⎪⎢⎣⎭考点:求函数的解析式,求参数的取值范围【方法点睛】求函数解析式的主要方法有待定系数法,换元法及赋值消元法等;已知函数的类型(如一次函数,二次函数,指数函数等),就可用待定系数法;已知复合函数的解析式,可用换元法,此时要注意自变量的取值范围;求分段函数的解析式时,一定要明确自变量的所属范围,以便于选择与之对应的对应关系,避免出错.24.(1)2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,;(2)当4x =时产品的性能达到最佳【解析】 【分析】(1)二次函数可设解析式为2y ax bx c =++,代入已知数据可求得函数解析式;(2)分段函数分段求出最大值后比较可得. 【详解】(1)当0≤x <7时,y 是x 的二次函数,可设y =ax 2+bx +c (a ≠0), 由x =0,y =﹣4可得c =﹣4,由x =2,y =8,得4a +2b =12①, 由x =6,y =8,可得36a +6b =12②,联立①②解得a =﹣1,b =8, 即有y =﹣x 2+8x ﹣4; 当x ≥7时,1()3x my -=,由x =10,19y =,可得m =8,即有81()3x y -=;综上可得2884071()73x x x x y x -⎧-+-≤⎪=⎨≥⎪⎩,<,.(2)当0≤x <7时,y =﹣x 2+8x ﹣4=﹣(x ﹣4)2+12, 即有x =4时,取得最大值12; 当x ≥7时,81()3x y -=递减,可得y ≤3,当x =7时,取得最大值3.综上可得当x =4时产品的性能达到最佳. 【点睛】本题考查函数模型的应用,考查分段函数模型的实际应用.解题时要注意根据分段函数定义分段求解.25.(1)2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩;(2) 10株时,最大值40千克【解析】 【分析】当420x <≤时,设v ax b =+,然后代入两组数值,解二元一次方程组可得参数a 、b 的值,即可得到函数v 关于x 的函数表达式;第()2题设药材每平方米的年生长总量为()f x 千克,然后列出()f x 表达式,再分段求出()f x 的最大值,综合两段的最大值可得最终结果.【详解】(1)由题意得,当04x <≤时,2v =; 当420x <≤时,设v ax b =+,由已知得200104a b a b +=⎧⎨+=⎩,解得258a b ⎧=-⎪⎨⎪=⎩,所以285v x =-+,故函数2,0428,4205x v x x <≤⎧⎪=⎨-+<≤⎪⎩.(2)设药材每平方米的年生长总量为()f x 千克,依题意及()1可得()22,0428,4205x x f x x x x <≤⎧⎪=⎨-+<≤⎪⎩,当04x <≤时,()f x 为增函数,故()()4428max f x f ==⨯=; 当420x <≤时,()()222222820(10)40555f x x x x x x =-+=--=--+,此时()()1040max f x f ==.综上所述,可知当每平方米种植10株时,药材的年生长总量取得最大值40千克. 【点睛】本题主要考查应用函数解决实际问题的能力,考查了理解能力,以及实际问题转化为数学问题的能力,本题属中档题. 26.(1)(2)【解析】试题分析:(1)由于函数定义域为全体实数,故恒成立,即有,解得;(2)由于在定义域上是减函数,故根据复合函数单调性有函数在上为减函数,结合函数的定义域有,解得.试题解析:(1)由函数的定义域为可得:不等式的解集为,∴解得,∴所求的取值范围是(2)由函数在区间上是递增的得: 区间上是递减的, 且在区间上恒成立;则,解得。
(完整版)高一数学第一学期函数压轴(大题)练习(含答案),推荐文档

高一数学第一学期函数压轴(大题)练习(含答案)1.(本小题满分12分)已知x 满足不等式,211222(log )7log 30x x ++≤求的最大值与最小值及相应x 值.22()log log 42x xf x =⋅2.(14分)已知定义域为的函数是奇函数R 2()12x xaf x -+=+ (1)求值;a (2)判断并证明该函数在定义域上的单调性;R (3)若对任意的,不等式恒成立,求实数的取值范围;t R ∈22(2)(2)0f t t f t k -+-<k 3. (本小题满分10分)已知定义在区间上的函数为奇函数,且.(1,1)-2()1ax b f x x +=+12()25f =(1) 求实数,的值;a b (2) 用定义证明:函数在区间上是增函数;()f x (1,1)-(3) 解关于的不等式.t (1)()0f t f t -+<4. (14分)定义在R 上的函数f(x)对任意实数a,b ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)++∈R <0,(1)求f(1) (2)求证:f(x)为减函数。
(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f 5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+(b≥1),4b(I)求f(x)的最小值g(b);(II)求g(b)的最大值M 。
6. (12分)设函数,当点是函数图象上的点时,()log (3)(0,1)a f x x a a a =->≠且(,)P x y ()y f x =点是函数图象上的点.(2,)Q x a y --()y g x =(1)写出函数的解析式;()y g x =(2)若当时,恒有,试确定的取值范围;[2,3]x a a ∈++|()()|1f x g x -…a (3)把的图象向左平移个单位得到的图象,函数()y g x =a ()y h x =,()在的最大值为,求的值.1()22()()()2h x h x h x F x a a a ---=-+0,1a a >≠且1[,4]454a 7. (12分)设函数.124()lg ()3xxa f x a R ++=∈(1)当时,求的定义域;2a =-()f x (2)如果时,有意义,试确定的取值范围;(,1)x ∈-∞-()f x a (3)如果,求证:当时,有.01a <<0x ≠2()(2)f x f x <8. (本题满分14分)已知幂函数满足。
高一数学第一学期函数压轴(大题)练习(含答案)之欧阳体创编

高一数学第一学期函数压轴(大题)练习(含答案)1.(本小题满分12分)已知x 满足不等式211222(log )7log 30x x ++≤,求22()log log 42x x f x =⋅的最大值与最小值及相应x 值.2.(14分)已知定义域为R 的函数2()12x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围;3. (本小题满分10分)已知定义在区间(1,1)-上的函数2()1ax b f x x +=+为奇函数,且12()25f =.(1) 求实数a ,b 的值;(2) 用定义证明:函数()f x 在区间(1,1)-上是增函数; (3) 解关于t 的不等式(1)()0f t f t -+<.4. (14分)定义在R +上的函数f(x)对任意实数a,b +∈R ,均有f(ab)=f(a)+f(b)成立,且当x>1时,f(x)<0,(1)求f(1) (2)求证:f(x)为减函数。
(3)当f(4)= -2时,解不等式1)5()3(-≥+-f x f5.(本小题满分12分)已知定义在[1,4]上的函数f(x)=x 2-2bx+4b(b ≥1),(I)求f(x)的最小值g(b); (II)求g(b)的最大值M 。
6. (12分)设函数()log (3)(0,1)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图象上的点时,点(2,)Q x a y --是函数()y g x =图象上的点.(1)写出函数()y g x =的解析式;(2)若当[2,3]x a a ∈++时,恒有|()()|1f x g x -,试确定a 的取值范围;(3)把()y g x =的图象向左平移a 个单位得到()y h x =的图象,函数1()22()()()2h x h x h x F x a a a ---=-+,(0,1a a >≠且)在1[,4]4的最大值为54,求a的值.7. (12分)设函数124()lg ()3x xa f x a R ++=∈.(1)当2a =-时,求()f x 的定义域;(2)如果(,1)x ∈-∞-时,()f x 有意义,试确定a 的取值范围; (3)如果01a <<,求证:当0x ≠时,有2()(2)f x f x <. 8. (本题满分14分)已知幂函数(2)(1)()()k k f x x k z -+=∈满足(2)(3)f f <。
必修一高一数学压轴题全国汇编1,附答案

22.(本小题满分12分)已知x 满足不等式211222(log )7log 30x x ++≤,求22()log log 42x xf x =⋅的最大值与最小值及相应x 值. 22.解:由211222(log )7log 30x x ++≤,∴1213log 2x -≤≤-, ∴21log 32x ≤≤,而2222()log log (log 2)(log 1)42x xf x x x =⋅=--=222(log )3log 2x x -+=2231(log )24x --,当23log 2x =时min 1()4f x =- 此时x =322=22,当2log 3x =时max 91()244f x =-=,此时8x =. 21.(14分)已知定义域为R 的函数2()12x x af x -+=+是奇函数(1)求a 值;(2)判断并证明该函数在定义域R 上的单调性;(3)若对任意的t R ∈,不等式22(2)(2)0f t t f t k -+-<恒成立,求实数k 的取值范围; 21..解:(1)由题设,需12(0)0,1af a -+==∴=,1212()xxf x -+∴= 经验证,()f x 为奇函数,1a ∴=---------(2分) (2)减函数--------------(3分) 证明:任取121221,,,0R x x x x x x x ∈∆=-,由(1)122121122(22)1212211212(12)(12)()()x x x x x x x x y f f x x ---++++∆=-=-=12121212,022,220,(12)(12)0x x x x x x x x ∴∴-++0y∴∆∴该函数在定义域R 上是减函数--------------(7分) (3)由22(2)(2)0f t t f t k -+-<得22(2)(2)f t t f t k -<--,()f x 是奇函数22(2)(2)f t t f k t ∴-<-,由(2),()f x 是减函数∴原问题转化为2222t t k t --,即2320t t k --对任意t R ∈恒成立------(10分)4120,k∴∆=+ 得13k <-即为所求--- ---(14分)20、(本小题满分10分)已知定义在区间(1,1)-上的函数2()1ax b f x x +=+为奇函数,且12()25f =. (1) 求实数a ,b 的值;(2) 用定义证明:函数()f x 在区间(1,1)-上是增函数;(3) 解关于t 的不等式(1)()0f t f t -+<.20、解:(1)由2()1ax b f x x +=+为奇函数,且 2122()1251()2a b f +==+ 则21122()()12251()2a b f f -+-==-=-+-,解得:1,0a b ==。
【压轴卷】高中必修一数学上期末试题(带答案)(1)

【压轴卷】高中必修一数学上期末试题(带答案)(1)一、选择题1.已知函数22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,则1234x x x x +++的取值范围为( ) A .(0,+)∞B .10,2⎛⎫ ⎪⎝⎭C .31,2⎛⎫ ⎪⎝⎭D .(1,+)∞2.定义在R 上的偶函数()f x 满足:对任意的1x ,212[0,)()x x x ∈+∞≠,有2121()()0f x f x x x -<-,则( ).A .(3)(2)(1)f f f <-<B .(1)(2)(3)f f f <-<C .(2)(1)(3)f f f -<<D .(3)(1)(2)f f f <<-3.把函数()()2log 1f x x =+的图象向右平移一个单位,所得图象与函数()g x 的图象关于直线y x =对称;已知偶函数()h x 满足()()11h x h x -=--,当[]0,1x ∈时,()()1h x g x =-;若函数()()y k f x h x =⋅-有五个零点,则正数k 的取值范围是( ) A .()3log 2,1 B .[)3log 2,1C .61log 2,2⎛⎫ ⎪⎝⎭D .61log 2,2⎛⎤ ⎥⎝⎦4.已知函数()2log 14x f x x ⎧+=⎨+⎩ 00x x >≤,则()()3y f f x =-的零点个数为( ) A .3B .4C .5D .65.已知函数()0.5log f x x =,则函数()22f x x -的单调减区间为( )A .(],1-∞B .[)1,+∞C .(]0,1D .[)1,26.定义在[]7,7-上的奇函数()f x ,当07x <≤时,()26xf x x =+-,则不等式()0f x >的解集为A .(]2,7B .()(]2,02,7-UC .()()2,02,-+∞UD .[)(]7,22,7--U7.已知()y f x =是以π为周期的偶函数,且0,2x π⎡⎤∈⎢⎥⎣⎦时,()1sin f x x =-,则当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()f x =( ) A .1sin x +B .1sin x -C .1sin x --D .1sin x -+8.下列函数中,既是偶函数,又是在区间(0,)+∞上单调递减的函数为( )A .1ln||y x = B .3y x = C .||2x y =D .cos y x =9.偶函数()f x 满足()()2f x f x =-,且当[]1,0x ∈-时,()cos 12xf x π=-,若函数()()()log ,0,1a g x f x x a a =->≠有且仅有三个零点,则实数a 的取值范围是( )A .()3,5B .()2,4C .11,42⎛⎫⎪⎝⎭D .11,53⎛⎫ ⎪⎝⎭10.点P 从点O 出发,按逆时针方向沿周长为l 的平面图形运动一周,O ,P 两点连线的距离y 与点P 走过的路程x 的函数关系如图所示,则点P 所走的图形可能是A .B .C .D .11.函数f (x )是定义在R 上的偶函数,在(-∞,0]上是减函数且f (2)=0,则使f (x )<0的x 的取值范围( ) A .(-∞,2)B .(2,+∞)C .(-∞,-2)∪(2,+∞)D .(-2,2)12.已知全集U={1,2,3,4,5,6},集合P={1,3,5},Q={1,2,4},则()U P Q ⋃ð= A .{1}B .{3,5}C .{1,2,4,6}D .{1,2,3,4,5}二、填空题13.若函数()(0,1)xf x a a a =>≠且在[1,2]上的最大值比最小值大2a,则a 的值为____________.14.如果函数()22279919m m y m m x --=-+是幂函数,且图像不经过原点,则实数m =___________.15.函数20.5log y x =的单调递增区间是________ 16.若函数cos ()2||x f x x x =++,则11(lg 2)lg (lg 5)lg 25f f f f ⎛⎫⎛⎫+++= ⎪ ⎪⎝⎭⎝⎭______.17.若函数()()()()22,0,0x x x f x g x x ⎧+≥⎪=⎨<⎪⎩为奇函数,则()()1f g -=________. 18.2()2f x x x =+(0x ≥)的反函数1()f x -=________19.若函数在区间单调递增,则实数的取值范围为__________.20.已知函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值,则m的取值范围为______.三、解答题21.计算或化简:(1)1123021273log 161664π⎛⎫⎛⎫++- ⎪ ⎪⎝⎭⎝⎭; (2)6log 2332log 27log 2log 36lg 2lg 5+⋅-++.22.已知函数2()1()f x x mx m =-+∈R .(1)若函数()f x 在[]1,1x ∈-上是单调函数,求实数m 的取值范围; (2)若函数()f x 在[]1,2x ∈上有最大值为3,求实数m 的值.23.已知函数2()(,)1ax bf x a b x +=∈+R 为在R 上的奇函数,且(1)1f =. (1)用定义证明()f x 在(1,)+∞的单调性;(2)解不等式()()2341xxf f +≤+.24.已知全集U=R ,集合{}12A x x x =-或 ,{}213U B x x p x p 或=-+ð. (1)若12p =,求A B ⋂; (2)若A B B ⋂=,求实数p 的取值范围.25.若()221x x af x +=-是奇函数.(1)求a 的值;(2)若对任意()0,x ∈+∞都有()22f x m m ≥-,求实数m 的取值范围.26.已知()log a f x x =,()()()2log 2201,1,a g x x a a a =+>+≠∈R ,()1h x x x=+.(1)当[)1,x ∈+∞时,证明:()1h x x x=+为单调递增函数; (2)当[]1,2x ∈,且()()()F x g x f x =-有最小值2时,求a 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】 【分析】由题意作函数()y f x =与y m =的图象,从而可得122x x +=-,240log 2x <…,341x x =g ,从而得解【详解】 解:因为22log ,0()2,0.x x f x x x x ⎧>=⎨--≤⎩,,可作函数图象如下所示:依题意关于x 的方程(),f x m m R =∈,有四个不同的实数解1234,,,x x x x ,即函数()y f x =与y m =的图象有四个不同的交点,由图可知令1234110122x x x x <-<<<<<<<, 则122x x +=-,2324log log x x -=,即2324log log 0x x +=,所以341x x =,则341x x =,()41,2x ∈ 所以12344412x x x x x x +++=-++,()41,2x ∈ 因为1y x x =+,在()1,2x ∈上单调递增,所以52,2y ⎛⎫∈ ⎪⎝⎭,即44152,2x x ⎛⎫+∈ ⎪⎝⎭1234441120,2x x x x x x ⎛⎫∴+++=-++∈ ⎪⎝⎭故选:B【点睛】本题考查了数形结合的思想应用及分段函数的应用.属于中档题2.A解析:A 【解析】由对任意x 1,x 2 ∈ [0,+∞)(x 1≠x 2),有()()1212f x f x x x -- <0,得f (x )在[0,+∞)上单独递减,所以(3)(2)(2)(1)f f f f <=-<,选A.点睛:利用函数性质比较两个函数值或两个自变量的大小,首先根据函数的性质构造某个函数,然后根据函数的奇偶性转化为单调区间上函数值,最后根据单调性比较大小,要注意转化在定义域内进行3.C解析:C 【解析】分析:由题意分别确定函数f (x )的图象性质和函数h (x )图象的性质,然后数形结合得到关于k 的不等式组,求解不等式组即可求得最终结果.详解:曲线()()2log 1f x x =+右移一个单位,得()21log y f x x =-=, 所以g (x )=2x ,h (x -1)=h (-x -1)=h (x +1),则函数h (x )的周期为2. 当x ∈[0,1]时,()21xh x =-,y =kf (x )-h (x )有五个零点,等价于函数y =kf (x )与函数y =h (x )的图象有五个公共点. 绘制函数图像如图所示,由图像知kf (3)<1且kf (5)>1,即:22log 41log 61k k <⎧⎨>⎩,求解不等式组可得:61log 22k <<.即k 的取值范围是612,2log ⎛⎫ ⎪⎝⎭. 本题选择C 选项.点睛:本题主要考查函数图象的平移变换,函数的周期性,函数的奇偶性,数形结合解题等知识,意在考查学生的转化能力和计算求解能力.4.C解析:C 【解析】 【分析】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,结合图象可知,方程()3f t =有三个实根,进而可得答案. 【详解】 由题意,函数()()3y ff x =-的零点个数,即方程()()3f f x =的实数根个数,设()t f x =,则()3f t =,作出()f x 的图象,如图所示,结合图象可知,方程()3f t =有三个实根11t =-,214t =,34t =, 则()1f x =- 有一个解,()14f x =有一个解,()4f x =有三个解, 故方程()()3ff x =有5个解.【点睛】本题主要考查了函数与方程的综合应用,其中解答中合理利用换元法,结合图象,求得方程()3f t =的根,进而求得方程的零点个数是解答的关键,着重考查了分析问题和解答问题的能力,以及数形结合思想的应用.5.C解析:C 【解析】函数()0.5log f x x =为减函数,且0x >, 令2t 2x x =-,有t 0>,解得02x <<.又2t 2x x =-为开口向下的抛物线,对称轴为1x =,所以2t 2x x =-在(]0,1上单调递增,在[)1,2上单调递减,根据复合函数“同增异减”的原则函数()22f x x -的单调减区间为(]0,1.故选C.点睛:形如()()y f g x =的函数为()y g x =,()y f x =的复合函数,() y g x =为内层函数,()y f x =为外层函数. 当内层函数()y g x =单增,外层函数()y f x =单增时,函数()()y f g x =也单增; 当内层函数()y g x =单增,外层函数()y f x =单减时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单增时,函数()()y f g x =也单减; 当内层函数()y g x =单减,外层函数()y f x =单减时,函数()()y f g x =也单增.简称为“同增异减”.6.B解析:B 【解析】 【分析】当07x <≤时,()f x 为单调增函数,且(2)0f =,则()0f x >的解集为(]2,7,再结合()f x 为奇函数,所以不等式()0f x >的解集为(2,0)(2,7]-⋃.【详解】当07x <≤时,()26xf x x =+-,所以()f x 在(0,7]上单调递增,因为2(2)2260f =+-=,所以当07x <≤时,()0f x >等价于()(2)f x f >,即27x <≤,因为()f x 是定义在[7,7]-上的奇函数,所以70x -≤< 时,()f x 在[7,0)-上单调递增,且(2)(2)0f f -=-=,所以()0f x >等价于()(2)f x f >-,即20x -<<,所以不等式()0f x >的解集为(2,0)(2,7]-⋃ 【点睛】本题考查函数的奇偶性,单调性及不等式的解法,属基础题.应注意奇函数在其对称的区间上单调性相同,偶函数在其对称的区间上单调性相反.7.B解析:B 【解析】 【分析】 【详解】因为()y f x =是以π为周期,所以当5,32x ππ⎡⎤∈⎢⎥⎣⎦时,()()3πf x f x =-, 此时13,02x -π∈-π⎡⎤⎢⎥⎣⎦,又因为偶函数,所以有()()3π3πf x f x -=-, 3π0,2x π⎡⎤-∈⎢⎥⎣⎦,所以()()3π1sin 3π1sin f x x x -=--=-,故()1sin f x x =-,故选B.8.A解析:A 【解析】本题考察函数的单调性与奇偶性 由函数的奇偶性定义易得1ln||y x =,||2x y =,cos y x =是偶函数,3y x =是奇函数 cos y x =是周期为2π的周期函数,单调区间为[2,(21)]()k k k z ππ+∈0x >时,||2x y =变形为2x y =,由于2>1,所以在区间(0,)+∞上单调递增0x >时,1ln||y x =变形为1ln y x =,可看成1ln ,y t t x==的复合,易知ln (0)y t t =>为增函数,1(0)t x x=>为减函数,所以1ln ||y x =在区间(0,)+∞上单调递减的函数故选择A9.D解析:D 【解析】试题分析:由()()2f x f x =-,可知函数()f x 图像关于1x =对称,又因为()f x 为偶函数,所以函数()f x 图像关于y 轴对称.所以函数()f x 的周期为2,要使函数()()log a g x f x x =-有且仅有三个零点,即函数()y f x =和函数log a y x =图形有且只有3个交点.由数形结合分析可知,0111{log 31,53log 51a a a a <<>-⇒<<<-,故D 正确.考点:函数零点【思路点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.10.C解析:C 【解析】 【分析】认真观察函数图像,根据运动特点,采用排除法解决. 【详解】由函数关系式可知当点P 运动到图形周长一半时O,P 两点连线的距离最大,可以排除选项A,D,对选项B 正方形的图像关于对角线对称,所以距离y 与点P 走过的路程x 的函数图像应该关于2l对称,由图可知不满足题意故排除选项B , 故选C . 【点睛】本题考查函数图象的识别和判断,考查对于运动问题的深刻理解,解题关键是认真分析函数图象的特点.考查学生分析问题的能力.11.D解析:D 【解析】 【分析】根据偶函数的性质,求出函数()0f x <在(-∞,0]上的解集,再根据对称性即可得出答案. 【详解】由函数()f x 为偶函数,所以()()220f f -==,又因为函数()f x 在(-∞,0]是减函数,所以函数()0f x <在(-∞,0]上的解集为(]2,0-,由偶函数的性质图像关于y 轴对称,可得在(0,+ ∞)上()0f x <的解集为(0,2),综上可得,()0f x <的解集为(-2,2). 故选:D. 【点睛】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.12.C解析:C 【解析】试题分析:根据补集的运算得{}{}{}{}2,4,6,()2,4,61,2,41,2,4,6UP UP Q =∴⋃=⋃=痧.故选C.【考点】补集的运算.【易错点睛】解本题时要看清楚是求“⋂”还是求“⋃”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.二、填空题13.或【解析】【分析】【详解】若∴函数在区间上单调递减所以由题意得又故若∴函数在区间上单调递增所以由题意得又故答案:或解析:12或32 【解析】 【分析】 【详解】若01a <<,∴函数()xf x a =在区间[1,2]上单调递减,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又01a <<,故12a =.若1a >,∴函数()xf x a =在区间[1,2]上单调递增,所以2max min (),()f x a f x a ==,由题意得22a a a -=,又1a >,故32a =. 答案:12或3214.3【解析】【分析】根据幂函数的概念列式解得或然后代入解析式看指数的符号负号就符合正号就不符合【详解】因为函数是幂函数所以即所以所以或当时其图象不过原点符合题意;当时其图象经过原点不合题意综上所述:故解析:3 【解析】 【分析】根据幂函数的概念列式解得3m =,或6m =,然后代入解析式,看指数的符号,负号就符合,正号就不符合. 【详解】因为函数()22279919mm y m m x--=-+是幂函数,所以29191m m -+=,即29180m m -+=, 所以(3)(6)0m m --=, 所以3m =或6m =-, 当3m =时,12()f x x-=,其图象不过原点,符合题意;当5m =时,21()f x x =,其图象经过原点,不合题意. 综上所述:3m =. 故答案为:3本题考查了幂函数的概念和性质,属于基础题.15.【解析】【分析】先求得函数的定义域然后利用同增异减来求得复合函数的单调区间【详解】依题意即解得当时为减函数为减函数根据复合函数单调性同增异减可知函数的单调递增区间是【点睛】本小题主要考查复合函数的单 解析:[)1,0-【解析】【分析】先求得函数的定义域,然后利用“同增异减”来求得复合函数的单调区间.【详解】依题意220.50log 0x x ⎧>⎨≥⎩,即201x <≤,解得[)(]1,00,1x ∈-U .当[)1,0x ∈-时,2x 为减函数,0.5log x 为减函数,根据复合函数单调性“同增异减”可知,函数y =递增区间是[)1,0-.【点睛】本小题主要考查复合函数的单调区间的求法,考查函数定义域的求法,属于基础题. 16.10【解析】【分析】由得由此即可得到本题答案【详解】由得所以则所以故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值解析:10【解析】【分析】 由cos ()2||x f x x x=++,得()()42||f x f x x +-=+,由此即可得到本题答案. 【详解】 由cos ()2||x f x x x =++,得cos()cos ()2||2||x x f x x x x x--=+-+=+--, 所以()()42||f x f x x +-=+,则(lg 2)(lg 2)42|lg 2|42lg 2f f +-=+=+,(lg5)(lg5)42|lg5|42lg5f f +-=+=+, 所以,11(lg 2)lg(lg 5)lg 42lg 242lg 51025f f f f ⎛⎫⎛⎫+++=+++= ⎪ ⎪⎝⎭⎝⎭. 故答案为:10【点睛】本题主要考查利用函数的奇偶性化简求值. 17.【解析】根据题意当时为奇函数则故答案为解析:15-根据题意,当0x <时,()()(),f x g x f x =为奇函数,()()()()()()()()()211113(323)15f g f f f f f f f -=-=-=-=-=-+⨯=-,则 故答案为15-.18.()【解析】【分析】设()求出再求出原函数的值域即得反函数【详解】设()所以因为x≥0所以所以因为x≥0所以y≥0所以反函数故答案为【点睛】本题主要考查反函数的求法考查函数的值域的求法意在考查学生对 解析:11x +-(0x ≥)【解析】 【分析】设()22f x y x x ==+(0x ≥),求出-1+1x y =+,再求出原函数的值域即得反函数()1f x -.【详解】设()22f x y x x ==+(0x ≥),所以2244+20,=-11y x x y x y -±+-=∴=±+, 因为x≥0,所以-1+1x y =+,所以()111fx x -=+-. 因为x≥0,所以y≥0,所以反函数()111fx x -=+-,0x ()≥. 故答案为11x +-,0x ()≥【点睛】 本题主要考查反函数的求法,考查函数的值域的求法,意在考查学生对这些知识的理解掌握水平和分析推理计算能力.19.(-∞1∪4+∞)【解析】由题意得a+1≤2或a≥4解得实数a 的取值范围为(-∞1∪4+∞)点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间ab 上单调则该函数在此区间的任意解析:【解析】由题意得 或 ,解得实数的取值范围为点睛:已知函数的单调性确定参数的值或范围要注意以下两点:(1)若函数在区间上单调,则该函数在此区间的任意子区间上也是单调的;(2)分段函数的单调性,除注意各段的单调性外,还要注意衔接点的取值;(3)复合函数的单调性,不仅要注意内外函数单调性对应关系,而且要注意内外函数对应自变量的取值范围.20.或【解析】【分析】分类讨论的范围利用对数函数二次函数的性质进一步求出的范围【详解】解:∵函数若有最大值或最小值则函数有最大值或最小值且取最值时当时由于没有最值故也没有最值不满足题意当时函数有最小值没 解析:{|2m m >或2}3m <-【分析】分类讨论m 的范围,利用对数函数、二次函数的性质,进一步求出m 的范围.【详解】解:∵函数()()212log 22f x mx m x m ⎡⎤=+-+-⎣⎦,若()f x 有最大值或最小值, 则函数2(2)2y mx m x m =+-+-有最大值或最小值,且y 取最值时,0y >.当0m =时,22y x =--,由于y 没有最值,故()f x 也没有最值,不满足题意. 当0m >时,函数y 有最小值,没有最大值,()f x 有最大值,没有最小值.故y 的最小值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得 2m >;当0m <时,函数y 有最大值,没有最小值,()f x 有最小值,没有最大值.故y 的最大值为24(2)(2)4m m m m ---,且 24(2)(2)04m m m m--->, 求得23m <-. 综上,m 的取值范围为{|2m m >或2}3m <-.故答案为:{|2m m >或2}3m <-.【点睛】本题主要考查复合函数的单调性,二次函数、对数函数的性质,二次函数的最值,属于中档题. 三、解答题21.(1)12-(2)3 【解析】【分析】(1)根据幂的运算法则计算;(2)根据对数运算法则和换底公式计算.【详解】解:(1)原式1313249314164⎡⎤⎛⎫⎛⎫=+-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥+⎣⎦ 731444=++-12=-. (2)原式33log 312lg10=+-+3121=+-+3=.【点睛】本题考查幂和对数的运算法则,掌握幂和对数运算法则是解题关键.22.(1)(,2][2,)m ∈-∞-⋃+∞(2)1m =【解析】【分析】(1)根据二次函数单调性,使对称轴不在区间()1,1-上即可;(2)由题意,分类讨论,当()13f =时和当()23f =时分别求m 值,再回代检验是否为最大值.【详解】解:(1)对于函数()f x ,开口向上,对称轴2m x =, 当()f x 在[]1,1x ∈-上单调递增时,12m ≤-,解得2m ≤-, 当()f x 在[]1,1x ∈-上单调递减时,12m ≥,解得2m ≥, 综上,(,2][2,)m ∈-∞-⋃+∞.(2)由题意,函数()f x 在1x =或2x =处取得最大值,当()13f =时,解得1m =-,此时3为最小值,不合题意,舍去;当()23f =时,解得1m =,此时3为最大值,符合题意.综上所述,1m =.【点睛】本题考查(1)二次函数单调性问题,对称轴取值范围(2)二次函数最值问题;考查分类讨论思想,属于中等题型.23.(1)证明见解析;(2){|1}x x ≤.【解析】【分析】(1)根据函数为定义在R 上的奇函数得(0)0f =,结合(1)1f =求得()f x 的解析式,再利用单调性的定义进行证明;(2)因为231x +>,411x +>,由(1)可得2341x x +≥+,解指数不等式即可得答案.【详解】(1)因为函数2()(,)1ax b f x a b x +=∈+R 为在R 上的奇函数,所以(0)0f =则有0001111b a b +⎧=⎪⎪+⎨+⎪=⎪+⎩ 解得20a b =⎧⎨=⎩,即22()1x f x x =+ 12,(1,)x x ∀∈+∞,且12x x <()()()()()()2212211212222212122121221111x x x x x x f x f x x x x x +-+-=-=++++ ()()()()122122122111x x x x x x --=++因为12,(1,)x x ∀∈+∞,且12x x <,所以()()2212110x x ++>,1210x x ->,210x x -> 所以()()120f x f x ->即()()12f x f x > ,所以()f x 在(1,)+∞上单调递减 .(2)因为231x +>,411x +>,由(1)可得2341x x +≥+不等式可化为22220x x x ⋅--≤,即(()()21220x x +-≤解得22x ≤,即1x ≤所以不等式的解集为{|1}x x ≤【点睛】本题考查奇函数的应用、单调性的定义证明、利用单调性解不等式,考查函数与方程思想,考查逻辑推理能力和运算求解能力,求解时注意不等式的解集要写成集合的形式.24.(1)722⎛⎤ ⎥⎝⎦,; (2)342p p-或. 【解析】【分析】 由题意可得{}213B x p x p =-≤≤+, (1)当12p =时,结合交集的定义计算交集即可; (2)由题意可知B A ⊆.分类讨论B =∅和B ≠∅两种情况即可求得实数p 的取值范围. 【详解】 因为{}213U B x x p x p =-+,或ð,所以(){}213U U B B x p x p ==-≤≤+痧,(1)当12p =时,702B ⎡⎤=⎢⎥⎣⎦,,所以7=22A B ⎛⎤⋂ ⎥⎝⎦,, (2)当A B B ⋂=时,可得B A ⊆.当B =∅时,2p -1>p +3,解得p >4,满足题意;当B ≠∅时,应满足21331p p p -≤+⎧⎨+<-⎩或213212p p p -≤+⎧⎨->⎩解得44p p ≤⎧⎨<-⎩或432p p ≤⎧⎪⎨>⎪⎩; 即4p <-或342p <≤. 综上,实数p 的取值范围342p p-或. 【点睛】本题主要考查交集的定义,分类讨论的数学思想等知识,意在考查学生的转化能力和计算求解能力.25.(1)1a = (2)112m -≤≤ 【解析】【分析】(1)根据函数的奇偶性,可得结果.(2)根据(1)的条件使用分离常数方法,化简函数()f x ,可知()f x 的值域,结合不等式计算,可得结果.【详解】(1) ()2121a f +=-,()121112a f +-=- 因为()221x x a f x +=-是奇函数. 所以()()11f f =--,得1a =;经检验1a =满足题意(2)根据(1)可知()2121x x f x +=- 化简可得()2121x f x =+- 所以可知()2121x f x =+- 当()0,x ∈+∞时,所以()1f x >对任意()0,x ∈+∞都有()22f x m m ≥- 所以212m m ≥-, 即112m -≤≤ 【点睛】 本题考查根据函数的奇偶性求参数,还考查了恒成立问题,对存在性,恒成立问题一般转化为最值问题,细心计算,属中档题.26.(1)证明见解析(2)4a =【解析】【分析】(1)利用定义法证明函数的单调性,按照:设元、作差、变形、判断符号、下结论的步骤完成即可;(2)首先表示出()()()F x g x f x =-,再根据复合函数的单调性分类讨论可得。
(完整版)高一上学期数学压轴难题汇总,推荐文档

一.已知函数满足,其中且()f x 12(log )()1a af x x x a -=--0a >,对于函数,当时,,求实数1a ≠()f x (1,1)x ∈-(1)(12)0f m f m -+-<m的取值范围.二.曙光公司为了打开某种新产品的销路,决定进行广告促销,在一年内,预计年销量Q (万件)与广告费x (万元)之间的函数关系式是Q=已0(113≥++x x x 知生产此产品的年固定投入为3万元,每生产1万件此产品仍需投入32万元,若每件售价是“年平均每件成本的150%”与“年平均每件所占广告费的50%”试将年利润y (万元)表示为年广告费x 万元的函数,并判断当年广告费投入100万元时,该公司是亏损还是盈利?三.已知函数,()()()()101log 1log ≠>--+=a a x x x f a a 且(1)求的反函数;()x f ()x f 1-(2)若,解关于的不等式.()3111=-fx ()()R m m x f ∈<-1四.定义在R 上的单调增函数f(x),对任意x ,y∈R 都有f(x+y)=f(x)+f(y).(1)判断函数f(x)的奇偶性;(2)若f(k·3)+f(3-9-2)<0对任意x∈R 恒成立,求实数k 的取值范围.xxx五.已知圆C :. (1)写出圆C 的标准方程;(2)是否存在斜率044222=-+-+y x y x 为1的直线m ,使m 被圆C 截得的弦为AB ,且以AB 为直径的圆过原点.若存在,求出直线m 的方程; 若不存在,说明理由.六.已知满足,求的最大值x 03log 7)(log 221221≤++x x )42(log 22x x y =与最小值及相应的的值.x七.已知圆方程:,求圆心到直线的距离的012222=+++-+a y ax y x 02=-+a y ax 取值范围八.已知函数,()2f x ax bx c=++(,,0)a b c R a ∈≠且[]()()(1),,(011(),,m n m n f m nf x n m f n m∈<<⎡⎤=⎢⎥⎣⎦当x=1时有最大值1,若x )时,函数的值域为证明:九.自点(-3,3)发出的光线L 射到x 轴上,被x 轴反射,其反射线所在直线与圆相切,求光线L 所在直线方程.074422=+--+y x y x 十.已知圆O :,圆C :,由两圆外一点122=+y x 1)4()2(22=-+-y x 引两圆切线PA 、PB ,切点分别为A 、B ,如右图,满足|PA |=|PB |.),(b a P (1)求实数a 、b 间满足的等量关系;(2)求切线长|PA |的最小值;(3)是否存在以P 为圆心的圆,使它与圆O 相内切并且与圆C 相外切?若存在,求出圆P 的方程;若不存在,说明理由.B PA答案:一.解:设, log at x =tx a ∴= 所以2()()1t t a f t a a a -=-- 即2()()1x xa f x a a a -=--二 。
(完整)高一数学第一学期函数压轴[大题]练习[含答案及解析],推荐文档
![(完整)高一数学第一学期函数压轴[大题]练习[含答案及解析],推荐文档](https://img.taocdn.com/s3/m/0e4f6c50eff9aef8941e06cb.png)
10. (本题 16 分)已知函数 f (x) log9 (9x 1) kx ( k R )是偶函数.
(1)求 k 的值;
(2)若函数 y f (x) 的图象与直线 y 1 x b 没有交点,求 b 的取值范围; 2
(3)设 h(x) log9
f
1 ()
2
.
1 x2
25
(1) 求实数 a , b 的值;
(2) 用定义证明:函数 f (x) 在区间 (1,1) 上是增函数;
(3) 解关于 t 的不等式 f (t 1) f (t) 0 .
4. (14 分)定义在 R 上的函数 f(x)对任意实数 a,b R ,均有 f(ab)=f(a)+f(b)成立,且当 x>1 时,f(x)
技术资料.整理分享
WORD 格式.可编辑
13.(本小题满分 16 分)
设 a 0 , b 0 ,已知函数 f (x) ax b . x 1
(Ⅰ)当 a b 时,讨论函数 f (x) 的单调性(直接写结论);
(Ⅱ)当 x 0 时,(i)证明 f (1) f ( b ) [ f ( b )]2 ;
6. (12 分)设函数 f (x) loga (x 3a)(a 0,且a 1) ,当点 P(x, y) 是函数 y f (x) 图象上的点时,
点 Q(x 2a, y) 是函数 y g(x) 图象上的点. (1)写出函数 y g(x) 的解析式; (2)若当 x [a 2, a 3] 时,恒有 | f (x) g(x) |„ 1 ,试确定 a 的取值范围; (3)把 y g(x) 的图象向左平移 a 个单位得到 y h(x) 的图象,函数
WORD 格式.可编辑
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(必修一)函数难题压轴题汇编一.选择题(共5小题)1.函数f(x)满足:①y=f(x+1)为偶函数:②在[1,+∞)上为增函数.若x2>﹣1,且x1+x2<﹣2,则f(﹣x1)与f(﹣x2)的大小关系是()A.f(﹣x1)>f(﹣x2)B.f(﹣x1)<f(x2)C.f(﹣x1)≤f(﹣x2)D.不能确定2.用区[x]表示不超过x的最大整数,如[1.8]=1,[﹣1.3]=﹣2,设{x}=x﹣[x],若方程{x}+kx﹣1=0有且只有3个实数根,则正实数k的取值范围为()A.[)B.(]C.[)D.(]3.已知定义在R上的函数f(x)对于任意的实数x都满足f(x+3)=﹣f(x),且当x∈[0,3]时,f(x)=e x﹣1+3,则f(1228)=()A.﹣4B.4C.e3+3D.e1227+34.已知ω>0,|φ|,在函数f(x)=sin(ωx+φ),g(x)=cos(ωx+φ)的图象的交点中,相邻两个交点的横坐标之差的绝对值为,当x∈(﹣,)时,函数f(x)的图象恒在x轴的上方,则φ的取值范围是()A.(,)B.[,]C.()D.[]5.已知函数f(x)=和g(x)=a(a∈R且为常数).有以下结论:①当a=4时,存在实数m,使得关于x的方程f(x)=g(x)有四个不同的实数根;②存在m∈[3,4],使得关于x的方程f(x)=g(x)有三个不同的实数根;③当x>0时,若函数h(x)=f2(x)+bf(x)+c恰有3个不同的零点x1,x2,x3,则x1x2x3=1;④当m=﹣4时,关于x的方程f(x)=g(x)有四个不同的实数根x1,x2,x3,x4,且x1<x2<x3<x4,若f(x)在[x,x4]上的最大值为ln4,则sin(3x1+3x2+5x3+4x4)π=1.其中正确结论的个数是()A.1个B.2个C.3个D.4个二.填空题(共4小题)6.设函数f(x)=2﹣和函数g(x)=ax+a﹣1,若对任意x1∈[0,+∞)都有x2∈(﹣∞,1]使得f (x1)=g(x2),则实数a的取值范围为.7.定义在R上的奇函数f(x)在(0,+∞)上单调递增,且f(4)=0,则不等式f(x)≥0的解集是.8.在一个边长为4的正方形ABCD中,若E为CB边上的中点,F为AD边上一点,且AF=1,则•=.9.已知f(x)是定义在R上的奇函数,且当x≥0时,f(x)=.若对任意的x∈R,不等式f(x)>f(x﹣)恒成立,则实数a的取值范围是.三.解答题(共41小题)10.已知定义在R上的偶函数f(x)和奇函数g(x),且f(x)+g(x)=e x.(1)求函数f(x),g(x)的解析式;(2)设函数F(x)=+1,记H(n)=F()+F()+F()+……+F()(n∈N*,n≥2).探究是否存在正整数n(n≥2),使得对任意的x∈(0,1],不等式g(2x)>H(n)•g(x)恒成立?若存在,求出所有满足条件的正整数n的值;若不存在,请说明理由.11.设f(x)=log2(3﹣x).(1)若g(x)=f(2+x)+f(2﹣x),判断g(x)的奇偶性;(2)记h(x)是y=f(3﹣x)的反函数,设A、B、C是函数h(x)图象上三个不同的点,它们的纵坐标依次是m、m+2、m+4且m≥1;试求△ABC面积的取值范围,并说明理由.12.已知定义在R上的函数f(x)=3x.(1)若f(x)=8,求x的值;(2)对于任意的x∈[0,2],[f(x)﹣3]•3x+13﹣m≥0恒成立,求实数m的取值范围.13.已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=x+log2(2x+1)﹣1.(Ⅰ)求函数f(x)在R上的解析式;(Ⅱ)若x∈[﹣1,0],函数g(x)=()f(x)﹣1+m•﹣2m,是否存在实数m使得g(x)的最小值为,若存在,求m的值;若不存在,请说明理由.14.已知函数f(x)=2sin()(x∈R).(Ⅰ)求函数f(x)的单调递减区间;(Ⅱ)若函数(x)的图象向右平移个单位长度后,所得的图象对应的函数为g(x),且当x1∈(﹣3,﹣2),x2∈(0,1)时,g(x1)+g(x2)=0,求g(x1﹣x2)的值.15.某种树木栽种时高度为A米(A为常数),记栽种x年后的高度为f(x),经研究发现,f(x)近似地满足f(x)=,(其中=,a,b为常数,x∈N),已知f(0)=A,栽种三年后该树木的高度为栽种时高度的3倍.(Ⅰ)求a,b的值;(Ⅱ)求栽种多少年后,该树木的高度将不低于栽种时的5倍(参考数据:lg2=0.3010,lg3=04771).16.已知函数f(x)=2x﹣(a∈R).(1)若f(x)在[1,2]上是减函数,求a的取值范围;(2)设a=﹣1,g(x)=f(x)﹣m•2x+m,若函数g(x)有且只有一个零点,求实数m的取值范围.17.某镇在政府“精准扶贫”的政策指引下,充分利用自身资源,大力发展养殖业,以增加收入,政府计划共投入72万元,全部用于甲、乙两个合作社,每个合作社至少要投入15万元,其中甲合作社养鱼,乙合作社养鸡,在对市场进行调研分析发现养鱼的收益M、养鸡的收益N与投入a(单位:万元)满足M=,N=a+20.设甲合作社的投入为x(单位:万元),两个合作社的总收益为f(x)(单位:万元).(1)当甲合作社的投入为25万元时,求两个合作社的总收益;(2)试问如何安排甲、乙两个合作社的投入,才能使总收益最大?18.已知函数f(x)=sin(2x+)﹣4cos2x,将函数f(x)的图象向左平移个单位,再向上平移2个单位,得到函数g(x)的图象.(1)求函数g(x)的解析式;(2)求函数g(x)在[]上的最大值和最小值.19.已知函数f(x)=2x﹣,(a∈R).(1)若函数f(x)=2x﹣为奇函数,求实数a的值;(2)设函数g(x)=2﹣2x﹣2(a∈R),且H(x)=f(x)+g(x),已知H(x)>2+3a对任意的x∈(1,+∞)恒成立,求a的取值范围.20.已知二次函数f(x)有两个零点0和﹣2,且f(x)最小值是﹣1,函数g(x)与f(x)的图象关于原点对称.(1)求f(x)和g(x)的解析式;(2)若h(x)=f(x)﹣λg(x)在区间[﹣1,1]上是增函数,求实数λ的取值范围.21.已知函数f(x)=log4(4x+1)﹣x.(Ⅰ)求证:log4(4x+1)﹣x=log4(1+4﹣x)(Ⅱ)若函数y=f(x)的图象与直线y=x+a没有交点,求实数a的取值范围;(Ⅲ)若函数h(x)=4+m•2x﹣1,x∈[0,log23],则是否存在实数m,使得h(x)的最小值为0?若存在,求出m的值;若不存在,请说明理由.22.已知函数f(x)=是定义在(﹣1,1)上的奇函数,且f()=(Ⅰ)求函数f(x)的解析式(Ⅱ)用定义证明f(x)在(﹣1,1)上的增函数(Ⅲ)解关于实数t的不等式f(t﹣1)+f(t)<0.23.已知函数是定义在R上的奇函数.(1)求实数k的值;(2)若f(1)<0,不等式对任意的x∈R恒成立,求实数t的取值范围;(3)若且在[1,+∞)上的最小值为0,求实数m的值.24.在充分竞争的市场环境中,产品的定价至关重要,它将影响产品的销量,进而影响生产成本、品牌形象等.某公司根据多年的市场经验,总结得到了其生产的产品A在一个销售季度的销量y(单位:万件)与售价x(单位:元)之间满足函数关系,A的单件成本C(单位:元)与销量y之间满足函数关系.(1)当产品A的售价在什么范围内时,能使得其销量不低于5万件?(2)当产品A的售价为多少时,总利润最大?(注:总利润=销量×(售价﹣单件成本))25.已知点A(x1,f(x1)),B(x2,f(x2))是函数f(x)=2sin(ωx+φ)图象上的任意两点,且角φ的终边经过点,若|f(x1)﹣f(x2)|=4时,|x1﹣x2|的最小值为.(1)求函数f(x)的解析式;(2)求函数f(x)的单调递增区间;(3)当时,不等式mf(x)+2m≥f(x)恒成立,求实数m的取值范围.26.已知函数f(x)=lnx+mx(其中0<m<e,e=2.71828……为自然对数的底数).(1)试判断函数f(x)的单调性,并予以说明;(2)试确定函数f(x)的零点个数.27.已知集合M={f(x)|存在x0,使得f(x)•f(1)=f(x+1)成立}.(1)判断f(x)=是否属于M;(2)判断f(x)=2x+x2是否属于M;(3)若f(x)=e∈M,求实数a的取值范围.28.已知函数是定义在(﹣∞,+∞)上的奇函数.(1)求a的值;(2)求函数f(x)的值域;(3)当x∈(0,1]时,tf(x)≥2x﹣2恒成立,求实数t的取值范围.29.已知函数为偶函数.(Ⅰ)求b的值;(Ⅱ)若,求a的值;(Ⅲ)在(Ⅱ)的条件下,若函数在R上只有一个零点,求实数k的取值范围.30.攀枝花是一座资源富集的城市,矿产资源储量巨大,已发现矿种76种,探明储量39种,其中钒、钛资源储量分别占全国的63%和93%,占全球的11%和35%,因此其素有“钒钛之都”的美称.攀枝花市某科研单位在研发钛合金产品的过程中发现了一种新合金材料,由大数据测得该产品的性能指标值y(y 值越大产品的性能越好)与这种新合金材料的含量x(单位:克)的关系为:当0≤x<7时,y是x的二次函数;当x≥7时,.测得部分数据如表:(Ⅰ)求y关于x的函数关系式y=f(x);(Ⅱ)求该新合金材料的含量x为何值时产品的性能达到最佳.31.已知函数.(1)若f(a)=3,求f(﹣a)的值;(2)令,若g(3)=m,则求满足m≤g(2x﹣3)≤﹣m的x的取值范围.32.已知函数g(x)=ax2﹣2ax+1+b(a>0)在区间[2,3]上有最大值4和最小值1.设f(x)=.(1)求a、b的值;(2)若不等式f(2x)﹣k•2x≥0在x∈[﹣1,1]上恒成立,求实数k的取值范围;(3)若f(|2x﹣1|)+k•﹣3k=0有三个不同的实数解,求实数k的取值范围.33.已知函数f(x)定义在(﹣1,1)上且满足下列两个条件:①对任意x,y∈(﹣1,1)都有f(x)+f(y)=f()②当x∈(﹣1,0)时,有f(x)>0(1)求f(0),并证明函数f(x)在(﹣1,1)上是奇函数;(2)验证函数是否满足这些条件;(3)若f(﹣)=1,试求函数F(x)=f(x)+的零点.34.已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=1﹣3x.(1)求函数f(x)的解析式;(2)当x∈[2,8]时,不等式f(log22x)+f(5﹣a log2x)≥0恒成立,求实数a的取值范围.35.已知函数f(x)=log2(mx2+2mx+1),m∈R.(Ⅰ)若函数f(x)的定义域为R,求m的取值范围;(Ⅱ)设函数g(x)=f(x)﹣2log4x,若对任意x∈[0,1],总有g(2x)﹣x≤0,求m的取值范围.36.设函数f(x)=x2+2ax+1,a∈R.(Ⅰ)当x∈[﹣1,1]时,求函数f(x)的最小值g(a);(Ⅱ)若函数f(x)的零点都在区间[﹣2,0)内,求a的取值范围.37.已知函数,其中x∈(﹣4,4)(1)判断并证明函数f(x)的奇偶性;(2)判断并证明函数f(x)在(﹣4,4)上的单调性;(3)是否存在这样的负实数k,使f(k﹣cosθ)+f(cos2θ﹣k2)≥0对一切θ∈R恒成立,若存在,试求出k取值的集合;若不存在,说明理由.38.某种放射性元素的原子数N随时间t的变化规律是,其中N0,λ是正的常数,e为自然对数的底数.(1)判断函数是增函数还是减函数;(2)把t表示成原子数N的函数.39.已知函数f(x)是偶函数,且x≤0时,f(x)=﹣(其中e为自然对数的底数).(Ⅰ)比较f(2)与f(﹣3)大小;(Ⅱ)设g(x)=2(1﹣3a)e x+2a+(其中x>0,a∈R),若函数f(x)的图象与函数g(x)的图象有且仅有一个公共点,求实数a的取值范围.40.已知函数f(x)=log a(a x+1)+bx(a>0且a≠1,b∈R)为偶函数,且f(0)=1.(1)求f(x)的解析式;(2)令函数h(x)=2f(2x)+x+λ•2x﹣1(x∈[﹣1,2]),是否存在实数λ,使得h(x)的最小值为﹣1,若存在,求出λ的值;若不存在,请说明理由.41.某企业一天中不同时刻的用电量y(万千瓦时)关于时间t(单位:小时,其中0≤t≤24,t=0对应凌晨0点)的函数y=f(t)近似满足f(t)=A sin(ωt+φ+B(A>0,ω>0,0<φ<π,如图是函数f(t)的部分图象.(1)求f(t)=的解析式;(2)已知该企业某天前半日能分配到的供电量f(t)(万千瓦时)与时间t(小时)的关系可用线性函数模型g(t)=﹣2t+25(0≤t≤12)模拟,当供电量g(t)小于企业用电量f(t)时,企业必须停产.初步预计开始停产的临界时间t0在中午11点到12点之间,用二分法估算t0所在的一个区间(区间长度精确到15分钟).42.已知函数f(x)=ax2﹣bx+1,f(1)=0,且f(x)≥0在R上恒成立,g(x)=1﹣1nx.(1)求y=f(x)的解析式;(2)若有f(m)=g(n),求实数n的取值范围;(3)求证:y=f(x)与y=g(x)图象在区间[1,e]有唯一公共点.43.已知函数的图象与直线y=2两相邻交点之间的距离为π,且图象关于对称.(1)求y=f(x)的解析式;(2)先将函数f(x)的图象向左平移个单位,再将图象上所有横坐标伸长到原来的2倍,得到函数g(x)的图象.求g(x)的单调递增区间以及的x取值范围.44.已知f(x)=是定义在[﹣1,1]上的奇函数,且f(﹣)=.(1)求f(x)的解析式;(2)用单调性的定义证明:f(x)在[﹣1,1]上是减函数.45.有一种候鸟每年都按一定的路线迁徒,飞往繁殖地产卵,科学家经过测量发现候鸟的飞行速度可以表示为函数v=﹣lgx0,单位是km/min,其中x表示候鸟每分钟耗氧量的单位数,x0代表测量过程中某类候鸟每分钟的耗氧量偏差(参考数据:lg2=0.30,31.2=3.74,31.4=4.66).(1)当x0=2,候鸟每分钟的耗氧量为8100个单位时,候鸟的飞行速度是多少km/min?(2)当x0=5,候鸟停下休息时,它每分钟的耗氧量为多少单位?(3)若雄鸟的飞行速度为2.5km/min,同类雌鸟的飞行速度为1.5km/min,则此时雄鸟每分钟的耗氧量是雌鸟每分钟的耗氧量的多少倍?46.已知函数f(x)=﹣sin2x+m cos x﹣1,x∈[].(1)若f(x)的最小值为﹣4,求m的值;(2)当m=2时,若对任意x1,x2∈[﹣]都有|f(x1)﹣f(x2)|恒成立,求实数a的取值范围.47.已知函数f(x)=A sin(ωx+φ),x∈R(其中A>0,ω>0,0<φ)的周期为π,且图象上的一个最低点为M().(1)求f(x)的解析式及单调递增区间;(2)当x∈[0,]时,求f(x)的值域.48.已知函数f(x)=(a2﹣2a﹣2)log a x是对数函数.(1)若函数g(x)=log a(x+1)+log a(3﹣x),讨论g(x)的单调性;(2)若x∈[,2],不等式g(x)﹣m+3≤0的解集非空,求实数m的取值范围.49.已知函数f(x)=sin(ωx﹣)﹣cosωx,其中0<ω<3.函数f(x)图象的一个对称中心坐标为(,0).(1)求f(x)的单调递增区间;(2)将函数f(x)的图象向左平移个单位,再将所得图象上各点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g(x)的图象.若g(α)=﹣,其中α∈(0,),求sinα的值.50.已知函数f(x)=sin(ωx﹣)(其中ω>0)的图象上相邻两个最高点的距离为π.(Ⅰ)求函数f(x)的图象的对称轴;(Ⅱ)若函数y=f(x)﹣m在[0,π]内有两个零点x1,x2,求m的取值范围及cos(x1+x2)的值.。