高中数学排列组合思维方法选讲(附答案)
排列组合题解题思维方法

排列组合题解题思维方法排列组合题解题思维方法随着数学考试越来越接近,不少同学开始重点练习数学中的排列组合题目。
然而,面对这些比较抽象的题目,许多同学们都显得有些束手无策。
本文将介绍解决排列组合题目的思维方法,帮助大家深入理解和掌握排列组合知识。
一、排列组合基础概念1. 排列排列是指从$n$个不同元素中取出$r$($r\leq n$)个不同元素进行排列的方式数,记作$A_n^r$,公式如下:$$A_n^r=n(n-1)(n-2)\cdots (n-r+1)$$2. 组合组合是指从$n$个不同元素中取出$r$($r\leq n$)个不同元素进行组合的方式数,记作$C_n^r$,公式如下:$$C_n^r=\dfrac{n!}{r!(n-r)!}$$二、解题思路1. 首先,要明确题目的含义。
排列组合题目在日常生活中并不多见,因此需要认真看题,理解题目的意思。
通常,排列组合题目的意思就是从一堆元素中选取一定数量的元素进行排序或组合,然后求解不同可能的结果数。
2. 紧接着,确定解题的方式。
对于排列组合题目,有一些比较典型的解法,如公式法、画图法、分类讨论法、化归法等。
需要根据题目的特点,选择合适的解题方式。
3. 确定解题的步骤。
排列组合题目通常有多个步骤,需要依次进行,一步步得出最终结果。
所以,需要仔细分析题目,确定整个解题过程中的每个步骤,防止出错。
4. 结合实际问题进行思考。
很多排列组合问题都是有实际意义的,例如隔板法、分配法、抽屉原理等。
通过把抽象的排列组合问题转化为实际问题,可以帮助我们更好地理解问题本质,从而提高解决问题的能力。
三、典型例题1. 从$n$个元素中取出$r$个元素,有多少种不同的排列方式?解:根据排列的定义,从$n$个元素中取出$r$个元素进行排列的方式数为$A_n^r$。
2. 从$n$个元素中取出$r$个元素,有多少种不同的组合方式?解:根据组合的定义,从$n$个元素中取出$r$个元素进行组合的方式数为$C_n^r$。
排列组合难题二十一种方法(含答案详解)

排列组合难题二十一种方法解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略 一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,. 先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A =种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A 种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A 不同的方法,由分步计数原理,节目的不同顺序共有5456A A 种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法443解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高三数学排列组合20种解题方法汇总(含例题及解析,)

排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,先排末位共有13C然后排首位共有14C最后排其它位置共有34A由分步计数原理得113434288C C A=练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
由分步计数原理可得共有522522480A A A=种不同的排法练习题:某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为 20三.不相邻问题插空策略例3.一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?解:分两步进行第一步排2个相声和3个独唱共有55A种,第二步将4舞蹈插入第一步排好的6个元素中间包含首尾两个空位共有种46A不同的方法,由分步计数原理,节目的不同顺序共有5456A A种练习题:某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为 30四.定序问题倍缩空位插入策略例4.7人排队,其中甲乙丙3人顺序一定共有多少不同的排法解:(倍缩法)对于某几个元素顺序一定的排列问题,可先把这几个元素与其他元素一起进行排列,然后用总排列数除以这几个元素之间的全排列数,则共有不同排法种数是:7373/A A(空位法)设想有7把椅子让除甲乙丙以外的四人就坐共有47A 种方法,其余的三个位置甲乙丙共有 1种坐法,则共有47A 种方法。
高三数学排列组合20种解题方法汇总(含例题及解析)

高三数学排列组合20种解题方法汇总(含例题及解析)
排列组合是高考必考内容,但却是学生心目中难题,有的学生很难理解,现特附上数学排列组合20种解题方法汇总文档,里面交待了常见的排列组合研究方法,并给以习题练习,希望对于广大考生有帮助。
排列组合总结(含答案)

1.(站队模型)4男3女站成一排:①女生相邻;5353A A ⋅②女生不相邻;4345A A ⋅③女生从高到低排;47A④甲不在排头,乙不在排尾;解析:当甲在排尾时有66A ;当甲不在排尾时有115555A A A ⋅⋅2.(组数模型)由0到9这10个数字组成没有重复数字的四位数: ①奇数;末位有112588A A A②偶数;解析:末位为0,有39A ;末位不为0,有112488A A A ⋅⋅③被5整除的数;解析:末位为0,有49A ;末位为5,有1288A A ⋅④比3257大的数; 解析:首位为4到9时有396A ;首位为3时281749A ⎧⎪⎧⎨⎪⎨⎪⎪⎩⎩百位为到时有6十位为6到9时有4A 百位为2时十位为5时有2 ⑤被3整除的三位数.12333311123322111333332A A A C C C A C C C A ⎧⋅+⎪⎧⋅⋅⋅⎨⎪⎨⎪⋅⋅⋅⎪⎩⎩都从一个集合中选时有含0时有各选一个时有不含0时有3.(分组分配问题)6个不同的小球:①放入三个不同的盒子;解析:63②放入三个不同的盒子,每盒不空;解析:4363321363132226426222:A C C C A C C C ⎧⎪⋅⋅⋅⎨⎪=++⋅⋅⎩6=4+1+1:有C 6=3+2+1:有有③分三组(堆),每组至少一个;解析:41162122321631222642336222:C C A C C C C C C A ⎧⋅⋅⎪⎪⎪⋅⋅⎨⎪⋅⋅⎪=++⎪⎩C 6=4+1+1:有6=3+2+1:有有4.6个相同的小球:①放入三个不同的盒子;解析:相当于分名额,盒子可空:插板法:28C ②放入三个不同的盒子,每盒不空;25C ③恰有一个空盒.解析:相当于两个盒子不空:1253C C ⋅5.6名同学报名三科竞赛:①每人限报一科;63②每科限报一人;366.(选派问题)5男3女:①选2人开会;28C②选正副班长,至少1女;2285A A - ③选4人开会,至多2男;解析:即至少2女,22313535C C C C ⋅+⋅④选4人跑4×100接力,至少2女.解析:()2231435354C C C C A ⋅+⋅⋅。
高中数学轻松搞定排列组合难题二十一种方法(含答案)

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动好玩,但题型多样,思路敏捷,因此解决排列组合问题,首先要仔细审题,弄清晰是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采纳合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.驾驭解决排列组合问题的常用策略;能运用解题策略解决简洁的综合应用题。
提高学生解决问题分析问题的实力3.学会应用数学思想和方法解决排列组合问题.复习巩固1.分类计数原理(加法原理)完成一件事,有n类方法,在第1类方法中有m种不同的方法,在第2类方法1中有m种不同的方法,…,在第n类方法中有n m种不同的方法,那么完成这件2事共有:种不同的方法.2.分步计数原理(乘法原理)完成一件事,须要分成n个步骤,做第1步有m种不同的方法,做第2步有2m种1不同的方法,…,做第n步有m种不同的方法,那么完成这件事共有:种不同的方法.3.分类计数原理分步计数原理区分分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事务的一个阶段,不能完成整个事务.解决排列组合综合性问题的一般过程如下:1.仔细审题弄清要做什么事2.怎样做才能完成所要做的事,即实行分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必需驾驭一些常用的解题策略一.特别元素和特别位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特别要求,应当优先支配,位置.先排末位共有1C3然后排首位共有1C4最终排其它位置共有3A4434由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法.解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
高中数学轻松搞定排列组合难题二十一种方法(含答案)

高考数学轻松搞定排列组合难题二十一种方法排列组合问题联系实际生动有趣,但题型多样,思路灵活,因此解决排列组合问题,首先要认真审题,弄清楚是排列问题、组合问题还是排列与组合综合问题;其次要抓住问题的本质特征,采用合理恰当的方法来处理。
教学目标1.进一步理解和应用分步计数原理和分类计数原理。
2.掌握解决排列组合问题的常用策略;能运用解题策略解决简单的综合应用题。
提高学生解决问题分析问题的能力3.学会应用数学思想和方法解决排列组合问题. 复习巩固1.分类计数原理(加法原理)完成一件事,有n 类办法,在第1类办法中有1m 种不同的方法,在第2类办法中有2m 种不同的方法,…,在第n 类办法中有n m 种不同的方法,那么完成这件事共有:12n N m m m =+++种不同的方法.2.分步计数原理(乘法原理)完成一件事,需要分成n 个步骤,做第1步有1m 种不同的方法,做第2步有2m 种不同的方法,…,做第n 步有n m 种不同的方法,那么完成这件事共有:12n N m m m =⨯⨯⨯种不同的方法.3.分类计数原理分步计数原理区别分类计数原理方法相互独立,任何一种方法都可以独立地完成这件事。
分步计数原理各步相互依存,每步中的方法完成事件的一个阶段,不能完成整个事件.解决排列组合综合性问题的一般过程如下: 1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略例1.由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.解:由于末位和首位有特殊要求,应该优先安排,以免不合要求的元素占了这两个位置.先排末位共有13C然后排首位共有14C 最后排其它位置共有34A由分步计数原理得113434288C C A =练习题:7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略例2. 7人站成一排 ,其中甲乙相邻且丙丁相邻, 共有多少种不同的排法. 解:可先将甲乙两元素捆绑成整体并看成一个复合元素,同时丙丁也看成一个复合元素,再与其它元素进行排列,同时对相邻元素内部进行自排。
排列组合问题常用的解题方法含答案

高中数学排列组合问题常用的解题方法一、相邻问题捆绑法题目中规定相邻的几个元素并为一个组<当作一个元素>参与排列.例1:五人并排站成一排.如果甲、乙必须相邻且乙在甲的右边.那么不同的排法种数有种。
二、相离问题插空法元素相离<即不相邻>问题.可先把无位置要求的几个元素全排列.再把规定相离的几个元素插入上述几个元素间的空位和两端.例2:七个人并排站成一行.如果甲乙两个必须不相邻.那么不同排法的种数是。
三、定序问题缩倍法在排列问题中限制某几个元素必须保持一定顺序.可用缩小倍数的方法.例3:A、B、C、D、E五个人并排站成一排.如果 B必须站A的右边<A、B可不相邻>.那么不同的排法种数有。
四、标号排位问题分步法把元素排到指定号码的位置上.可先把某个元素按规定排入.第二步再排另一个元素.如此继续下去.依次即可完成.例4:将数字1、2、3、4填入标号为1、2、3、4的四个方格里.每格填一个数.则每个方格的标号与所填数字均不相同的填法有。
五、有序分配问题逐分法有序分配问题是指把元素按要求分成若干组.可用逐步下量分组法。
例5:有甲、乙、丙三项任务.甲需2人承担.乙丙各需1人承担.从10人中选出4人承担这三项任务.不同的选法总数有。
六、多元问题分类法元素多.取出的情况也有多种.可按结果要求.分成不相容的几类情况分别计算.最后总计。
例6:由数字 0.1.2.3.4.5组成且没有重复数字的六位数.其中个位数字小于十位数字的共有个。
例7:从1.2.3.…100这100个数中.任取两个数.使它们的乘积能被7整除.这两个数的取法<不计顺序>共有多少种?例8:从1.2.…100这100个数中.任取两个数.使其和能被4整除的取法<不计顺序>有多少种?七、交叉问题集合法某些排列组合问题几部分之间有交集.可用集合中求元素个数公式⋃=+-⋂。
n A B n A n B n A B()()()()例9:从6名运动员中选出4个参加4×100m接力赛.如果甲不跑第一棒.乙不跑第四棒.共有多少种不同参赛方法?八、定位问题优先法某个<或几个>元素要排在指定位置.可先排这个<几个>元素.再排其他元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合思维方法选讲(附答案)排列组合类题目主要的解题方法:1.明确题目核心目的;2.分类相加or分步相乘,排列or组合;3.特殊优先:特殊元素,优先处理;特殊位置,优先考虑;4.捆绑与插空;5.间接计数法:以反治正;6.挡板的使用;7.分组问题。
1.明确任务的意义1.从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
2.分析是分类还是分步,是排列还是组合。
注意加法原理与乘法原理的特点。
2.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。
3.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。
4.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。
5.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。
现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?6.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?7.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。
3.特殊优先:特殊元素,优先处理;特殊位置,优先考虑8.六人站成一排,求。
:(1)甲、乙即不再排头也不在排尾数。
(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数。
9.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。
若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?4.捆绑与插空10. 8人排成一队(1)甲乙必须相邻,(2)甲乙不相邻,(3)甲乙必须相邻且与丙不相邻,(4)甲乙必须相邻,丙丁必须相邻,(5)甲乙不相邻,丙丁不相邻。
各有多少种不同的情况?11. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?12. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?5.间接计数法:排除法13. 三行三列共九个点,以这些点为顶点可组成多少个三角形?14.正方体8个顶点中取出4个,可组成多少个四面体?15. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?16.5男4女排成一排,要求男生必须按从高到矮的顺序,共有多少种不同的方法?17. 三个相同的红球和两个不同的白球排成一行,共有多少种不同的方法?6.挡板的使用18.10个名额分配到八个班,每班至少一个名额,问有多少种不同的分配方法?7.分组问题19. 6本不同的书(1) 分给甲乙丙三人,每人两本,有多少种不同的分法?(2) 分成三堆,每堆两本,有多少种不同的分法?(3) 分成三堆,一堆一本,一堆两本,一堆三本,有多少种不同的分法?(4) 甲一本,乙两本,丙三本,有多少种不同的分法?(5) 分给甲乙丙三人,其中一人一本,一人两本,第三人三本,有多少种不同的分法?20. 6人分乘两辆不同的车,每车最多乘4人,则不同的乘车方法为_______。
21.5名学生分配到4个不同的科技小组参加活动,每个科技小组至少有一名学生参加,则分配方法共有________种。
答案见下:排列组合思维方法选讲1.首先明确任务的意义1.从1、2、3、……、20这二十个数中任取三个不同的数组成等差数列,这样的不同等差数列有________个。
分析:首先要把复杂的生活背景或其它数学背景转化为一个明确的排列组合问题。
设a,b,c成等差,∴ 2b=a+c, 可知b由a,c决定,又∵2b是偶数,∴a,c同奇或同偶,即:分别从1,3,5,……,19或2,4,6,8,……,20这十个数中选出两个数进行排列,由此就可确定等差数列,A(10,2)*2=90*2,因而本题为180。
2.分析是分类还是分步,是排列还是组合注意加法原理与乘法原理的特点。
2.在一块并排的10垄田地中,选择二垄分别种植A,B两种作物,每种种植一垄,为有利于作物生长,要求A,B两种作物的间隔不少于6垄,不同的选法共有______种。
分析:条件中“要求A、B两种作物的间隔不少于6垄”这个条件不容易用一个包含排列数,组合数的式子表示,因而采取分类的方法。
第一类:A在第一垄,B有3种选择;第二类:A在第二垄,B有2种选择;第三类:A在第三垄,B有1种选择,同理A、B位置互换,共12种。
3.从6双不同颜色的手套中任取4只,其中恰好有一双同色的取法有________。
(A)240 (B)180 (C)120 (D)60分析:显然本题应分步解决。
(一)从6双中选出一双同色的手套,有6种方法;(二)从剩下的十只手套中任选一只,有10种方法。
(三)从除前所涉及的两双手套之外的八只手套中任选一只,有8种方法;(四)由于选取与顺序无关,因(二)(三)中的选法重复一次,因而共240种。
或:(1)从6双中选出一双同色的手套,有C(1,6)=6种方法(2)从剩下的5双手套中任选两双,有C(2,5)=10种方法(3)从两双中手套中分别拿两只手套,有C(1,2)*C(1,2)=4种方法同样得出共(1)*(2)*(3)=240种。
4.身高互不相同的6个人排成2横行3纵列,在第一行的每一个人都比他同列的身后的人个子矮,则所有不同的排法种数为_______。
分析:每一纵列中的两人只要选定,则他们只有一种站位方法,因而每一纵列的排队方法只与人的选法有关系,共有三纵列,从而有C(6,2)*C(4,2)=90种。
5.在11名工人中,有5人只能当钳工,4人只能当车工,另外2人能当钳工也能当车工。
现从11人中选出4人当钳工,4人当车工,问共有多少种不同的选法?分析:采用加法原理首先要做到分类不重不漏,如何做到这一点?分类的标准必须前后统一。
以两个全能的工人为分类的对象,考虑以他们当中有几个去当钳工为分类标准。
第一类:这两个人都去当钳工,C(7,4)=35种;第二类:这两人有一个去当钳工,C(6,4)*C (5,4)=75种;第三类:这两人都不去当钳工,C(5,4)*C(6,4)=75种。
因而共有185种。
6.现有印着0,l,3,5,7,9的六张卡片,如果允许9可以作6用,那么从中任意抽出三张可以组成多少个不同的三位数?分析:有同学认为只要把0,l,3,5,7,9的排法数乘以2即为所求,但实际上抽出的三个数中有9的话才可能用6替换,因而必须分类。
抽出的三数含0,含9,有4*2*2*2=32种方法;抽出的三数含0不含9,有C(4,2)*2*2=24种方法;抽出的三数含9不含0,有C(4,2)*A(3,3)*2=72种方法;抽出的三数不含9也不含0,有A(4,3)=24种方法。
因此共有32+24+72+24=152种方法。
7.停车场划一排12个停车位置,今有8辆车需要停放,要求空车位连在一起,不同的停车方法是________种。
分析:把空车位看成一个元素,和8辆车共九个元素排列,因而共A(9,9)=362880种停车方法。
3.特殊优先特殊元素,优先处理;特殊位置,优先考虑。
8.六人站成一排,求(1)甲、乙即不再排头也不在排尾数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数分析:(1)按照先排出首位和末尾再排中间四位分步计数第一类:排出首尾和末尾、因为甲乙不再首尾和末尾、那么首尾和末尾实在其它四位数选出两位进行排列、一共有A(4,2)=12种、第二类:由于六个元素中已经有两位排在首尾和末尾、因此中间四位是把剩下的四位元素进行排列,共A(4,4)=24种根据乘法原理得即不再排头也不在排尾数共12*24=288种(2)第一类:甲在排尾,乙在排头,有A(4,4)种方法。
第二类:甲在排尾,乙不在排头,有3*A(4,4)种方法。
第三类:乙在排头,甲不在排尾,有3*A(4,4)种方法。
第四类:甲不在排尾也不再排头,乙不在排头也不再排尾,有6*A(4,4)种方法(排除相邻)。
共A(4,4)+3*A(4,4)+3*A(4,4)+6*A(4,4)=312种。
9.对某件产品的6件不同正品和4件不同次品进行一一测试,至区分出所有次品为止。
若所有次品恰好在第五次测试时被全部发现,则这样的测试方法有多少种可能?分析:本题意指第五次测试的产品一定是次品,并且是最后一个次品,因而第五次测试应算是特殊位置了,分步完成。
第一步:第五次测试的有C(4.1)种可能;第二步:前四次有一件正品有C(6.1)中可能。
第三步:前四次有A(4.4)种可能。
∴共有C(4.1) *C(6.1) * A(4.4)= 576 种可能。
4.捆绑与插空10. 8人排成一队(1)甲乙必须相邻,(2)甲乙不相邻,(3)甲乙必须相邻且与丙不相邻,(4)甲乙必须相邻,丙丁必须相邻,(5)甲乙不相邻,丙丁不相邻分析:(1)甲乙必须相邻,就是把甲乙捆绑(甲乙可交换) 和7人排A(7.7)*2(2)甲乙不相邻,A(8.8)-A(7.7)*2。
(3)甲乙必须相邻且与丙不相邻,先求甲乙必须相邻且与丙相邻A(6.6)*2*2 甲乙必须相邻且与丙不相邻A(7.7)*2-A(6.6)*2*2(4)甲乙必须相邻,丙丁必须相邻 A(6.6)*2*2(5)甲乙不相邻,丙丁不相邻,A(8.8)-[A(7.7)*2*2-A(6.6)*2*2 ]11. 某人射击8枪,命中4枪,恰好有三枪连续命中,有多少种不同的情况?分析:∵连续命中的三枪与单独命中的一枪不能相邻,因而这是一个插空问题。
另外没有命中的之间没有区别,不必计数。
即在四发空枪之间形成的5个空中选出2个的排列,即A(5.2)。
12. 马路上有编号为l,2,3,……,10 十个路灯,为节约用电又看清路面,可以把其中的三只灯关掉,但不能同时关掉相邻的两只或三只,在两端的灯也不能关掉的情况下,求满足条件的关灯方法共有多少种?分析:即关掉的灯不能相邻,也不能在两端。
又因为灯与灯之间没有区别,因而问题为在7盏亮着的灯形成的不包含两端的6个空中选出3个空放置熄灭的灯。
∴共C(6.3)=20种方法。
5.间接计数法13. 三行三列共九个点,以这些点为顶点可组成多少个三角形?分析:有些问题正面求解有一定困难,可以采用间接法。
所求问题的方法数=任意三个点的组合数-共线三点的方法数,∴共76种。
14.正方体8个顶点中取出4个,可组成多少个四面体?分析:所求问题的方法数=任意选四点的组合数-共面四点的方法数,∴共C(8.4)-12=70-12=58个15. 六人排成一排,要求甲在乙的前面,(不一定相邻),共有多少种不同的方法? 如果要求甲乙丙按从左到右依次排列呢?分析:(一)实际上,甲在乙的前面和甲在乙的后面两种情况对称,具有相同的排法数。