航空发动机典型零部件数控加工技术研究
机械加工技术在航空制造中的应用研究

机械加工技术在航空制造中的应用研究随着现代工业技术的不断进步,机械加工已经成为最基础和关键的工艺之一。
在航空制造领域,机械加工技术的应用也越来越成为制造高品质航空器的必要技能。
本文将探讨机械加工技术在航空制造中的应用研究,包括数控加工、高速切削等方面。
一、数控加工技术在航空制造中的应用数控加工技术是目前最先进的机械加工方式之一,其通过计算机控制机床自动进行机械加工,实现高效率、高精度、高稳定性的加工工艺。
在航空制造中,数控加工技术的应用非常广泛,包括机身外壳、发动机、座舱等各个领域。
在机身外壳的制造中,数控加工技术可以实现大型零部件的高精度加工,如滑动门、天窗、整流罩等,增加了飞机的性能和工艺水平。
而在发动机的制造中,数控加工技术可以实现复杂的轴类零件的加工,如转子、叶轮、轴套等,提高了制造工艺的可靠性和生产效率。
此外,在航空制造中,数控加工技术还可以与其他加工方式结合使用,如融合激光切割、熔化沉积等机械加工方式,实现多层次、复合型零件的制造,如结构用内部蜂窝板材、后来再用纤维增强塑料(FRP)等材料进行模具制造。
二、高速切削技术在航空制造中的应用高速切削技术是机械加工中的一种进阶形式,该技术可以極大提高加工效率、精度和表面质量,应用广泛,有能力满足航空制造领域高要求、高精度、高质量零部件的制造工艺。
在航空制造中,高速切削技术的应用范围也十分广泛。
例如航空发动机的涡轮叶片加工迫切需要高速切削的应用技术。
主流的涡轮叶片采用钢或镍基合金等材料材料制成,其加工精度和表面质量要求很高,而高速切削技术能够让叶片在高速加工过程中,发生少量松散或热膨胀,从而实现完美、高精度的加工过程。
高速切削技术在其他航空领域中的应用也十分广泛,例如中厚板材的高速切削、铝合金等轻金属材料的高速切削、复合材料的高速切削等方面,有利于提高零部件表面质量、机床有效利用、降低材料的加工成本等诸多因素。
三、机械加工技术在航空制造中的优势机械加工技术已成为现代制造业的主要技术之一,其在航空制造中的应用优势也十分明显。
数控技术在精密制造中的应用研究

数控技术在精密制造中的应用研究在当今的制造业领域,精密制造已经成为了衡量一个国家工业水平的重要标志之一。
而数控技术作为现代制造业的核心技术之一,在精密制造中发挥着至关重要的作用。
它不仅极大地提高了生产效率和产品质量,还为制造业的创新发展提供了强大的技术支持。
数控技术,简单来说,就是利用数字化的信息对机床运动及加工过程进行控制的一种方法。
通过预先编写好的程序,数控系统能够精确地控制机床的运动轨迹、速度、切削参数等,从而实现对复杂零件的高精度加工。
在精密制造中,数控技术的应用十分广泛。
首先,在航空航天领域,飞机发动机的叶片、航天器的零部件等都需要极高的精度和可靠性。
数控技术能够加工出具有复杂形状和高精度要求的零部件,确保了航空航天设备的性能和安全性。
例如,数控铣床可以加工出具有复杂曲面的叶片,数控车床可以加工出高精度的轴类零件。
其次,在汽车制造行业,发动机缸体、变速箱齿轮等关键零部件的加工也离不开数控技术。
通过数控加工,这些零部件的尺寸精度和表面质量能够得到很好的保证,从而提高汽车的整体性能和可靠性。
此外,数控技术还能够实现汽车零部件的快速生产,满足市场对汽车产品多样化和个性化的需求。
在医疗器械领域,数控技术同样有着重要的应用。
例如,人工关节、心脏起搏器等医疗器械的制造需要极高的精度和生物相容性。
数控加工能够制造出符合人体解剖学结构和生理功能的医疗器械,提高了治疗效果和患者的生活质量。
除了上述领域,数控技术在模具制造、电子设备制造、精密仪器仪表制造等行业也有着广泛的应用。
模具是工业生产中不可或缺的基础工艺装备,而数控技术能够制造出高精度、高复杂度的模具,为各种产品的生产提供了保障。
在电子设备制造中,数控技术可以加工出微小的电子元器件和线路板,满足了电子设备小型化、集成化的发展需求。
为了实现精密制造,数控技术需要具备一系列关键特性。
高精度是数控技术的首要要求。
通过采用高精度的测量系统、先进的控制算法和优质的机床部件,能够将加工误差控制在极小的范围内。
航空发动机典型产品燃烧室机匣加工工艺分析和技术应用

航空发动机典型产品燃烧室机匣加工工艺分析和技术应用本文从某型航空发动机燃烧室机匣的工艺特点出发,结合企业能力现状,对燃烧室机匣的加工工艺进行分析,并在应用过程中结合数控加工装备、三维CAD/CAM软件应用技术进行试验,取得一定的经验和效果。
分享此类型薄壁燃烧室机匣的开发研制过程中可供借鉴的工艺方法和应用技术。
一、前言航空发动机机匣是发动机中的壳体、框架类静子部件,是发动机的重要承力部件。
主要作用是承载发动机零组件重量、承受轴向和径向力,构成气流通道,包容气流、发动机转子,防止转子叶片断裂飞出,起到连接、支承、包容等作用。
本文论述的燃烧室机匣是某型航空发动机热端的重要功能部件,属于典型的的薄壁环形件(见图一),其大端直径约Φ600mm、小端直径约Φ420mm、总高度约290mm、壁厚4.5mm。
工件材料选用13Cr11Ni2W2MoV马氏体不锈钢,硬度HB311~388,热导率与镍基高温合金接近,切削加工时蓄热、应力集中使得塑性变形大,难以加工。
该型号发动机属急需升级换代产品,已经获得国家正式立项和充分的资金支持,前期试制/小批产品性能已经获得用户方的充分肯定,需求极为迫切。
此次为小批转大批生产前的改进试验项目,目的是充分验证该类型产品为满足大批量生产所需的工艺调整和技术应用,打通批产的瓶颈,为向用户迅速提供高质量、高性能产品奠定技术基础。
二、工艺性分析燃烧室机匣壳体薄壁,零件刚性弱,加工过程中易产生振动,加工中易产生变形。
设计基准的形状公差小,主要表面之间相互位置要求的项目多,且位置公差小。
要同时保证这些高精度要求,加工难度很大,完整的工艺分析主要内容需紧扣如下圖表所示,本文篇幅有限主要围绕机加工艺展开。
1、工艺方案确定:前后安装边和筒体内壁壁采用车削加工,机匣的半精车和精车采用数控车削工艺。
安装边上的精密定位孔位置精度要求高,需要采用坐标镗孔加工工艺。
机匣外壁的安装座轮廓型面和安装边上的沉头孔选用数控钻、铰孔和数控铣加工工艺。
航空发动机机匣加工工艺研究

航空发动机机匣加工工艺研究摘要:随着我国综合国力的增强,同时也在促进国产发动机的性能逐渐朝着优良的方向不断发展。
近年来航空发动机的性能及设计结构在不断改进和提高,发动机机匣零件的材料、结构也发生了很大的变化。
本文就航空发动机机匣加工工艺展开探讨。
关键词:航空发动机;机匣;加工工艺1加工工艺特点机匣加工表面主要分为内、外两部分。
由于其外部需要连接到许多如电气、冷却、油路及管路等附件系统,导致其表面形状结构复杂,对机加要求比较高,尤其是对位置和尺寸精度要求较高;另外发动机机匣的内部主要是承载其压气机的涡轮叶片,包括动、静力叶片,这些都是其关键的动力输出部分,所以也对制造精度要求较高。
综上所述,机匣制造加工工艺的难点主要体现在材料切除率高、薄壁易变形、材料难切削和对刀具切削性能要求高等多个方面。
2.1轴数控铣削机匣型面的成形,国内通常是通过在多轴数控铣削设备上加工完成的。
数控机床的出现以及带来的巨大利益,引起世界各国科技界和工业界的普遍重视。
在航空机闸机械加工中,发展数控机床是当前我国机械制造业技术改造的必由之路,是未来工厂自动化的基础。
数控机床的大量使用,需要大批熟练掌握现代数控技术的人员。
数控技术的应用不但给传统制造业带来了革命性的变化,使制造业成为工业化的象征,而且随着数控技术的不断发展和应用领域的扩大,它对国计民生的一些重要行业的发展起着越来越重要的作用。
机匣零件外环形面共分二级,分布有二条环形凸缘,下部有1个纵向小凸缘,两个纵向凸缘对称分布。
由于机匣毛坯是自锻件,加工余量很大,且零件材料难切削,为了保证尺寸加工精度和表面加工质量,防止加工后零件变形。
其外型面加工分层、分块进行,采取合理的走刀路径,采用对称的切削加工余量。
分几次走刀加工到最后尺寸的方法,以减少加工后的变形。
因此,该机匣加工划分三个主要阶段并附加特征工序热处理,以去除材料内应力,防止零件变形。
2.2磨粒流加工磨粒流加工就是用流体作为载体,将具有实际切削技术性能的末了悬浮于其中,形成一个流体磨料,依靠末了相对于被加工材料表面的流动提供能量进行加工分析的一种技术。
航空发动机精锻叶片数字化数控加工技术

航空发动机精锻叶片数字化数控加工技术
航空发动机精锻叶片是航空发动机中重要的组件之一,其质量的优劣直接影响着发动
机的性能和安全性。
实现叶片的数字化数控加工技术是提高叶片加工质量和效率的关键。
数字化数控加工技术是一种通过计算机软件和硬件控制机床加工工艺的技术。
在航空
发动机叶片的加工过程中,数字化数控加工技术可以实现叶片的高精度加工,提高叶片的
加工质量和效率。
数字化数控加工技术可以实现叶片的精确设计和仿真。
通过计算机软件,可以对叶片
进行三维建模和仿真分析,确定叶片的加工工艺和加工参数。
这样可以事先找出存在的问题,并进行修改和优化,提高叶片的加工质量。
数字化数控加工技术可以提高叶片的加工效率。
通过自动化的加工过程,可以减少人
工操作和人为因素的干扰,提高加工效率。
数字化数控加工技术可以实现多轴和多工位加工,提高加工的同时性和效率。
数字化数控加工技术还可以实现加工数据的追踪和记录。
通过计算机软件和控制系统,可以记录叶片的加工过程和参数,实时监测加工状态和质量。
这样可以及时发现异常情况,并进行调整和纠正,确保叶片的加工质量。
航空发动机精锻叶片数字化数控加工技术

航空发动机精锻叶片数字化数控加工技术随着航空业的发展,航空发动机的性能要求也越来越高,发动机的叶片作为航空发动机的核心部件之一,其生产制造技术也在不断的升级完善。
数字化数控加工技术在航空发动机精锻叶片的制造中发挥着重要作用,为了满足高性能、高可靠性和高效率的要求,航空发动机精锻叶片制造技术必须不断创新,数字化数控加工技术的应用为航空发动机的性能提升和制造质量保障提供了有力支持。
航空发动机精锻叶片的特点航空发动机精锻叶片是一种高强度、高温、高压的零件,其制造过程要求十分严格。
航空发动机叶片的组成结构复杂,叶片的形状和曲线也十分复杂,加工难度大,制造工艺要求高,需要具备精密加工能力和高精度的加工设备。
为了满足叶片的高性能和高可靠性要求,叶片的材料通常采用高温合金钢、镍基合金等高强度材料,这些材料不仅具有较高的强度和硬度,而且还具有良好的耐热性和耐腐蚀性,满足航空发动机在高温、高压环境下的工作要求。
叶片的实际工作条件严苛,要求叶片具有较高的动态稳定性和动态强度,因此对叶片的精度和表面质量要求非常高,而数字化数控加工技术正是能够满足这些要求的一种先进技术。
数字化数控加工技术的应用数字化数控加工技术是一种高效、灵活的加工技术,它将数控技术与数字化技术相结合,通过CAD/CAM技术实现产品的数字化设计和加工。
在航空发动机精锻叶片的制造过程中,数字化数控加工技术可以实现叶片的高精度加工和复杂曲线加工,大大提高了叶片的加工效率和加工精度。
数字化数控加工技术的应用,首先需要进行叶片的数字化设计,通过CAD软件对叶片进行三维建模和曲面设计,将叶片的设计数据导入CAM软件,生成数控加工程序。
然后通过数控机床进行零件的加工,在加工过程中,可以实现对叶片的多轴联动加工,能够满足叶片复杂曲线的加工需求,保证了叶片的加工精度和表面质量。
数字化数控加工技术的应用不仅提高了叶片的加工精度和表面质量,还可以实现叶片的批量生产和定制加工,提高了叶片的加工效率,降低了加工成本。
数控技术在航空航天领域的应用及2024年展望

本文将介绍数控技术在航空航天领域的应用现状,分析其对行业发展的影响,并展望2024年航空航天领域中数控技术的发展方向。
一、数控技术在航空航天领域的应用现状航空航天领域是数控技术广泛应用的重要行业之一。
随着航空航天产业的发展,数控技术在飞机制造、发动机制造、航天器制造等方面得到了广泛应用。
飞机制造:数控机床在飞机零部件的加工和装配中扮演着重要角色。
数控机床可以实现复杂结构零件的高精度加工,提高生产效率和产品质量。
同时,数控技术还可以实现自动化装配,降低人工操作的错误率。
发动机制造:航空航天发动机是航空航天领域的核心技术之一。
数控技术在发动机的叶片加工、燃烧室加工等方面发挥着重要作用。
通过数控机床可以实现对复杂曲面的高精度加工和微米级尺寸控制,提高发动机的性能和可靠性。
航天器制造:航天器制造对于精度和质量要求极高,而数控技术可以满足这些要求。
数控机床在航天器结构件、推进器、导航系统等方面的加工中发挥着重要作用。
通过数控机床可以实现对复杂结构的高精度加工和装配,确保航天器的安全和可靠性。
二、数控技术对航空航天领域的影响数控技术在航空航天领域的应用对行业发展产生了积极的影响:提高生产效率:数控技术可以实现自动化加工和装配,大大提高了生产效率。
相比传统的手工操作,数控机床可以快速完成复杂零部件的加工和装配,缩短了生产周期,提高了产能。
提高产品质量:数控技术具有高精度和稳定性的特点,可以保证产品的精度和一致性。
通过数控机床的应用,可以减少人为因素对产品质量的影响,提高产品的可靠性和稳定性。
降低成本:数控技术的应用可以降低人力成本和减少人为错误。
通过自动化加工和装配,可以减少人工操作所需的时间和成本,并且减少了人为操作错误导致的废品率,降低了生产成本。
推动技术创新:航空航天领域对于新材料、新工艺和新技术的需求很大,而数控技术作为一种先进的制造技术,推动了航空航天领域的技术创新。
数控技术的应用促进了航空航天领域的制造工艺和工程技术的进步,为行业的发展提供了技术支持。
先进机械加工技术在航空发动机制造中的应用

先进机械加工技术在航空发动机制造中的应用先进机械加工技术在航空发动机制造中的应用随着航空业的迅速发展,航空发动机的制造要求也越来越高。
为了满足航空发动机的制造要求,各种先进的机械加工技术被应用于航空发动机的制造过程中。
这些先进的机械加工技术在提高生产效率、降低制造成本、提高产品质量和实现设计创新等方面发挥了重要的作用。
本文将重点介绍先进机械加工技术在航空发动机制造中的应用,并对其技术特点和优势进行分析和讨论。
先进机械加工技术在航空发动机制造中的应用主要包括数控加工技术、激光加工技术和高速切削技术等。
数控加工技术是航空发动机制造中最常用的机械加工技术之一。
数控加工技术通过计算机控制加工工具的运动轨迹和加工参数,可以实现复杂零件的高效加工。
航空发动机制造中的许多关键零部件,如涡轮盘、涡轮叶片和涡轮内衬等,需要进行高精度的加工才能满足其工作要求。
数控加工技术可以实现加工精度的大幅提高和加工工艺的优化,从而提高产品的质量和性能。
此外,数控加工技术还可以实现加工过程的自动化和集成化,提高了生产效率和制造成本的控制。
激光加工技术是一种通过高能激光束对材料进行加工的技术,其特点是无接触、无切削力和可非常精细的控制加工区域和深度等。
在航空发动机制造中,激光加工技术主要应用于涡轮盘的开槽、孔洞的加工和涡轮叶片的修整等方面。
由于航空发动机的旋转部件需要在高转速下工作,因此对其平衡性能的要求非常高。
激光加工技术可以实现对涡轮盘上的开槽进行精密加工,提高其平衡性能。
此外,激光加工技术还可以实现对涡轮叶片进行精细修整,优化叶片的气动性能,提高发动机的效率和推力。
高速切削技术是一种通过提高切削速度和切削深度来提高加工效率和降低加工成本的技术。
航空发动机制造中的许多零部件,如转子、压气机叶片和涡轮叶片等,需要通过切削加工来获得其精确的几何形状和表面质量。
传统的切削加工技术由于切削速度较低,加工效率不高,制造成本较高。
而高速切削技术可以实现切削速度的大幅提高,加工效率的显著提升和加工表面质量的改善。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中图分 类号 : T I t l 2 2 ; V 2 6 2 . 3
文 献标 志码 : A
文 章编 号 : 1 0 0 0 — 4 9 9 8 ( 2 0 1 7 ) 0 4 — 0 0 4 6 — 0 4
Abs t r a c t : F he ma n u f a c t ur e o f a e r o e ng i n e pa r i s h a s t h e c h a r a c t e r i s t i c s o f di fi e u h ma t e r i a l p r o c e s s i n g, c o mpl e x s h a p e a n d s t r u c t u r e,e a s i l y d e f o r me d v i b r a t i o n a n d h i g h wo r k i n g a c c ur a c y .I t r e p r e s e n t s t h e s t r e n g t h o f a e o o n t l ’ Y S ma n u f a c t u r i ng t e c hn o l o g y a n d t h e ( 1 e v e l o pme n t a l l e v e l o f n a t i o n a l d e f e n s e mo d e r ni z a t i o n.
零件 为研 究对 象 , 分 析 了这 些 典型零 部件 的材 料和 结 构特性 、 加 工 工艺方 法与 特点 、 加. Y - 装 备等 。 总结 了 航 空发 动机 零件 加 工对数控 机床 性 能 与功能 的要 求 , 并展 望 了航 空发 动机 制造技 术 的发展 趋 势。
关键 词 : 航 空 发 动 机 零 件 数 控 加 工 研 究
a na l y z e t h e ma l e r i a l a n d s t r u c t ur a l c h a r a c t e r i s t i c s o f t h e s e t y p i c a l c o mp o n e n t s ,t h e i r pr o (  ̄ e s s i n g me t ho ds a n d r e a l m’ e s,p r o ( : e s s i n g e qu i t n n e n l e t ( .whi l e s u mma r i z i n g t h e p e r f o r ma nc e s a nd f u n c t i o n s o f t h e CNC ma c h i n e t o o l s r e q ui r e d b y p r o ( ‘ P s s i n g o f t h e a e r o e n g i n e p a r t s .I n a d d i t i o n, t h e d e v e l o p me n t t r e n d o f a e r o e n g i n e n mn u f a c t u r i n g r e e l mo h ) g y wa s p r o s pe c t e d . Ke y W o r d s :Ae r oe ng i ne Par t NC Pr o c e s s i ng St ud y
r o o k a e l ’ o e n g i n e b l a d e ,i mp e l l e r ,e a s i n g a n d d i s c — t y p e o r s h a f t - t y p e p a n s a s t h e o b j e c t S f o r s t u ( 1 y t o
肌 发 动 机 作 为 机 的 动 J 装 , 址 飞f J 【 的心 脏 , j 没 汁 州 州造 技 术 埘 航 _ I 、 l 的 发 眨 起 着 父 键 性 的 f 1 : 川 , 址 体 脱 一 个 家 科 技 水 、 、 : 实 力 和 综 合 乃 的 嘤 忠 之 人 、 技 小= ・ 航 发 动 机 零 P t : 2 7 i 构 复杂 、 制 造 难 度
制约 , 航空 发 动机采 用材 料最 关键 的要 求是 质轻 、 强 度
航 空 发 动 机 典 型 零 部 件 数 控 加 T 技 术 研 究术
口 罗和 平 口 王 彪 口 汲 军
沈 阳机床 股份 有 限公 司 沈阳 1 1 0 1 4 2
摘 要 : 航 空发 动 机 零件 的 制 造 具有 材 料 难加 工 、 形状 结 构 复 杂 、 容 易 变形振 动 、 加 工精 度 高等 特 点, 代 表பைடு நூலகம்着一个 国 家制造技 术 的 实力和 国防现 代化 的发 展 水平 , 以航 空发 动机 叶 片 、 叶轮 、 机 匣、 盘轴 类
发 动 机 零 部 竹: 的制造 特点 突 出表现 存 以 _ F 儿 点 ( 1 )形 状 与 结 构 复 杂 , 大 量 采 用 轻 量 化 的 整 体 溥 结 构 。 ( 2), 一 泛 采用 难 J J u 材 料 受 使 用 条 件 和 环 境 的
l 岛, 代 制 造 、 l 发 腱 的 办 I ; q. 破 称 为 制 造