自动控制原理 (1)讲解

合集下载

自动控制原理课件1

自动控制原理课件1

一、开环控制系统、闭环控制系统和复合控制 系统
(一)开环控制系统 例
概念: 如果控制系统的输出量对系统没有 控制作用,这种系统称为开环控制系统.
输入 控制器
被控对象
输出
一、开环控制系统和闭环控制系统 举例:炉温控制系统
uc
特点:
本系统的输入量是自耦变压器的输出电压uc,输 出量是电阻炉的输出温度T; u唯一对应T;
§1-1 控制理论的发展历程
3、本课程与相关课程的关系 现制 代理 控论
过制 程系 控统
后续课程
各业 其 类课 它 专程
自动控制原理 先修课程 大 学 物 理 微 积 分 积 分 变 换 复 变 函 数 电 子 技 术 电 路 理 论 电 机 拖 动
§1-1 控制理论的发展历程
4、课程的理论体系
给定 环节 比较 环节 校正 环节 放大 环节 执行 机构
§1-2 控制系统的基本概念 (三)关于传递方框图的几点说明
执行机构 直接作用于控制对象(调节机构、传 动装置、电机)
给定 环节 比较 环节 校正 环节 放大 环节 执行 机构 被控 对象
§1-2 控制系统的基本概念 (三)关于传递方框图的几点说明
§1-2 控制系统的基本概念 举例: 液位自动控制系统
手臂,手
+
大 脑
M

目标液位
放大器
§1-2 控制系统的基本概念 一、基本术语 自动控制:在没有人的直接干预下,利用物理
装置对生产设备和工艺过程进行合理的控制,使 被控制的物理量保持恒定或按一定的规律变化。
如液位,炉温,轧辊辊速,带钢张力等控制。
古代
在二次世界大战期间,由于军事上 的需要,雷达和火力控制系统有了 较大的发展,N.Winner在总结前 人成果的基础上发表了《控制论》 一书,标志着控制理论学科的诞生。

自动控制原理知识点

自动控制原理知识点

自动控制原理知识点 The document was finally revised on 2021第一章自动控制的一般概念自动控制的基本原理与方式1、自动控制、系统、自动控制系统◎自动控制:是指在没有人直接参与的情况下,利用外加的设备或装置(称控制装置或控制器),使机器、设备或生产过程(统称被控对象)的某个工作状态或参数(即被控量)自动地按照预定的规律(给定值)运行。

◎系统:是指按照某些规律结合在一起的物体(元部件)的组合,它们相互作用、相互依存,并能完成一定的任务。

◎自动控制系统:能够实现自动控制的系统就可称为自动控制系统,一般由控制装置和被控对象组成。

除被控对象外的其余部分统称为控制装置,它必须具备以下三种职能部件。

测量元件:用以测量被控量或干扰量。

比较元件:将被控量与给定值进行比较。

执行元件:根据比较后的偏差,产生执行作用,去操纵被控对象。

参与控制的信号来自三条通道,即给定值、干扰量、被控量。

2、自动控制原理及其要解决的基本问题◎自动控制原理:是研究自动控制共同规律的技术科学。

而不是对某一过程或对象的具体控制实现(正如微积分是一种数学工具一样)。

◎解决的基本问题:建模:建立系统数学模型(实际问题抽象,数学描述)分析:分析控制系统的性能(稳定性、动/稳态性能)综合:控制系统的综合与校正——控制器设计(方案选择、设计)3、自动控制原理研究的主要内容4、室温控制系统5、控制系统的基本组成◎被控对象:在自动化领域,被控制的装置、物理系统或过程称为被控对象(室内空气)。

◎控制装置:对控制对象产生控制作用的装置,也称为控制器、控制元件、调节器等(放大器)。

◎执行元件:直接改变被控变量的元件称为执行元件(空调器)。

◎测量元件:能够将一种物理量检测出来并转化成另一种容易处理和使用的物理量的装置称为传感器或测量元件(热敏电阻)。

◎比较元件:将测量元件和给定元件给出的被控量实际值与参据量进行比较并得到偏差的元件。

自动控制原理知识点

自动控制原理知识点

第一节自动控制的基本方式一、两个定义:(1) 自动控制:在没有人直接参与的情况卞,利用控制装置使某种设备、装置或生产过程 中的某些物理屋或工作状态能自动地按照预定规律变化或数值运行的方法,称为自动控制。

(2) 自动控制系统:由控制器(含测量元件)和被控对彖组成的有机整体。

或由相互关联、相互制约、相互影响的一些元部件组成的具有自动控制功能的有机整体。

称为自动控制系统。

在控制系统中,把影响系统输出量的外界输入量称为系统的输入量。

系统的输入屋,通常指两种:给定输入量和扰动输入量。

给定输入量,又常称为参考较输入量,它决定系统输出量的要求值或某种变化规律。

扰动输入量,又常称为干扰输入量,它是系统不希望但又客观存在的外部输入量,例如,电 源电压的波动、环境温度的变化、电动机拖动负载的变化等,都是实际系统中存在的扰动输 入量。

扰动输入量影响给定输入量对系统输出量的控制。

自动控制的基本方式二、基本控制方式(3种)1、开环控制方式⑴定义:控制系统的输出量对系统不产生作用的控制方式,称为开环控制方式。

具有这种控制方式的有机整体,称为开坏控制系统。

如果从系统的结构角度看,开环控制方式也可表达为,没有系统输出量反馈的控制方式。

⑵职能方框图任何开坏控制系统,从组成系统元部件的职能角度看,均可用下面的方框图表示。

2、闭坏控制方式(1)定义:系统输出量直接或间接地反馈到系统的输入端,参予了系统控制的方式,称为闭坏控制方式。

如果从系统的结构看,闭环控制方式也可表达为,有系统输出量反馈的控制方式。

自动控制的基本方式工作原理开环调速结构基础上引入一台测速发电机,作为检测系统输出量即电动机转速并转换为 电压。

反馈电压与给定电压比较(相减)后,产生一偏差电压,经电压和功率放人器放大后去控制 电动机的转速。

当系统处于稳定运行状态时,电动机就以电位器滑动端给出的电压值所对应的希望转速 运行。

当系统受到某种干扰时(例如负载变人),电动机的转速会发生变化(下降),测速反馈扰动输入量输出量电压跟着变化(变小),由于给定电压值未变,偏差电压值发生变化(变人),经放人后使电动机电枢电压变化(提高),从而电动机转速也变化(上升),去减小或消除由于干扰引起的转速偏差。

《自动控制原理教学课件》第1章绪论

《自动控制原理教学课件》第1章绪论
通信技术研究所
:19
常用术语: (1)系统输出:被控变量 (2)给定值(参考输入):系统的给定输入,由 控制者决定被控变量的期望值。 (3)扰动:系统不需要而又难于避免的输入,它 使得被控量偏离给定值。扰动即可来自系统内部又 可来自外部 (4)偏差:给定值-测量值
通信技术研究所
:20
ห้องสมุดไป่ตู้
前向通路:信号从输入端沿箭头方向到达输出端的 传输通路。 主反馈通路:系统输出量经测量装置反馈到输入端 的传输通路。
通信技术研究所
:33
练习
一、名词解释 1.自动控制 2.闭环控制 3.自动控制系统 二.填空 1.典型的自动控制系统由 、 、 、 、 组成。 2.对控制系统系统性能评价从三个方面进行,即 三个基本要求_______、_______ 、________ 。 3.系统中需要加以控制的目标装置,称__________ 。 4.__ __是系统能否正常工作的前提条件;_ _反映 系统在动态过程中系统跟踪控制信号或抑制扰动的能力; 稳态误差越小的系统,说明系统的_______ _越好。
通信技术研究所
:24
按描述系统的数学模型分类 (1)线性系统 (2)非线性 按控制系统传递信号性质 (1)连续系统 (2)离散系统 按系统参数是否随时间变化 (1)定常系统
d nc d n1c dc d mr d m1r dr an n an1 n1 a1 a0c bm m bm1 m1 b1 b0 r dt dt dt dt dt dt
通信技术研究所
:23
1.2.2 其他分类 按输入信号特征分类 (1)恒值系统(自稳定系统) c(t ) r (t ) , r (t ) 常数 控制任务: 分析设计重点:研究干扰对被控对象的影响, 克服扰动 (2)随动系统 控制任务: c(t ) r (t ) r (t ) 随机变化 分析设计重点:系统跟踪的快速性、准确性 (3)程序控制系统 控制任务: 预先规定时间函数变化

孙炳达版 《自动控制原理》第1章 自动控制系统的基本概念-1

孙炳达版 《自动控制原理》第1章 自动控制系统的基本概念-1

1.1 自动控制的基本方式
3、复合控制方式 开环控制+闭环控制 两种结构:按输入信号补偿 按扰动信号补偿
1.1 自动控制的基本方式
4、控制方式比较 (1) 从系统组成结构看,开环控制方式简单,复 合控制方式复杂,闭环控制方式介于两者间; (2) 从性能看,开环控制方式较差,闭环控制方 式较好;复合控制方式最好;
+ 5 ΔU -5 功 率 放 大 器
1.1 自动控制的基本方式
方法一:人工控制 眼(观察) 脑(判断) 手(操作) 目的:减少或消除Δh
1.1 自动控制的基本方式
方法二:自动控制 受控对象:水池; 输出量:实际水位(h实); 输入量:要求水位(h要); 浮子——检测装置; 控制电源——检测Δh,转变为电信号; 电动机——执行机构; 干扰输入量:对系统输出起反作用的输入量, 例如功率放大器信号的飘移。
开环调速结构基础上引入一台测速发电机,作为检测系统 输出量即电动机转速并转换为电压。 反馈电压与给定电压比较 (相减)后,产生一偏差电压, 经电压和功率放大器放大后去控制电动机的转速。 当系统处于稳定运行状态时,电动机就以电位器滑动 端给出的电压值所对应的希望转速运行。 当系统受到某种干扰时(例如负载变大),电动机的转速 会发生变化(下降),测速反馈电压跟着变化(变小),由于 给定电压值未变,偏差电压值发生变化(变大),经放大后 使电动机电枢电压变化(提高),从而电动机转速也变化(上 升),以减小或消除由于干扰引起的转速偏差。
1.1 自动控制的基本方式
基本名词:
1 控制器:实现控制功能的装置; 2 被控对象:被控制的设备或机械; 3 被控量(输出量):被控对象内要求自动控 制的物理量; 4 输入量:影响系统输出量的外界输入,包括 给定输入量和扰动输入量。

自动控制原理课件第一章 胡寿松

自动控制原理课件第一章 胡寿松

4
1.1.3 反馈控制原理 自动控制系统: 为实现各种控制任务, 自动控制系统: 为实现各种控制任务,将被控对象和控制装置按 照一定的方式连接起来的一个有机总体. 照一定的方式连接起来的一个有机总体. 反馈控制: 反馈控制: 在自动控制系统中将被控量以负反馈的形式与输入量 进行比较,并利用偏差来不断消除偏差的控制过程. 进行比较,并利用偏差来不断消除偏差的控制过程. 人本身就是一个具有高度复杂控制能力的反馈控制系统
+
电动机
RW
-
Up
>
K2 SD
i
M
fz
Ua D 减速器 CF n
K1
调速系统( 调速系统(闭环)
∆U
UCF Ur
E
Ur + UCF -
∆U
> K1
USD
SD
Up CF
> K2
Ua
D
n
调速系统( 图1-6 调速系统(闭环)及其职能方块图
11
闭环系统的特点: 闭环系统的特点: 利用偏差消除偏差; ① 利用偏差消除偏差; 能抑制内部或外部扰动对系统的影响, ② 能抑制内部或外部扰动对系统的影响,可用低成本元件构 成高精度系统; 成高精度系统; 稳定性是个重要问题。 ③ 稳定性是个重要问题。 注意: 注意: 在实际系统中,一个元件常兼有两种或两种以上的职能; ① 在实际系统中,一个元件常兼有两种或两种以上的职能; 上述元件不一定都是电气元件,有时可以是机械、气动、 ② 上述元件不一定都是电气元件,有时可以是机械、气动、 液压等元件,从而可以构成机械、气动、液压等控制系统, 液压等元件,从而可以构成机械、气动、液压等控制系统,但其工 作原理都是一致的。 作原理都是一致的。 12

第1章--自动控制原理课件

第1章--自动控制原理课件
45
下面从系统特性角度分类。 一、按系统构成元件是否线性分类 1 线性控制系统 由线性元件构成的系统是线性控制系统。或者 说,如果系统满足叠加原理,则称其为线性系统。 2 非线性控制系统 在控制系统中,如果有一个以上的元件具有非 线性,则称这个系统为非线性控制系统。或者说, 如果不能应用叠加原理,则系统是非线性的。 严格地说,绝对的线性控制系统是不存在的。 为了简化,在一定条件下,可以对某些非线性特性 作线性化处理。这样,非线性控制系统就可以近似 为线性控制系统。
22
指出:被控对象、测量元件、比较机构、放大机构 和执行机构 该系统方框图:
23
三、方框图的画法: 用方框表示系统中的各个组成部件,在每个 方框中填入它所表示部件的名称或其功能函数的 表达式,而不必画出它们的具体结构。 根据信号在系统中的传递方向,用有向线段 依次把它们连接起来,就得到整个系统的框图。
3
经典控制理论(20世纪60年代以前):主 要解决单输入单输出问题,所研究的系统多半 是线性定常系统。 现代控制理论:20世纪60年代, 随着高精 度数字计算机的诞生,为解决复杂控制系统提 供了实现上的可能性。现代控制理论涉及多变 量控制系统、最优控制理论、系统辨识与模式 识别、最优估计、自适应控制、自学习控制、 模糊控制、专家系统、神经元及其网络控制等 等。
4
第二节 自动控制系统的一般概念
一、自动控制技术及其应用
1 自动控制: 在没有人直接参与的条件下,通过 控制器使被控对象或过程自动地按 要求的规律运行。 2 自动控制系统: 能够完成自动控制功能的基本体 系,称为自动控制系统。 3 自动控制理论: 分析与综合自动控制系统的理论称 为自动控制理论。 4 应用: 自动控制技术已经应用在工程、军事和科 学技术等各个领域,包括:航空、航天、 航海、冶金、机械、能源、电子、生物、 医疗、化工、石油、建筑等。 5

自动控制原理名词解释

自动控制原理名词解释

1.控制概念(1)开环控制:开环控制是最简单的一种控制方式。

它的特点是,按照控制信息传递的路径,控制量与被控制量之间只有前向通路而没有反馈通路。

闭环控制:凡是将系统的输出量反送至输入端,对系统的控制作用产生直接的影响,都称为闭环控制系统或反馈控制系统。

复合控制:是开、闭环控制相结合的一种控制方式。

(2)反馈:指将系统的输出返回到输入端并以某种方式改变输入,进而影响系统功能的过程,即将输出量通过恰当的检测装置返回到输入端并与输入量进行比较的过程。

(3)传递函数:在零初始条件下,系统输出信号的拉手变换与输出信号的拉氏变换的比。

(4)被控对象:指需要给以控制的机器、设备或生产过程。

执行机构:一种能提供直线或旋转运动的驱动装置,它利用某种驱动能源并在某种控制信号作用下工作。

(5)线性化:a条件:连续且各阶导数存在 b方法:工作点附近泰勒级数展开。

2.时域指标(1)上升时间tr:响应从终值10%上升到终值90%所需时间;对有振荡系统亦可定义为响应从零第一次上升到终值所需时间。

上升时间是响应速度的度量。

峰值时间tp:响应超过其终值到达第一个峰值所需时间。

调节时间ts:响应到达并保持在终值内所需时间。

(2)超调量σ%:响应的最大偏离量h(tp)与终值h(∞)之差的百分比。

振荡次数:是在阶跃信号作用下,系统在达到指定deta范围下,系统所震荡的总次数。

(3)动态降落:系统稳定运行时,突然加一个扰动量N,在过度过程中引起输出量的最大降落值Cmax称为动态降落。

恢复时间:系统从波动回复到稳态时候所需要的时间。

(4)稳态误差:对单位负反馈系统,当时间t趋于无穷大时,系统对输入信号响应的实际值与期望值(即输入量)之差的极限值,称为稳态误差,它反映系统复现输入信号的(稳态)精度。

3.频域特性(1)频率特性:对于线性系统来说,当输入信号为正弦信号时,稳态时的输出信号是一个与输入信号同频率的正弦信号,不同的只是其幅值与相位,且幅值与相位随输入信号的频率不同而不同。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

自动控制原理上机实验指导书王芳、杨志超编写南京工程学院电力工程学院二〇〇七年二月目录Simulink仿真集成环境简介 (2)实验一典型环节的性能分析 (11)实验二二阶系统的性能分析 (14)实验三自动控制系统的稳定性和稳态误差分析 (17)实验四自动控制系统根轨迹的分析 (22)实验五自动控制系统的频域分析 (27)实验六控制系统的校正及设计 (32)实验七非线性系统的稳定性分析 (39)Simulink仿真集成环境简介Simulink是可视化动态系统仿真环境。

1990年正式由Mathworks公司引入到MATLAB中,它是Slmutation 和Link的结合。

这里主要介绍它的使用方法和它在控制系统仿真分析和设计操作的有关内容。

1、进入Simulink操作环境双击桌面上的MATLAB图标,启动MATLAB,进入开发环境,如图0-1所示:图0-1 MATLAB开发环境从MATLAB的桌面操作环境画面进入Simulink操作环境有多种方法,介绍如下:①点击工具栏的Simulink图标,弹出如图0-2的图形库浏览器画面。

②在命令窗口键入“simulink”命令,可自动弹出图形库浏览器。

上述两种方法需从该画面“File”下拉式菜单中选择“New/Model”,或点击图标,得到图0-3的图形仿真操作画面。

③从“File”下拉式菜单中选择“New/Model”,弹出图0-3所示的未命名的图形仿真操作画面。

从工具栏中点击图形库浏览器图标,调出图0-2的图形库浏览器画面。

图0-3用于仿真操作,图0-2的图形库用于提取仿真所需的功能模块。

图0-2 Simulink图形库浏览器画面图0-3 simulink仿真操作环境画面2、提取所需的仿真模块在提取所需仿真模块前,应绘制仿真系统框图,并确定仿真所用的参数。

图0-2中的仿真用图形库,提供了所需的基本功能模块,能满足系统仿真的需要。

该图形库有多种图形子库,用于配合有关的工具箱。

下面将对本书中实验可能用到的功能模块作一个简单介绍。

(1)Sources(信号源模块组)点击图0-2图形库浏览器画面中的Sources,界面右侧会出现各种常用的输入信号,如图0-4所示。

图0-4信号源模块组·In(输入端口模块)——用来反映整个系统的输入端子,这样的设置在模型线性化与命令行仿真时是必需的。

·Signal Generator(信号源发生器)——能够生成若干种常用信号,如方波信号、正弦波信号、锯齿波信号等,允许用户自由调整其幅值、相位及其它信号。

·From File(读文件模块)和From Workspace(读工作空间模块)——两个模块允许从文件或MATLAB工作空间中读取信号作为输入信号。

·Clock(时间信号模块)——生成当前仿真时钟,在于事件有关的指标求取中是很有意义的。

·Constant(常数输入模块)——此模块以常数作为输入,可以在很多模型中使用该模块。

·Step(阶跃输入模块)——以阶跃信号作为输入,其幅值可以自由调整。

·Ramp(斜坡输入模块)——以斜坡信号作为输入,其斜率可以自由调整。

·Sine Wave(正弦信号输入模块)——以正弦信号作为输入,其幅值、频率和初相位可以自由调整。

·Pulse Genetator(脉冲输入模块)——以脉冲信号作为输入,其幅值和脉宽可以自由调整。

(2)Continuous (连续模块组)连续模块组包括常用的连续模块,如图0-5所示。

图0-5 连续模块组·Derivative (微分器)——此模块相当于自动控制系统中的微分环节,将其输入端的信号经过一阶数值微分,在其输出端输出。

在实际应用中应该尽量避免使用该模块。

·Integrator (积分器)——此模块相当于自动控制系统中的积分环节,将输入端信号经过数值积分,在输出端输出。

·Transfer Fcn (传递函数)——此模块可以直接设置系统的传递函数,以多项式的比值形式描述系统,一般形式为11101110()m m m m n n n b s b s b s b G s s a s a s a ----++++=++++,其分子分母多项式的系数可以自行设置。

·Pole-Zero (零极点)——将传递函数分子和分母分别进行因式分解,变成零极点表达形式1212()()()()()()()m n s z s z s z G s Ks p s p s p ---=---,其中i z (系统的零点)、j p (系统的极点)可以自行设置。

·Transport Delay (时间延迟)——此模块相当于自动控制系统中的延迟环节,用于将输入信号延迟一定时间后输出,延迟时间可以自行调整。

(3)Math Operations (数学函数模块组)数学函数模块组包含各种数学函数运算模块,如图0-6所示。

·Gain (增益函数)——此模块相当于自动控制系统中的比例环节,输出信号等于输入信号的乘以模块中种指定的数值,此数值可以自行调整。

·Sum (求和模块)——此模块相当于自动控制系统中的加法器,将输入的多路信号进行求和或求差。

·其它数学函数,如Abs(绝对值函数)、Sign(符号函数)、Rounding Function(取整模块)等。

图0-6 数学函数模块组(4)Sinks(输出池模块组)输出池模块组包含那些能显示计算结果的模块,如图0-7所示。

图0-7 输出池模块组·Out(输出端口模块)——用来反映整个系统的输出端子,这样的设置在模型线性化与命令行仿真时是必需的,另外,系统直接仿真时这样的输出将自动在MATLAB工作空间中生成变量。

·Scope(示波器模块)——将其输入信号在示波器中显示出来。

·x-y Graph(x-y示波器)——将两路输入信号分别作为示波器的两个坐标轴,将信号的相轨迹显示出来。

·To Workspace(工作空间写入模块)——将输入的信号直接写到MATLAB的工作空间中。

·To File(写文件模块)——将输入的信号写到文件中。

·Display(数字显示模块)——将输入的信号以数字的形式显示出来。

·Stop Simulation(仿真终止模块)——如果输入的信号为非零时,将强行终止正在进行的仿真过程。

·Terminator(信号终结模块)——可以将该模块连接到闲置的未连接的模块输出信号上,避免出现警告。

从图0-2中用鼠标点击打开所需子图形库,用鼠标选中所需功能模块,将其拖曳到图0-3中的空白位置,重复上述拖曳过程,直到将所需的全部功能模块拖曳到图0-3中。

拖曳时应注意下列事项:(1)根据仿真系统框图,选择合适的功能模块进行拖曳,放到合适的位置,以便于连接。

(2)对重复的模块,可采用复制和粘贴操作,也可以反复拖曳。

(3)功能模块和图0-3的大小可以用鼠标移动到图标或图边,在出现双向箭头后进行放大或缩小的操作。

(4)选中功能模块的方法是直接点击模块,用鼠标选定所需功能模块区域来选中区域内所有功能模块和连接线,点击选中,并按下“shift”键,再点击其它功能模块。

3、功能模块的连接根据仿真系统框图,用鼠标点击并移动所需功能模块到合适的位置,将鼠标移到有关功能模块的输出端,选中该输出端并移动鼠标到另一个功能模块的输入端,移动时出现虚线,到达所需输入端时,释放鼠标左键,相应的连接线出现,表示该连接已完成。

重复以上的连接过程,直到完成全部连接,组成仿真系统。

4、功能模块参数设置使用者需设置功能模块参数后,方可进行仿真操作。

不同功能模块的参数是不同的,用鼠标双击该功能模块自动弹出相应的参数设置对话框。

例如,图0-8是Transfer Fcn(传递函数)功能模块的对话框。

功能模块对话框由功能模块说明和参数设置框组成。

功能模块说明框用于说明该功能模块使用的方法和功能,参数框用于设置该模块的参数。

Transfer Fcn的参数框由分子和分母多项式两个编辑框组成,在分子多项式框中,用户可输入系统模型的分子多项式,在分母多项式框中,输入系统模型的分母多项式。

设置功能模块的参数后,点击OK进行确认,将设置的参数送仿真操作画面,并关闭对话框。

图0-8 Transfer Fcn(传递函数)模块参数设置对话框5、仿真器参数设置点击图0-3操作画面“Simulation”下拉式菜单“Simulation Parameters…”选项,弹出如图0-9所示的仿真参数设置画面。

共有Solver、Workspace I/O、Diagnostics、Advanced和Real-Time Workshop等五个页面。

在Solver中设置Solver Type、Solver(步长)等。

仿真操作时,可根据仿真曲线设置终止时间和最大步长,以便得到较光滑的输出曲线。

6、示波器参数设置当采用示波器显示仿真曲线时,需对示波器参数进行设置。

双击Scope模块,弹出如图0-10所示的示波器显示画面,点击画面的图标,弹出如图0-11所示的示波器属性对话框,分2个页面,用于设置显示坐标窗口数、显示时间范围、标记和显示频率或采样时间等。

时间范围可以在示波器属性对话框里的General页中的Time range设置,设置值应与仿真器终止时间一致,以便最大限度显示仿真操作数据。

鼠标右键点击示波器显示窗口,从弹出菜单选择“Autoscale”,或直接点击图标,可在响应曲线显示后自动调整纵坐标范围;从弹出菜单选择“Save current axes settings”,或直接点击图标,将当前坐标轴范围的设置数据存储。

此外,还有打印、放大或恢复等操作。

图0-9 仿真参数设置画面图0-10 示波器显示画面图0-11 示波器属性对话框7、运行仿真模型编辑好后,点击图0-3操作画面“Simulation”下拉式菜单“start”或“startSimulation”按钮运行,双击Scope模块,显示输出曲线。

8、对数据作后续处理当仿真任务比较复杂时,需要将Simulation生成的数再导入到工作空间进行处理和分析,仿真结束后,输出结果通过“To workspace”传送到工作空间中,在工作空间窗口中能看到这些变量,使用“whos”命令能看到这些变量的详细信息。

另外,“To file”、“From file”模块能实现文件与Simulink的数据传输。

实验一典型环节的性能分析一、实验目的1、熟悉各种典型环节的阶跃响应曲线;2、了解参数变化对典型环节动态特性的影响。

相关文档
最新文档