高中数学思想方法8篇

合集下载

数学学习的八种思维方法_数学

数学学习的八种思维方法_数学

数学学习的八种思维方法_数学数学学习的八种思维方法1.代数思想这是基本的数学思想之一,小学阶段的设未知数x,初中阶段的一系列的用字母代表数,这都是代数思想,也是代数这门学科最基础的根!2.数形结合是数学中最重要的,也是最基本的思想方法之一,是解决许多数学问题的有效思想。

“数缺形时少直观,形无数时难入微”是我国著名数学家华罗庚教授的名言,是对数形结合的作用进行了高度的概括。

初高中阶段有很多题都涉及到数形结合,比如说解题通过作几何图形标上数据,借助于函数图象等等都是数形给的体现。

3.转化思想在整个初中数学中,转化(化归)思想一直贯穿其中。

转化思想是把一个未知(待解决)的问题化为已解决的或易于解决的问题来解决,如化繁为简、化难为易,化未知为已知,化高次为低次等,它是解决问题的一种最基本的思想,它是数学基本思想方法之一。

4.对应思想方法对应是人们对两个集合因素之间的联系的一种思想方法,小学数学一般是一一对应的直观图表,并以此孕伏函数思想。

如直线上的点(数轴)与表示具体的数是一一对应。

5.假设思想方法假设是先对题目中的已知条件或问题作出某种假设,然后按照题中的已知条件进行推算,根据数量出现的矛盾,加以适当调整,最后找到正确答案的一种思想方法。

假设思想是一种有意义的想象思维,掌握之后可以使要解决的问题更形象、具体,从而丰富解题思路。

6.比较思想方法比较思想是数学中常见的思想方法之一,也是促进学生思维发展的手段。

在教学分数应用题中,教师善于引导学生比较题中已知和未知数量变化前后的情况,可以帮助学生较快地找到解题途径。

7.符号化思想方法用符号化的语言(包括字母、数字、图形和各种特定的符号)来描述数学内容,这就是符号思想。

如数学中各种数量关系,量的变化及量与量之间进行推导和演算,都是用小小的字母表示数,以符号的浓缩形式表达大量的信息。

如定律、公式等。

8.极限思想方法事物是从量变到质变的,极限方法的实质正是通过量变的无限过程达到质变。

高中解题数学思想方法总结

高中解题数学思想方法总结

高中解题数学思想方法总结高中解题数学思想方法总结在高中数学中,解题方法是我们学习的重点之一。

解题方法不仅是完成题目的工具,更是数学思想的体现。

合理的解题方法可以帮助我们更好地理解数学问题、提高解题效率、培养逻辑思维和分析能力。

下面将对高中解题数学思想方法进行总结。

一、认真阅读题目认真阅读题目是解题的第一步。

我们要仔细阅读题目,明确题目要求,理解题意,划清知识边界,找出问题的关键信息,搞清楚问题所求和给出的条件。

只有弄清楚题意,才能制定出合理的解题思路。

二、灵活运用数学方法在高中数学中,有很多数学方法可以帮助我们解题。

例如代数方法、几何方法、函数方法、随机变量方法等。

我们需要根据题目的特点和要求,选择合适的方法进行解题。

例如,在一些几何问题中,我们可以运用相似三角形的性质解决一些比例关系问题;在一些函数问题中,我们可以利用函数的性质和图像来解决一些函数关系问题。

灵活运用数学方法是解题的关键。

三、分析问题的结构在解题过程中,我们要善于分析问题的结构。

我们可以考虑问题的对称性、周期性、递推性、变化趋势等特点,以及利用数学模型来描述问题的结构。

通过分析问题的结构,我们能够更好地理解问题,找到解题的突破口。

四、合理利用已有的定理和性质高中数学中有许多定理和性质,我们在解题过程中可以充分利用这些已有的定理和性质。

例如在三角函数问题中,我们可以利用正弦定理、余弦定理等解决三角形的面积和边长问题;在概率问题中,我们可以利用排列组合的知识解决事件发生的概率问题。

五、巧妙运用数学运算在解题过程中,还可以巧妙运用数学运算来简化问题。

我们可以利用整式的性质进行因式分解、合并同类项,运用二次函数的基本变形得到特殊函数,利用换元法、递推式等将问题变换形式。

通过巧妙的运用数学运算,我们能够简化问题,提高解题效率。

六、实践和思考除了学习和掌握数学知识和解题方法外,还需要进行实践和思考。

通过大量的练习和实际问题的解决,我们能够更好地理解数学知识,掌握解题技巧,提高解题水平。

高中数学八大思想总结

高中数学八大思想总结

高中数学八大思想总结高中数学八大思想是指数学学科中的八个重要理念和思维方式,包括逻辑思维、抽象思维、归纳思维、演绎思维、模型思维、实用思维、探究思维和创新思维。

这些思想在高中数学学习中具有重要的指导意义,有助于培养学生的数学素养和数学思维能力。

下面将对这八大思想进行总结。

逻辑思维是数学思维的基本内容,也是数学推理的基础。

逻辑思维要求学生运用正确的逻辑推理方法,从已知条件出发,通过合理的推理得出结论。

逻辑思维的重点是培养学生的推理和证明能力,提高他们解决问题的能力。

抽象思维是数学思维的重要组成部分,也是数学建模的关键能力。

抽象思维要求学生将具体问题抽象为一般性问题,将复杂问题简化为简单问题,从而更好地理解问题的本质和规律。

抽象思维不仅有利于学生理解数学概念和定理,还有助于他们掌握数学方法和技巧。

归纳思维是数学思维的重要形式之一,是从具体到一般的思维方式。

归纳思维要求学生通过观察具体例子和实验数据,总结出一般规律和定理。

归纳思维有助于学生培养发现问题规律和解决问题的能力,提高他们的问题分析和解决能力。

演绎思维是数学思维的另一种重要形式,是从一般到具体的思维方式。

演绎思维要求学生通过已知条件和逻辑推理得出新的结论,从而解决新的问题。

演绎思维有助于学生培养运用已有知识和方法解决新问题的能力,提高他们的综合运用能力。

模型思维是数学思维的重要组成部分,是数学建模和实际问题解决的核心思维方式。

模型思维要求学生将实际问题抽象为数学模型,通过建立和求解模型,得出问题的解答和结论。

模型思维有助于学生将数学知识应用于实际问题,提高他们的实际问题解决能力。

实用思维强调数学知识和方法的实用性,要求学生学会运用数学知识和方法解决实际问题。

实用思维关注数学与现实生活的联系和应用,注重培养学生的数学素养和实践能力,提高他们的数学能力和综合素质。

探究思维是数学思维的重要内容,要求学生通过实践和探究,主动发现问题和解决问题。

探究思维鼓励学生提出问题、假设和猜想,通过实验和推理验证和证明,培养他们的问题解决技巧和创新能力。

高中数学的思想方法

高中数学的思想方法

高中数学的思想方法数学方法是分析、处理和解决数学问题的策略,这些策略与人们的数学知识,经验以及数学思想掌握状况密切相关.从有利于中学数学教学出发,本着数量不宜过多原则,我们认为目前应予以重视的数学方法有:数学模型法、数形结合法、变幻法、函数法和类分法等.一般讲,中学数学中分析、处理和解决数学问题的活动是在数学思想指导下,运用数学方法,通过一系列数学技能操作来完成的.2方法一:函数与方程的思想函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来合计问题,研究问题和解决问题。

所谓方程的思想就是特别研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数和方程、不等式是通过函数值等于零、大于零或小于零而互相关联的,它们之间既有区别又有联系。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

3方法二:分类与整合思想解题时,我们经常碰到这样一种状况,解到某一步之后,不能再以统一方法,统一的式子持续进行了,因为这时被研究的问题包涵了多种状况,这就必须在条件所给出的总区域内,正确划分假设干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。

有分有合,先分后合,不仅是分类与整合的思想解决问题的主要过程,也是这种思想方法的本质属性。

高考将分类与整合的思想放在比较重要的位置,并以解答题为主进行考查,考查时要求考生理解什么样的问题必须要分类研究,为什么要分类,如何分类以及分类后如何研究与最后如何整合。

特别注意引起分类的原因,我们必须相当熟悉,有些概念就是分类定义的,如绝对值的概念、整数分为奇数偶数等,有些运算法则和公式是分类给出的,例如等比数列的求和公式就分为q=1和q1两种状况,对数函数的单调性就分为a1,04方法三:转化与化归思想转化与化归是中学数学最基本的数学思想之一,是一切数学思想方法的核心。

高中数学思想方法之八换元法

高中数学思想方法之八换元法

高中数学思想方法之八——换元法例题1. 实数x、y满足4x2-5xy+4y2=5 ,设S=x2+y2,求1Smax+1Smin的值。

例题2.不等式x>ax+32的解集是(4,b),求a,b。

例题3. 设a>0,求f(x)=2a(sinx+cosx)-sinx·cosx-2a2的最大值和最小值。

例题4. 设对所于有实数x,不等式x2log241()aa++2x log221aa++log2()aa+1422>0恒成立,求a的取值范围。

例题5. 已知sinθx=cosθy,且cos22θx+sin22θy=10322()x y+,求xy的值。

例题6. 实数x、y满足()x-192+()y+1162=1,若x+y-k>0恒成立,求k的范围。

例题7.求同时满足下列条件的所有复数z:(1)101z6z<+≤(2)z的实部和虚部均为整数。

例题 8.△ABC中,求证:cosAcosBcosC≤1/8。

例题9.实数a 、b 、c 满足a+b+c=0,求证:ab+bc+ca ≤0.例题10.已知方程x 2-3x+1=0的两根为x1x2,且x1<x2,求312x x +。

例题11 实数m 在什么范围内取值,对任意实数x ,不等式sin 2x +2mcosx +4m -1<0恒成立。

高中数学思想方法之九——特殊化、极端化思考策略例题1、解不等式0)1()10)(3(2≥---x x x x ,得( ) ),10[]13()0,()(+∞⋃⋃-∞A ]10,3[)1,0()0,()(⋃⋃-∞B)10,3()1,0()(⋃C )10,3()1,0[)(⋃D例题2、如图,多面体是由正n 棱柱所截得到,且侧棱长分别为n h h h ,,,21Λ,底面积为S ,则此多面体的体积为( )S h h h V A n )(31)(21+++=Λ S h h h n V B n )(11)(21+++-=Λ S h h h n V C n )(1)(21+++=Λ S h h h V D n n Λ21)(=例题3、定义在区间(-∞,∞)的奇函数f(x)为增函数,偶函数g(x)在区间[0,+∞)的图象与f(x)的图象重合,设a>b>0,给出下列不等式①f(b)-f(-a)>g(a)-g(-b);②f(b)-f(-a)<g(a)-g(-b);③f(a)-f(-b)>g(b)-g(-a);④f(a)-f(-b)<g(b)-g(-a).其中成立的是( )A. ①与④B. ②与③C. ①与③D. ②与④例题4、如果n 是正偶数,则C n 0+C n 2+…+C nn -2+C n n =______。

高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析

高中数学常见解题思想方法——思想篇(高三适用)九、分类讨论思想 含解析

分类讨论思想是高中重要数学思想之一,是历年高考数学的重点与难点.突出考察思维的逻辑性、全面严谨性,比如在不等式、数列、导数应用相关的习题中,分类讨论思想很常见。

一、什么是分类讨论思想:每个数学结论都有其成立的条件,每一种数学方法的使用也往往有其适用范围,在我们所遇到的数学问题中,有些问题的结果不能唯一确定,有些问题的结论不能以统一的形式进行研究,还有些含参数的问题,参数的取值不同也会影响问题的结果,那么就要根据题目的要求,将题目分成若干类型,转化成若干个小问题来解决,这种按不同情况分类,然后再对分好的每类逐一研究、解决问题的数学思想,就是分类讨论思想。

二、分类讨论的一般步骤:第一,明确讨论对象,确定对象的取值范围;第二,确定分类标准,进行合理分类,不重不漏;第三,对分好的每类进行讨论,获得阶段性结果;第四,归纳总结,得出结论。

三、分类讨论的常见情形:1.由数学概念引起的分类:有的概念本身就是分类给出的,在不同条件下有不同结论,则必须进行分类讨论求解,如绝对值、指数与对数函数、直线和平面所成的角等。

2.由性质、定理、公式的限制引起的分类:有的数学定理、公式、性质是分类给出的,在不同条件下结论不一致,如二次函数y=ax2+bx+c(a≠0),由a的正负而导致开口方向不确定;等比数列前n项和公式因公比q是否为1而导致公式的表达式不确定等.3。

由某些数学运算要求引起的分类讨论:如解不等式ax2+bx+c >0,a=0,a<0,a>0解法是不同的;除法运算中除数不为零,偶次方根为非负,对数真数与底数的要求,指数中底数的要求,不等式两边同乘以一个正数、负数时不等号的方向,三角函数的定义域等.4。

由图形引的不确定性起的分类:有的图形的类型、位置需要分类,比如角的终边所在象限;立体几何中点、线、面的位置关系等。

5.由实际意义引起的分类:此类问题在实际应用题中常见.特别是在解决排列、组合中的计数问题时常用.6。

由参数变化引起的分类:如含参数的方程、不等式,由于参数的取值不同会导致所得结果不同,所以必须对参数的不同取值进行分类讨论;或对于不同的参数值运用不同的求解或证明方法.四、下面我们通过几种具体问题来看看常见的分类讨论情形:1。

高中数学解题思想方法全部内容.

高中数学解题思想方法全部内容.

高中数学解题思想方法全部内容第一章高中数学解题基本方法一、配方法配方法是对数学式子进行一种定向变形(配成“完全平方” 的技巧, 通过配方找到已知和未知的联系,从而化繁为简。

何时配方, 需要我们适当预测,并且合理运用“裂项”与“添项” 、“配”与“凑”的技巧,从而完成配方。

有时也将其称为“凑配法” 。

最常见的配方是进行恒等变形, 使数学式子出现完全平方。

它主要适用于:已知或者未知中含有二次方程、二次不等式、二次函数、二次代数式的讨论与求解,或者缺 xy 项的二次曲线的平移变换等问题。

配方法使用的最基本的配方依据是二项完全平方公式 (a+b =a + 2ab +b ,将这个公式灵活运用,可得到各种基本配方形式,如: a +b =(a+b -2ab =(a-b +2ab ;a +ab +b =(a+b -ab =(a-b +3ab =(a+ +(b ; a +b +c +ab +bc +ca =[(a+b +(b+c +(c+a ]a +b +c =(a+b +c -2(ab+bc +ca =(a+b -c -2(ab-bc -ca =…结合其它数学知识和性质,相应有另外的一些配方形式,如:1+sin2α=1+2sin αcos α=(sin α+cos α ;x +=(x+ -2=(x- +2;…… 等等。

Ⅰ、再现性题组:1. 在正项等比数列 {a}中, a ?a +2a?a +a?a =25,则 a +a = _______。

2. 方程 x +y -4kx -2y +5k =0表示圆的充要条件是 _____。

A. <k<1B. k<或k>1C. k ∈ R D. k =或 k =13. 已知sin α+cos α=1,则sin α+cos α的值为 ______。

A. 1B. -1C. 1或-1D. 04.函数 y =log (-2x +5x +3 的单调递增区间是 _____。

(完整版)高中数学思想方法专题

(完整版)高中数学思想方法专题

高中数学思想方法专题(一)——函数与方程的思想方法一、知识要点概述函数与方程的思想是中学数学的基本思想,高考数学题中函数与方程的思想占较大的比例,题型涉及选择题、填空题、解答题,难度有大有小,且试题中的大部分压轴题都与函数方程有关。

函数的思想,就是运用运动和变化的观点,集合与对应的思想,去分析和研究数学问题中的等量关系,建立或构造函数关系,再运用函数的图像和性质去分析问题,转化问题,从而使问题获得解决。

方程的思想,就是从问题的数量关系入手,运用数学语言将问题中的条件转化为数学模型——方程或方程组,通过解方程或方程组,或者运用方程的性质去分析、转化问题,使获得解决。

二、解题方法指导运用函数观点解决问题主要从以下四个方面着手:一是根据方程与函数的密切关系,可将二元方程转化为函数来解决;二是根据不等式与函数的密切关系,常将不等式问题转化为函数问题,利用函数的图象和性质进行处理;三是在解决实际问题中,常涉及到最值问题,通常是通过建立目标函数,利用求函数最值的方法加以解决;四是中学数学中的某些数学模型(如数列的通项或前n项和、含有一个未知量的二项式定理等)可转化为函数问题,利用函数相关知识或借助处理函数问题的方法进行解决。

运用方程观点解决问题主要从以下四个方面着手:一是把问题中对立的已知与未知通过建立相等关系统一在方程中,通过解方程解决;二是从分析问题的结构入手,找出主要矛盾,抓住某一个关键变量,将等式看成关于这个主变元(常称为主元)的方程,利用方程的特征解决;三是根据几个变量间的关系,判断符合哪些方程的性质和特征(如利用根与系数的关系构造方程等),通过研究方程所具有的性质和特征解决;四是在中学数学中常见数学模型(如函数、曲线等),经常转化为方程问题去解决。

三、范例剖析例1已知f(t)=log2t,t[ ,8],对于f(t)值域内的所有实数m,不等式2x2+mx+4>2m+4x恒成立,求x的取值范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学思想方法8篇高中数学思想方法精选8篇高中数学思想方法1第一:函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查第二:数形结合思想(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化第三:分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性第四:化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的`转化、构造转化、命题的等价转化第五:特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向第六:有限与无限的思想(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的有限与无限数学思想的应用(4)随着高中课程改革,对新增内容考查深入,必将加强对有限与无限的考查第七:或然与必然的思想(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法21、数形结合思想:就是根据数学问题的条件和结论之间的内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起来,并充分利用这种结合,寻求解体思路,使问题得到解决。

2、联系与转化的思想:事物之间是相互联系、相互制约的,是可以相互转化的。

数学学科的各部分之间也是相互联系,可以相互转化的。

在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。

如:代换转化、已知与未知的转化、特殊与一般的转化、具体与抽象的转化、部分与整体的转化、动与静的转化等等。

3、分类讨论的思想:在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查,这种分类思考的方法,是一种重要的数学思想方法,同时也是一种重要的解题策略。

4、待定系数法:当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母得值就可以了。

为此,把已知条件代入这个待定形式的式子中,往往会得到含待定字母的方程或方程组,然后解这个方程或方程组就使问题得到解决。

5、配方法:就是把一个代数式设法构造成平方式,然后再进行所需要的变化。

配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。

6、换元法:在解题过程中,把某个或某些字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的'一种方法。

换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题,从而达到化繁为简,化难为易的目的。

7、分析法:在研究或证明一个命题时,又结论向已知条件追溯,既从结论开始,推求它成立的充分条件,这个条件的成立还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件为止,从而使命题得到证明。

这种思维过程通常称为“执果寻因”8、综合法:在研究或证明命题时,如果推理的方向是从已知条件开始,逐步推导得到结论,这种思维过程通常称为“由因导果”9、演绎法:由一般到特殊的推理方法。

10、归纳法:由一般到特殊的推理方法。

11、类比法:众多客观事物中,存在着一些相互之间有相似属性的事物,在两个或两类事物之间,根据它们的某些属性相同或相似,推出它们在其他属性方面也可能相同或相似的推理方法。

类比法既可能是特殊到特殊,也可能一般到一般的推理。

高中数学思想方法31、函数与方程思想(1)函数思想是对函数内容在更高层次上的抽象,概括与提炼,在研究方程、不等式、数列、解析几何等其他内容时,起着重要作用(2)方程思想是解决各类计算问题的基本思想,是运算能力的基础高考把函数与方程思想作为七种重要思想方法重点来考查2、数形结合思想:(1)数学研究的对象是数量关系和空间形式,即数与形两个方面(2)在一维空间,实数与数轴上的点建立一一对应关系在二维空间,实数对与坐标平面上的点建立一一对应关系数形结合中,选择、填空侧重突出考查数到形的转化,在解答题中,考虑推理论证严密性,突出形到数的转化3、分类与整合思想(1)分类是自然科学乃至社会科学研究中的基本逻辑方法(2)从具体出发,选取适当的分类标准(3)划分只是手段,分类研究才是目的(4)有分有合,先分后合,是分类整合思想的本质属性(5)含字母参数数学问题进行分类与整合的研究,重点考查学生思维严谨性与周密性4、化归与转化思想(1)将复杂问题化归为简单问题,将较难问题化为较易问题,将未解决问题化归为已解决问题(2)灵活性、多样性,无统一模式,利用动态思维,去寻找有利于问题解决的变换途径与方法(3)高考重视常用变换方法:一般与特殊的转化、繁与简的转化、构造转化、命题的等价转化5、特殊与一般思想(1)通过对个例认识与研究,形成对事物的认识(2)由浅入深,由现象到本质、由局部到整体、由实践到理论(3)由特殊到一般,再由一般到特殊的反复认识过程(4)构造特殊函数、特殊数列,寻找特殊点、确立特殊位置,利用特殊值、特殊方程(5)高考以新增内容为素材,突出考查特殊与一般思想必成为命题改革方向6、有限与无限的思想:(1)把对无限的研究转化为对有限的研究,是解决无限问题的必经之路(2)积累的解决无限问题的经验,将有限问题转化为无限问题来解决是解决的方向(3)立体几何中求球的表面积与体积,采用分割的方法来解决,实际上是先进行有限次分割,再求和求极限,是典型的.有限与无限数学思想的应用7、或然与必然的思想:(1)随机现象两个最基本的特征,一是结果的随机性,二是频率的稳定性(2)偶然中找必然,再用必然规律解决偶然(3)等可能性事件的概率、互斥事件有一个发生的概率、相互独立事件同时发生的概率、独立重复试验、随机事件的分布列、数学期望是考查的重点高中数学思想方法41、函数与方程的思想著名数学家克莱因说“一般受教育者在数学课上应该学会的重要事情是用变量和函数来思考”。

一个学生仅仅学习了函数的知识,他在解决问题时往往是被动的,而建立了函数思想,才能主动地去思考一些问题。

函数是高中代数内容的主干,函数思想贯穿于高中代数的全部内容,函数思想是对函数内容在更高层次上的抽象、概括与提炼,是从函数各部分内容的内在联系和整体角度来考虑问题,研究问题和解决问题。

所谓方程的思想就是突出研究已知量与未知量之间的等量关系,通过设未知数、列方程或方程组,解方程或方程组等步骤,达到求值目的解题思路和策略,它是解决各类计算问题的基本思想,是运算能力的基础。

函数和方程、不等式是通过函数值等于零、大于零或小于零而相互关联的,它们之间既有区别又有联系。

函数与方程的思想,既是函数思想与方程思想的体现,也是两种思想综合运用的体现,是研究变量与函数、相等与不等过程中的基本数学思想。

高考把函数与方程的思想作为七种思想方法的重点来考查,使用选择题和填空题考查函数与方程的思想的基本运用,而在解答题中,则从更深的层次,在知识网络的交汇处,从思想方法与相关能力的关系角度进行综合考查。

在解题时,要学会思考这些问题:(1)是不是需要把字母看作变量?(2)是不是需要把代数式看作函数?如果是函数它具有哪些性质?(3)是不是需要构造一个函数把表面上不是函数的问题化归为函数问题?(4)能否把一个等式转化为一个方程?对这个方程的根有什么要求?……2、数形结合的思想数学研究的对象是数量关系和空间形式,即“数”与“形”两个方面。

“数”与“形”两者之间并不是孤立的,而是有着密切的联系。

数量关系的研究可以转化为图形性质的研究,反之,图形性质的研究可以转化为数量关系的研究,这种解决数学问题过程中“数”与“形”相互转化的研究策略,即是数形结合的思想。

数形结合的思想,在数学的几乎全部的知识中,处处以数学对象的直观表象及深刻精确的数量表达这两方面给人以启迪,为问题的解决提供简捷明快的途径。

它的运用,往往展现出“柳暗花明又一村”般的数形和谐完美结合的境地。

华罗庚先生曾作过精辟的论述:“数与开形,本是相倚依,焉能分作两边飞。

数缺形时少直觉,形少数时难人微,数形结合百般好,隔裂分家万事非。

切莫忘,几何代数统一体,永远联系切莫离。

”数形结合既是一个重要的数学思想,也是一种常用的解题策略。

一方面,许多数量关系的抽象概念和解析式,若赋予几何意义,往往变得非常直观形象;另一方面,一些图形的属性又可通过数量关系的研究,使得图形的性质更丰富、更精准、更深刻。

这种“数”与“形”的相互转换,相互渗透,不仅可以使一些题目的解决简捷明快,同时还可大大开拓我们的解题思路。

可以这样说,数形结合不仅是探求思路的“慧眼”,而且是深化思维的有力“杠杆”。

由“形”到“数”的转化,往往比较明显,而由“数”到“形”的转化却需要转化的意识。

因此,数形结合的思想的使用往往偏重于由“数”到“形”的转化。

在高考中,选择题和填空题这两种题型的特点(只需写出结果而无需写出过程),为考查数形结合的思想提供了方便,能突出考查考生将复杂的数量关系问题转化为直观的几何图形问题来解决的意识。

而在解答题中,考虑到推理论证的严谨性,对数量关系问题的研究仍突出代数的方法而不是提倡使用几何的方法,解答题中对数形结合的思想的考查以由“数”到“形”的转化为主。

3、分类与整合的思想解题时,我们常常遇到这样一种情况,解到某一步之后,不能再以统一方法,统一的式子继续进行了,因为这时被研究的问题包含了多种情况,这就必须在条件所给出的总区域内,正确划分若干个子区域,然后分别在各个子区域内进行解题,当分类解决完这个问题后,还必须把它们总合在一起,因为我们研究的毕竟是这个问题的全体,这就是分类与整合的思想。

相关文档
最新文档