自动控制原理 典型系统分析
自动控制原理实验一 典型系统的时域响应和稳定性分析

实验一典型系统的时域响应和稳定性分析一、实验目的1.研究二阶系统的特征参量(ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉Routh判据,用Routh判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD-ACC+教学实验系统一套。
三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。
图1-1(2)图1-2(3) 理论分析系统开环传递函数为:G(s)=K1T0⁄s(T1s+1)开环增益:K= K1T0⁄先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中由图1-2,可以确地1-1中的参数。
T0= 1s , T1= 0.1s ,K1= 200R , K= 200R系统闭环传递函数为:W(s)=5Ks2+5s+5K其中自然振荡角频率:?n ω= 10√10R;阻尼比:?ζ= √10R402.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。
图1-3(2) 模拟电路图:如图1-4所示。
图1-4(3) 理论分析系统的开环传函为: G(s)H(s)=20K s 3+12s 2+20s系统的特征方程为:1()()0G s H s += : s 3+12s 2+20s+20K=0 (4) 实验内容实验前由Routh 判断得Routh 行列式为:S 3 1 20 S 2 12 20K S 1 20-5/3*K 0 S 0 20K为了保证系统稳定,第一列各值应为正数,因此可以确定系统稳定 K 值的范围 : 0<K <12 R >41.7k系统临界稳定K: K=12 R =41.7k 系统不稳定K 值的范围: K >12 R <41.7k四、实验步骤1)将信号源单元的“ST ”端插针与“S ”端插针用“短路块”短接。
《自动控制原理》第八章 非线性控制系统分析

第八章 非线性控制系统分析8-1 非线性控制系统概述1. 研究非线性控制理论的意义以上各章详细地讨论了线性定常控制系统的分析和设计问题。
但实际上,理想的线性系统并不存在,因为组成控制系统的各元件的动态和静态特性都存在着不同程度的非线性。
以随动系统为例,放大元件由于受电源电压或输出功率的限制,在输入电压超过放大器的线性工作范围时,输出呈饱和现象,如图8-l(a)所示;执行元件电动机,由于轴上存在着摩擦力矩和负载力矩,只有在电枢电压达到一定数值后,电机才会转动,存在着死区,而当电枢电压超过一定数值时,电机的转速将不再增加,出现饱和现象,其特性如图8-1(b)所示;又如传动机构,受加工和装配精度的限制,换向时存在着间隙特性,如图8-1(c)所示。
在图8-2所示的柱形液位系统中,设H 为液位高度,Q i为液体流入量,Q o 为液体流出量,C 为贮槽的截面积。
根据水力学原理0Q k H = (8-1)其中比例系数k 是取决于液体的粘度和阀阻。
液位系统的动态方程为0i i dH CQ Q Q k H dt =-=-显然,液位H 和液体输入量Q i 的数学关系式为非线性微分方程。
由此可见,实际系统中普遍存在非线性因素。
当系统中含有一个或多个具有非线性特性的元件时,该系统称为非线性系统。
一般地,非线性系统的数学模型可以表示为:(,,...,,)(,,...,,)n m n m d y dy d r dr f t y g t r dt dt dt dt =(8-3)其中f(·)和g(·)为非线性函数。
当非线性程度不严重时,例如不灵敏区较小、输入信号幅值较小、传动机构间隙不大时,可以忽略非线性特性的影响,从而可将非线性环节视为线性环节;当系统方程解析且工作在某一数值附近的较小范围内时,可运用小偏差法将非线性模型线性化。
例如,设图8—2液位系统的液位H 在H 0附近变化,相应的液体输入量Q i 在Q i0,附近变化时,可取ΔH =H −H 0,ΔQ i =Q i −Q i0,对√H 作泰勒级数展开。
自动控制原理及应用

通过频率域中的系统传递函数分析系统的性能,包括幅值裕度、相位裕度等指标。
时域分析法
1
2
3
通过绘制根轨迹图来设计控制系统,确定控制器参数。
根轨迹法
通过频率域分析来确定控制系统参数,包括幅值裕度和相位裕度等。
频率法
通过建立系统的状态空间模型来进行系统分析和设计。
状态空间法
03
CHAPTER
03
02
01
05
CHAPTER
自动控制面临的挑战与未来发展
总结词
随着系统的日益复杂化,如何实现精确、稳定、高效的复杂系统控制已成为自动控制领域的重要挑战。
要点一
要点二
详细描述
复杂系统控制的研究涉及多个领域,包括非线性控制、时变控制、多变量控制等。现代控制理论和方法的发展为解决这些复杂系统的控制问题提供了有效手段。
总结词
自适应控制是自动控制领域的重要分支,能够有效地处理系统参数不确定或变化的情况。
详细描述
自适应控制算法的设计和应用涵盖了各种领域,如航空航天、机器人、工业过程控制等。通过实时调整控制策略,自适应控制系统能够适应环境变化,提高系统的鲁棒性和适应性。
总结词
分布式控制系统具有高可靠性、可扩展性和灵活性,是实现大规模、复杂系统控制的有效途径。
自动控制的应用实例
温度控制系统是自动控制原理在工业和日常生活中的应用之一,其实现方式主要包括温度传感器、控制器和执行器。
总结词
温度控制系统是通过温度传感器监测温度,将温度信号转换为电信号传递给控制器,控制器根据预设的温度值和当前温度值的差异,输出控制信号给执行器,执行器根据控制信号调节加热或冷却设备,以实现温度的自动控制。
详细描述
自动控制原理第8章_非线性控制系统分析

B1 1 3 2 N ( A) A A 2 16
8.2.3 典型非线性特性得描述函数
1.饱和特性的描述函数
X(t) X(t)
kA sin t 0 ω t 1 x(t ) ka b ω t 1 2
X(t)是单值奇函数,所以A1=0
非线性环节的描述函数总是输入信号幅值A的函数, 一般也是频率的函数,因此,描述函数一般记为
N ( A, j )
非线性元件的描述函数或等效幅相频率特性与输入 的正弦振荡的振幅A有关,这是非线性特性本质的反 映。它与线性环节的情况正好相反,线性环节的幅 相特性(频率特性)与正弦输入的幅值无关。
8.2.2描述函数
4 B1 [ kA sint sinω td (ω t ) ka sinω td (ω t )] π
1
e(t)
0
4kA 4ka sin2 d π π
1
2
1
0
4kA 1 1 4ka ( sin 2 1 ) cos 1 2 4
2k a a a A[arcsin( ) 1 ( )2 ] A A A
8.1.4
继电器特性
8.1.4
继电器特性
(t ) 0 m a e(t ) a, e 0 , 0 , (t ) 0 a e ( t ) m a , e x(t ) bsign[e(t )], e(t ) a b , e(t ) m a, e (t ) 0 (t ) 0 b , e(t ) m a, e
(6)气动或液压滑阀的搭接段。 放大器的输出饱和或输出限幅
8.1.3
自动控制原理第三节2_高阶系统

例如:(s)
(s2
n2(s z) 2 ns n2 )(s
p)
如果: z 5以及 p 5
n
n
z p
则:
(s)
p(s2
z n 2 2 ns n2 )
n
j d jd
说明:假设输入为单位阶跃函数,则化简前后的稳态值如下
lim s 1 s (s2
s0
n2(s z) 2 ns n2 )(s
[例如]: p1,2 1 n1 jn1
1
2 1
jd
为某高阶系统
的主导极点,则单位阶跃响应近似为:
c(t) a0 et (1 cosdt 1 sin dt)
利用主导极点的概念可以对高阶系统的特性做近似的估计分析。 高阶系统近似简化原则: 在近似前后,确保输出稳态值不变;
在近似前后,瞬态过程基本相差不大。
阶系统的单位阶跃响应取决于闭环系统的零、极点分布。
[定性分析]:
对于闭环极点全部位于s左半平面的高阶系统(否则系统不 稳定),极点为实数(指数衰减项)和共轭复数(衰减正弦项) 的衰减快慢取决于极点离虚轴的距离。远,衰减的快;近,衰 减的慢。所以,近极点对瞬态响应影响大。
高阶系统分析,主导极点
系数 a j , l , l 取决于零、极点分布。有以下几种情况: 若极点远离原点,则系数小; 极点靠近一个零点,远离其他极点和零点,系数小; 极点远离零点,又接近原点或其他极点,系数大。
C(s)
(s)
1 s
(s2
n2 p3 2 ns n2 )(s
p3 )
1 s
1 s
s2
A1s A2
2 ns n2
s
A3 p3
式中:A1, A2 , A3 系)有关。
自动控制原理实验

2014-2015学年第二学期自动控制原理实验报告姓名:王丽学号:20122527班级:交控3班指导教师:周慧实验一:典型系统的瞬态响应和稳定性1. 比例环节的阶跃响应曲线图(1:1)比例环节的阶跃响应曲线图(1:2)2. 积分环节的阶跃响应曲线图(c=1uf)3. 比例积分环节的阶跃响应曲线图(c=1uf)比例积分环节的阶跃响应曲线图(c=2uf)4. 惯性环节的阶跃响应曲线图(c=1uf)惯性环节的阶跃响应曲线图(c=2uf)5. 比例微分环节的阶跃响应曲线图(r=100k)比例微分环节的阶跃响应曲线图(r=200k)6. 比例积分微分环节的阶跃响应曲线图(r=100k)比例积分微分环节的阶跃响应曲线图(r=200k)实验结论1. 积分环节的阶跃响应曲线图可以看出,积分环节有两个明显的特征:(1)输出信号是斜坡信号(2)积分常数越大,达到顶峰需要的时间就越长2. 比例积分环节就是把比例环节与积分环节并联,分别取得结果之后再叠加起来,所以从图像上看,施加了阶跃信号以后,输出信号先有一个乘了系数K的阶跃,之后则逐渐按斜坡形式增加,形式同比例和积分的加和是相同的,因而验证了这一假设。
3. 微分环节对于阶跃信号的响应,在理论上,由于阶跃信号在施加的一瞬间有跳变,造成其微分结果为无穷大,之后阶跃信号不再变化,微分为0,表现为输出信号开始衰减。
4. PID环节同时具备了比例、积分、微分三个环节的特性,输出图像其实也就是三个环节输出特性的叠加。
三个环节在整个系统中的工作实际上是相互独立的,这也与它们是并联关系的事实相符合。
5.惯性环节的传递函数输出函数:可以看到,当t→∞时,r(t)≈Ku(t),这与图中的曲线是匹配的。
实验心得通过本实验我对试验箱更加熟悉,会连接电路;更直观的看到电路的数学模型和电路的响应曲线图三者之间的关系,这让我能够将在此之前所学的知识联系到一起。
不管是什么电路,如果要研究它首先就是得到它的数学模型,然后再通过对数学模型的研究间接的来研究该电路。
自动控制原理(Ⅰ型二阶系统的典型分析与综合设计)课程设计

指导教师评定成绩:审定成绩:重庆邮电大学移通学院自动化系课程设计报告设计题目:Ⅰ型二阶系统的典型分析与综合设计学生姓名:专业:班级:学号:指导教师:设计时间:2010 年 12 月重庆邮电大学移通自动化系制重庆邮电大学移通学院《自动控制原理》课程设计(简明)任务书-供08级自动化专业、电气工程与自动化专业本科生用引言:《自动控制原理》课程设计是该课程的一个重要教学环节,它有别于毕业设计,更不同于课堂教学。
它主要是培养学生统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和基本方法,对工程实际系统进行完整的全面的分析和综合。
一、设计题目:Ⅰ型二阶系统的典型分析与综合设计二、系统说明:该Ⅰ型系统物理模拟结构如下图:其中R0=100KΩ; C1=C2=10-5F;R2=1/2 R0R f为线性滑动电位器,可调范围为:10-1R0~ 104R0 ,设计过程中可忽略各种干扰,比如:运算放大器的零点漂移,环节间的负载效应,外界强力电力设备产生的电磁干扰等,均可忽略。
三、系统参量:系统输入信号:r(t);系统输出信号:y(t);四、设计指标:设定:输入为r(t)=a+bt(其中:a=5rad/secb=4rad/sec)在保证静态指标K v=5(e ss≤0.8)的前提下,要求动态期望指标:σp% ≤8.5% ;t s≤2sec五、基本要求:1. 建立系统数学模型——传递函数;2. 利用频率特性法分析和综合系统(学号为单号同学做);3. 利用根轨迹法分析和综合系统(学号位双号同学做);4. 完成系统综合前后的有源物理模拟(验证)实验;5. 完成系统综合前后的计算机仿真(验证)实验;六、设计缴验:1. 课程设计计算说明书一份;2. 原系统组成结构原理图一张(自绘);3. 系统分析,综合用BODE图(或根轨迹图)各一张;4. 系统综合前后的模拟图各一张(附实验结果图)各一张;5. 计算机仿真程序框图一张;6. 计算机仿真程序清单一份(附仿真实验结果图);7. 封面装帧成册;移通学院自动化系指导教师:汪纪峰2010-12-15目录引言 (2)一、系统概述 (7)1.1 设计目的 (7)1.2 系统的工作原理 (7)1.3 系统设计基本要求 (8)二、系统建模 (9)2.1 各环节建模 (9)2.1.1 比较器 (9)2.1.2 比例环节 (9)2.1.3 积分环节 (10)2.1.4 惯性环节 (11)2.1.5 反馈环节 (12)2.2 系统模型 (12)2.2.1 系统框图模型 (12)2.2.2 系统等价框图 (12)2.2.3 系统频域模型 (13)2.2.4 小结 (13)三、系统分析 (14)3.1 稳定性分析 (14)3.1.1 时域分析 (14)3.1.2 根轨迹映证 (14)3.1.2.1 绘制根轨迹 (15)3.2静态精度分析 (16)3.2.1Ⅰ型系统的典型分析 (16)3.2.1.1 跟踪能力 (16)3.2.1.2 ess计算 (16)3.2.2 根轨迹映证 (16)3.3 动态分析K 1 (17)3.3.1 作根轨迹 (18)3.3.2 指标分析 (19)四、系统综合 (20)4.1 校正方案的设计 (20)4.2 ts问题 (20)4.3τ的确定 (21)4.3.1 绘制校正后系统—τ参数根轨迹 (21)4.3.2 绘制τ参数根轨迹 (22)4.3.3 确定满足的σp%的ξ (24)4.3.4 做等ξ线 (24)4.4 确定τA (24)五、系统模拟 (25)5.1 原系统的物理模拟 (25)5.2校正后系统的物理模拟 (26)六、设计小结 (27)6.1心得体会 (27)6.2致谢 (28)七、参考文献 (29)《自动控制原理》课程设计第一章系统概述1.1设计目的主要是培养学生的统筹运用自动控制原理课程中所学的理论知识,掌握反馈控制系统的基本理论和方法,对工程实际系统进行完整全面分析和综合。
自动控制原理实验典型系统地时域响应和稳定性分析报告

系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:典型系统的时域响应和稳定性分析实验时间:学生成绩:教师签名:批改时间:一、目的要求1.研究二阶系统的特征参量 (ξ、ωn) 对过渡过程的影响。
2.研究二阶对象的三种阻尼比下的响应曲线及系统的稳定性。
3.熟悉 Routh 判据,用 Routh 判据对三阶系统进行稳定性分析。
二、实验设备PC机一台,TD—ACC教学实验系统一套三、实验原理及内容1.典型的二阶系统稳定性分析(1) 结构框图:如图 1.2-1 所示。
图1.2-2(2) 对应的模拟电路图:如图 1.2-2 所示。
图1.2-2系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:(3) 理论分析系统开环传递函数为:;开环增益:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻 R 的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。
在此实验中(图 1.2-2),系统闭环传递函数为:其中自然振荡角频率:2.典型的三阶系统稳定性分析(1) 结构框图:如图 1.2-3 所示。
系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:图 1.2-3(2)模拟电路图:如图 1.2-4 所示。
图 1.2-4(3)理论分析:系统的特征方程为:(4)实验内容:实验前由 Routh 判断得 Routh 行列式为:系别:机电工程学院专业:课程名称:自动控制原理实验班级:姓名:学号:组别:实验名称:实验时间:学生成绩:教师签名:批改时间:为了保证系统稳定,第一列各值应为正数,所以有五、实验步骤1.将信号源单元的“ST”端插针与“S”端插针用“短路块”短接。
由于每个运放单元均设臵了锁零场效应管,所以运放具有锁零功能。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
222010322072023 付珣利自动化01班位置随动系统:
控制系统原理图
(作业一)
1.1系统方块图
放大器K1
测速转换
测速电机
TG
电机SM
功放K3
放大器K2u
-uo
δu
ui n
1.2控制方案
若电网电压受到波动,ui↑则δu↑u↑n↑uo↑
所以δu ↓u ↓n ↓从而使n 达到稳定。
(作业二)
2.1由原理可知:
Θe (s )=Θi (s )—Θ0(s ) US (s )=K0Θe (s ) Us (s )=Raia(s)+LaSia+Eb (s ) M(s)=C m ia(s) JS 2θ0(S)+fs θ0(S)= M(s)-Mc (s) Eb(s)=Kb θ0(S)
2.2系统传递函数
)
()(0s s i θθ=()
))((1)
)((1)(1))((3
2103
210f JS R S L S K C f JS R S L S C K K K K f JS R S L S K C f JS R S L S C K K K K a a b
m a a m
a a b
m a a m
+++
++++++
++=
m
b m a a m
C K K K K K C f JS R S L S C K K K K 32103210))((++++
2.3动态结构图
设定参数:f=20N,J=20K ·m ²,a R =20 Ω,La=1H,Ko=40,k1k2k3=100,Cm=1,Kb=0 (因为暂取Kb=0,测速反馈通道相当于没加进)
图.动态结构图
则开环传递函数为:G(s)=
)
105.0)(1(10
++s s s
闭环传递函数:Ψ(s )=
10
)105.0)(1(10
+++s s s
2.4信号流图
(作业三)系统性能
3.1系统响应及动态性能指标 单位阶跃响应曲线:
由阶跃响应曲线可得知:系统是稳定的,但震荡次数较多。
由闭环主导极点的概念,S1>>S2可将系统近似处理为:开环传递函数G(s)=
)
1(10
+s s ,此时的相
对阻尼系数ζ=0.5,δ=1.34%,Wn=1,调节时间ts=3.5/ξWn=7s ,tp=π /21ξ-n w =3.625,tr=(π-β)/Wd=2.417. 近似处理后响应曲线如下:
分析:系统仍然稳定,震荡次数相对减小。
3.2两种常用方法校正 ①加入测速反馈(0.347s+1) 单位阶跃响应:
此时ζ=0.707为工程上的最佳参数,Wn 不变,ts 明显减小,δ%也明显减小,但是在斜坡输入响应下稳态误差变大,因为开环放大倍数变大。
②前向通道加入比例微分(0.414s+1) 响应曲线
此时ζ=0.707为工程上的最佳参数,Wn 不变,ts 明显减小,tp 也减小,δ%明显减小,稳态误差不变。
③比较:有曲线特性分析得到,引入测速反馈或前向通道加比例微分都将使ζ增大,超调减小,动态性能变好,同时不影响Wn ,且在适当时候还可取到最佳工作参数。
但测速会影响开环放大倍数K,从而影响稳定误差,此时可以同时调大比例系数避免。
前向通道加比例微分同样可提高系统性能,但对噪声抑制力变弱,由于加入零点,超调量变大,峰值时间减少,且随零点接近原点而影响加剧。
(作业四)绘制根轨迹
①开环传递函数G(s)=)
1(10
s s
num=[10]; den=[1 1 0]; rlocus(num,den)
由根轨迹可知此系统很是稳定。
②引入测速反馈后:
num=[10];
den=[1 4.47 10];
rlocus(num,den)
③引入比例微分
num=[4.14 10];
den=[1 1 0];
rlocus(num,den)
(作业五)频域系统性能分析①绘制Bode图
i原系统
ii引入测速反馈
iii引入比例微分
分析:观察bode图,可以发现有测速反馈的比原系统相角裕度r提高,比例微分r没变很大,r越高,谐振峰值Mr越小。
低频段中,加测速反馈的bode与纵轴交点大概30dB,而其它的均是60dB,说明k值受到影响并变小,所以稳定误差会加大。
中频段原系统斜率为-40dB,校正后由图中可以观察到变为-20dB,稳定性提高。
②绘制奈氏曲线
i原系统
ii引入测速反馈
iii引入比例微分
分析:由奈氏曲线极其数据可以看出,首先由奈氏稳定判据知三个系统均稳定,不过原系统不如引入测速或比例微分的稳定性强,再观察得到,随着w的增大,加比例微分的A(w)明显要比测速的增大的快,及响应较快,这是由比例微分中有附加零点而引起的。
(作业六)系统校正(PID法)
创建模拟系统,用PID校正。
PID参数选择:根据简易工程整定法,取P:kp=0.57k,I:0.5Tk,
D:0.13Tk
创建Matlab中的模拟系统:
Subsystem.in1out1如右图:PID参数设定:
校正后阶跃响应曲线:
Bode图:
奈氏曲线:
分析:
1.比起原响应曲线,校正后超调量受到一定控制,震荡次数明显减小,调节时间ts明显减小,系统仍然是稳定的。
2.观察bode图,可以发现,在低频段,校正后的系统与纵轴交点大概120dB几
乎是原来的2倍,因而开环倍数必定增大,稳态误差必然降低。
中频段,原来斜率为-40,现在为-20,明显稳定性提高。
截止频率Wc比原来提高了,增加了系统的快速性,如图中红色注释,相角裕度r也明显增大,稳定裕度增大,谐振峰值Mr随之也会减小,稳定性能与动态性能提高。
3.奈氏曲线前后相比较,可以发现,校正后系统更加平稳,而不是像原系统一样,在某一w处,A(w)突然突增,稳定度也越来越高。
(作业七)线性离散系统分析
在matlab中的模拟仿真:
分析:1.系统加入采样器使得上升时间略有提前,超调量增大,稳定度降低。
2.零阶保持器是上升时间加长,同时,超调量和震荡次数增加。
(作业八)非线性的系统
Matlab中的状态模型:(加饱和限幅的非线性因素)。