金属塑性成形原理考试复习题

合集下载

《金属塑性成形原理》复习题(答案参考)

《金属塑性成形原理》复习题(答案参考)

一.名词解释1.理想刚塑性材料/刚塑性硬化材料2.拉伸塑性失稳/压缩失稳3.工程切应变/相对线应变4.增量理论/全量理论5.轴对称应力状态/平面应力状态6.屈服轨迹/屈服表面7.动态回复/动态再结晶8.等效应力/等效应变9.弥散强化/固溶强化10.临界切应力/形变织构二.简答题提高金属塑性的基本途径。

试分析单相与多相组织、细晶与粗晶组织、锻造组织与铸造组织对金属塑性的影响。

①相组成的影响:单相组织(纯金属或固溶体)比多相组织塑性好。

多相组织由于各相性能不同,变形难易程度不同,导致变形和内应力的不均匀分布,因而塑性降低。

如碳钢在高温时为奥氏体单相组织,故塑性好,而在800℃左右时,转变为奥氏体和铁素体两相组织,塑性就明显下降。

另外多相组织中的脆性相也会使其塑性大为降低。

②晶粒度的影响:晶粒越细小,金属的塑性也越好。

因为在一定的体积内,细晶粒金属的晶粒数目比粗晶粒金属的多,因而塑性变形时位向有利的晶粒也较多,变形能较均匀地分散到各个晶粒上;又从每个晶粒的应力分布来看,细晶粒时晶界的影响局域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。

由于细晶粒金属的变形不均匀性较小,由此引起的应力集中必然也较小,内应力分布较均匀,因而金属在断裂前可承受的塑性变形量就越大。

③锻造组织要比铸造组织的塑性好。

铸造组织由于具有粗大的柱状晶和偏析、夹杂、气泡、疏松等缺陷,故使金属塑性降低。

而通过适当的锻造后,会打碎粗大的柱状晶粒获得细晶组织,使得金属的塑性提高。

试分别从力学和组织方面分析塑性成形件中产生裂纹的原因。

防止产生裂纹的原则措施是什么?变形温度对金属塑性的影响的基本规律是什么?就大多数金属而言,其总体趋势是:随着温度的升高,塑性增加,但是这种增加并不是简单的线性上升;在加热过程中的某些温度区间,往往由于相态或晶粒边界状态的变化而出现脆性区,使金属的塑性降低。

在一般情况下,温度由绝对零度上升到熔点时,可能出现几个脆性区,包括低温的、中温的和高温的脆性区。

金属塑性成型复习题

金属塑性成型复习题

金属塑性成型复习题金属塑性成形原理复习题一、解释名词和术语1塑性:金属产生塑性变形而不破坏其完整性的能力。

2塑性变形:微观结构的相邻部分产生永久性位移,并不引起材料破裂的现象。

3塑性成形:在外力的作用下使金属产生塑性变形,从而加工成所需形状和尺寸的工件的加工方法。

4应力张量 :点的应力状态是一个张量。

5主应力:主平面上的正应力。

6主切应力:斜面上切应力的极大值。

7主平面:切应力为零的平面。

8主切应力平面:主切应力作用的平面。

9平面应力状态:变形体在某一平面上没有应力的作用时物体内质点所处的应力状态。

10平面应变状态:变形体在某一方向不产生变形时物体内质点所处的应力状态。

11轴对称应力状态: 旋转体承受的外力对称于旋转轴分布时物体内质点所处的应力状态。

12位移 :变形体内任一点变形前后的直线距离。

13位移分量:坐标系中,一点的位移矢量在三个坐标轴上的投影。

14对数应变:试样单向拉伸时伸长的总应变。

15主应变 :某一方向上线元没有切应变,只有线应变。

16主切应变:与主切应变方向成45?角方向上的应变。

17应变增量 :将变形体在变形过程中任意瞬间的形状和尺寸作为初始状态,在此基础上产生的无限小应变。

18应变速率:单位时间内的应变。

19全量应变:反映单元体在某一变形过程中的某个阶段结束时的变形大小的应变。

20屈服准则:在一定的变形条件下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性变形状态,这种关系称为屈服准则。

21屈服表面 :屈服准则的数学表达式在主应力空间的几何图形是个封闭的空间曲面,这个封闭的空间曲面称为屈服表面。

22屈服轨迹:两向应力状态下屈服准则的数学表达式,在主应力坐标平面上的几何图形是封闭的曲线,这封闭的曲线,称为屈服轨迹。

23π平面 :在主应力空间中,通过坐标原点并垂直于等倾斜线的平面。

24本构方程:塑性变形时,应力与应变之间的关系称为本构关系,这种关系的数学表达式称为本构方程。

金属加工中的金属塑性成形技术考核试卷

金属加工中的金属塑性成形技术考核试卷
15.以下哪些金属塑性成形方法适用于小型精密零件的生产?()
A.精密冲压
B.精密挤压
C.精密锻造
D.精密铸造
16.金属塑性成形过程中,以下哪些因素会影响成形力的分布?()
A.模具设计
B.材料的屈服强度
C.成形工艺参数
D.润滑条件
17.以下哪些金属塑性成形方法适用于航空航天领域的零件生产?()
A.锻造成形
五、主观题(本题共4小题,每题5分,共20分)
1.请简述金属塑性成形的基本原理,并列举三种常见的金属塑性成形方法。
2.在金属塑性成形过程中,如何通过控制工艺参数来减少产品的回弹现象?
3.描述金属塑性成形中模具磨损的原因,并提出至少三种减少模具磨损的措施。
4.论述在金属塑性成形中,如何提高材料的塑性和成形性能,同时降低加工硬化程度。
D.铜合金
4.在金属塑性成形过程中,提高材料的塑性有利于以下哪个方面?()
A.提高模具寿命
B.减少加工硬化
C.降低成形力
D.提高产品精度
5.下列哪种金属塑性成形方法适用于轴对称零件的生产?()
A.拉伸成形
B.冲压成形
C.挤压成形
D.锻造成形
6.金属塑性成形过程中,以下哪个因素会影响材料的屈服强度?()
A.材料的屈服强度
B.成形工艺
C.模具设计
D.以上都对
19.下列哪种金属塑性成形方法可以获得更高的生产效率?()
A.精密精密锻造
20.金属塑性成形过程中,以下哪个因素会影响产品的表面质量?()
A.模具的制造精度
B.润滑条件
C.成形速度
D.以上都对
二、多选题(本题共20小题,每小题1.5分,共30分,在每小题给出的四个选项中,至少有一项是符合题目要求的)

塑性成形原理复习题

塑性成形原理复习题

一、填空1、典型的塑性成形工艺包括拉深,挤压,轧制,拉拔等。

2、金属发生塑性变形时,其晶内变形的主要方式是滑移和孪生。

3、主应变简图采用主应变的个数和方向描述一点的应变状态,满足体积不变条件的应变状态主应变简图有3种。

4、米塞斯和屈雷斯加两个屈服准则相差最大的应力状态是平面应变状态。

5、不考虑材料的弹性,也不考虑材料硬化的材料模型称为理想刚塑性材料;不考虑材料的弹性,考虑材料硬化的材料模型称为刚塑性硬化材料。

6、超塑性成形工艺方法有结构超塑性和动态超塑性。

(相变超塑性)7、米塞斯和屈雷斯加两个屈服准则一致的应力状态是单向应力状态。

8、按照加工特点来分,塑性成形可以分为块料成形和板料成形两大类,其中,常见的块料成形包括拉拔,锻造,挤压,轧制等工艺。

9、冷挤压钢制零件时,需要对制件表面进行磷化处理,磷化处理后必须进行润滑处理,常用的润滑方法是表面皂化。

10、主应力简图共有9种。

满足体积不变条件的主应变简图共有3种。

11、应力偏张量引起物体产生形状变化;应力球张量引起物体产生体积变化。

12、多晶体的塑性变化包括晶内变形和晶间变形,其中,晶间变形的主要方式是滑移。

13、对数应变的主要特点是准确性、叠加性、可比性。

14、塑性应力应变关系与加载历史有关,变形过程中材料体积不变。

15、单位面积的内力被称为应力。

16、多晶体塑性变形的特点包括:具有不均匀性、不同时性、和相互协调性。

17、塑性成形中的三种摩擦状态分别是:干摩擦,流体摩擦,边界摩擦。

18、常用的求解塑性工程问题的方法有主应力法、滑移线法、上限元法。

19、塑性成形工艺按成形件的特点可以分为块料成形和板料成形。

20、金属发生塑性变形时,其晶内变形的主要方式是滑移和孪生。

21、屈雷斯加屈服准则的物理意义为,当材料的最大剪应力达到某一常数时材料就屈服了;米塞斯屈服准则的物理意义为,当材料的等效应力达到某一定值时,材料就屈服了。

22、关于摩擦产生机理有:表面凸凹学说,分子吸附学说,表面粘着学说。

金属塑性成形原理考试复习题

金属塑性成形原理考试复习题

1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形:当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制-是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压-是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔-是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻-是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻-是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

Ⅱ按成型时工件的温度可分为热成形、冷成形和温成形。

金属塑性成形原理复习题

金属塑性成形原理复习题

一、名词解释1. 主应力:只有正应力没有切应力的平面为主平面,其面上的应力为主应力。

2. 主切应力:切应力最大的平面为主切平面,其上的切应力为主主切应力。

3. 对数应变 答:变形后的尺寸与变形前尺寸之比取对数4. 滑移线 答:最大切应力的方向轨迹。

5. 八面体应力:与主平面成等倾面上的应力6. 金属的塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力。

7. 等效应力:又称应力强度,表示一点应力状态中应力偏张量的综合大小。

8. 何谓冷变形、热变形和温变形:答冷变形:在再结晶温度以下,通常是指室温的变形。

热变形:在再结晶温度以上的变形。

温变形在再结晶温度以下,高于室温的变形。

9. 何谓最小阻力定律:答变形过程中,物体质点将向着阻力最小的方向移动,即做最少的功,走最短的路。

10.金属的再结晶 答:冷变形金属加热到一定的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程。

11. π平面 答:是指通过坐标原点并垂于等倾线的平面。

12.塑性失稳 答:在塑性加工中,当材料所受的载荷达到某一临界后,即使载荷下降,塑性变形还会继续,这种想象称为塑性失稳。

13.理想刚塑性材料:在研究塑性变形时,既不考虑弹性变形,又不考虑变形过程中的加工硬化的材料。

P13914.应力偏张量:应力偏张量就是应力张量减去静水压力,即:σij ′ =σ-δij σm二、填空题1. 冷塑性变形的主要机理:滑移和孪生2. 金属塑性变形的特点:不同时性、相互协调性和不均匀性。

3. 由于塑性变形而使晶粒具有择优取向的组织称为:变形织构 。

4. 随着变形程度的增加,金属的强度 硬度增加,而塑性韧性降低,这种现象称为:加工硬化。

5. 超塑性的特点:大延伸率、低流动应力、无缩颈、易成形、无加工硬化 。

6. 细晶超塑性变形力学特征方程式中的m 为:应变速率敏感性指数。

7. 塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力 。

金属塑性成形原理期末复习题

金属塑性成形原理期末复习题

1、什么是金属塑性?什么是塑性成型?塑性成型有何特点?塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力称为塑性。

利用金属在一定的外力作用下产生塑性变形,并获得具有一定形状、尺寸和机械性能的材料、毛坯或零件的加工方法,称为金属的塑性成形(也称压力加工)。

塑性成型特点:1)组织、性能好2)材料利用率高3)尺寸精度高4)生产率高,易实现连续化、自动化、高速、大批量生产不足:设备较庞大,相对能耗较高,成本较高2试述塑性成型的一般分类?一、板料成型:1、一次加工:1)轧制2)挤压3)拉拔2、二次加工:1)自由锻2)模锻二、块料成型:1、分离工序:1)冲裁2)落料2、成型工序:1)弯曲2)拉深三、按温度分:热成型、冷成型、温成型3、试简述滑移和孪生两种变形机理的主要区别?⏹滑移与孪生的比较滑移:晶体中已滑移部分与未滑移部分的位向相同孪生:已孪生部分(孪晶)和未孪生部分(基体)的位向不同,两部分之间具有特定的位向关系(镜面对称)2)变形机制:滑移是全位错运动的结果;孪生是部分位错3)对塑性变形的贡献:总变形量大;孪生(小)4)变形应力:近似临界分切应力;高于临界分切应力5)变形条件:一般情况下,先发生滑移变形;滑移变形难以进行时,或晶体对称度很低、变形温度较低、加载速率较高,发生孪生变形4、试分析多晶体塑性变形的特点?(1)各晶粒变形的不同时性➢首先在位向有利、滑移系上切应力分量已优先达到临界值的晶粒内发生(2)各晶粒变形的相互协调性➢晶粒的变形需要相互协调配合,才能保持晶粒之间的连续性,即变形不是孤立和任意的。

(3)变形的不均匀性➢软位向的晶粒先变形,硬位向的晶粒后变形,其结果必然是各晶粒变形量的差异,这是由多晶体的结构特点所决定的。

5、什么是加工硬化?加工硬化产生的原因?加工硬化对塑性加工有何利弊?1)加工硬化:塑性变形时,随着内部组织结构变化,金属金属强度、硬度增加,而塑性、韧性降低的现象。

塑性成形原理试题及答案

塑性成形原理试题及答案

塑性成形原理试题及答案一、选择题1. 塑性成形是指材料在外力作用下发生永久变形而不破坏的过程,以下哪种材料不适合进行塑性成形?A. 低碳钢B. 铝合金C. 陶瓷D. 钛合金答案:C2. 在塑性成形过程中,材料的塑性变形主要发生在哪个区域?A. 弹性变形区B. 塑性变形区C. 断裂区D. 疲劳区答案:B3. 以下哪种塑性成形方法不需要模具?A. 锻造B. 挤压C. 拉拔D. 冲压答案:A二、填空题4. 塑性成形的基本原理是材料在_________作用下发生塑性变形。

答案:外力5. 塑性成形过程中,材料的塑性变形能力通常用_________来衡量。

答案:塑性指数6. 塑性成形过程中,材料的变形程度通常用_________来表示。

答案:应变三、简答题7. 简述塑性成形的三个基本条件。

答案:塑性成形的三个基本条件包括:(1)材料必须具有足够的塑性;(2)外力必须足够大,以克服材料的内部阻力;(3)材料必须在适当的温度和速度下进行变形。

8. 描述塑性成形过程中的应力-应变曲线,并解释其各阶段的含义。

答案:塑性成形过程中的应力-应变曲线通常包括三个阶段:弹性阶段、屈服阶段和塑性流动阶段。

在弹性阶段,材料仅发生弹性变形,应力和应变成正比;屈服阶段是材料开始发生塑性变形的起点,此时应力达到屈服强度;在塑性流动阶段,材料继续发生塑性变形,但应力保持相对稳定。

四、计算题9. 假设一块材料经过塑性成形后,其长度从L1变为L2,求其应变ε。

答案:应变ε可以通过公式ε = (L2 - L1) / L1计算得出。

10. 如果已知材料的屈服强度σy和塑性变形前的应力σ1,求材料在塑性变形前的应变ε1。

答案:材料在塑性变形前的应变ε1可以通过公式ε1 = σ1 / E 计算得出,其中E是材料的弹性模量。

五、论述题11. 论述塑性成形在工业生产中的应用及其重要性。

答案:塑性成形在工业生产中应用广泛,如汽车制造、航空航天、建筑行业等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.什么是金属的塑性?什么是塑性成形?塑性成形有何特点?塑性:在外力作用下使金属材料发生塑性变形而不破坏其完整性的能力;塑性变形:当作用在物体上的外力取消后,物体的变形不能完全恢复而产生的残余变形;塑性成形:金属材料在一定的外力作用下,利用其塑性而使其成型并获得一定力学性能的加工方法,也称塑性加工或压力加工;塑性成形的特点:①组织、性能好②材料利用率高③尺寸精度高④生产效率高2.试述塑性成形的一般分类。

Ⅰ按成型特点可分为块料成形(也称体积成形)和板料成型两大类1)块料成型是在塑性成形过程中靠体积转移和分配来实现的。

可分为一次成型和二次加工。

一次加工:①轧制-是将金属坯料通过两个旋转轧辊间的特定空间使其产生塑性变形,以获得一定截面形状材料的塑性成形方法。

分纵轧、横轧、斜轧;用于生产型材、板材和管材。

②挤压-是在大截面坯料的后端施加一定的压力,将金属坯料通过一定形状和尺寸的模孔使其产生塑性变形,以获得符合模孔截面形状的小截面坯料或零件的塑性成形方法。

分正挤压、反挤压和复合挤压;适于(低塑性的)型材、管材和零件。

③拉拔-是在金属坯料的前端施加一定的拉力,将金属坯料通过一定形状、尺寸的模孔使其产生塑性变形,以获得与模孔形状、尺寸相同的小截面坯料的塑性成形方法。

生产棒材、管材和线材。

二次加工:①自由锻-是在锻锤或水压机上,利用简单的工具将金属锭料或坯料锻成所需的形状和尺寸的加工方法。

精度低,生产率不高,用于单件小批量或大锻件。

②模锻-是将金属坯料放在与成平形状、尺寸相同的模腔中使其产生塑性变形,从而获得与模腔形状、尺寸相同的坯料或零件的加工方法。

分开式模锻和闭式模锻。

2)板料成型一般称为冲压。

分为分离工序和成形工序。

分离工序:用于使冲压件与板料沿一定的轮廓线相互分离,如冲裁、剪切等工序;成型工序:用来使坯料在不破坏的条件下发生塑性变形,成为具有要求形状和尺寸的零件,如弯曲、拉深等工序。

Ⅱ按成型时工件的温度可分为热成形、冷成形和温成形。

3、塑性变形机理:晶内变形(滑移、孪生)和晶间变形滑移:所谓滑移是指晶体在力的作用下,晶体的一部分沿一定的晶面和晶向相对于晶体的另一部分发生相对移动或切变。

孪生:是晶体在切应力作用下,晶体的一部分沿着一定的晶面和一定的晶向发生均匀切变。

晶间变形的主要方式是晶粒之间相互滑动和转动。

3-1举例说明杂质元素和合金元素对钢的塑性的影响。

①碳:固溶于铁时形成铁素体和奥氏体,具有良好的塑性。

多余的碳与铁形成渗碳体(Fe 3C),大大降低塑性;②磷:一般来说,磷是钢中的有害杂质,它在铁中有相当大的溶解度,使钢的强度、硬度提高,而塑性、韧性降低,在冷变形时影响更为严重,此称为冷脆性。

③硫:形成共晶体时熔点降得很低(例如FeS的熔点为1190℃,而Fe-FeS的熔点为985℃)。

这些硫化物和共晶体,通常分布在晶界上,会引起热脆性。

④氮:当其质量分数较小(0.002%~0.015%)时,对钢的塑性无明显的影响;但随着氮化物的质量分数的增加,钢的塑性降降低,导致钢变脆。

如氮在α铁中的溶解度在高温和低温时相差很大,当含氮量较高的钢从高温快速冷却到低温时,α铁被过饱和,随后在室温或稍高温度下,氮逐渐以Fe 4N形式析出,使钢的塑性、韧性大为降低,这种现象称为时效脆性。

若在300℃左右加工时,则会出现所谓“兰脆”现象。

⑤氢:氢脆和白点。

⑥氧:形成氧化物,还会和其他夹杂物(如FeS)易熔共晶体(FeS-FeO,熔点为910℃)分布于晶界处,造成钢的热脆性。

合金元素的影响:①形成固溶体;②形成硬而脆的碳化物4、冷塑性变形对金属组织和性能的影响:(一)组织的变化(1)晶粒形状的变化(2)晶粒内产生亚结构(3)晶粒位相改变(二)性能的变化4-1所谓金属的再结晶是指冷变形金属加热到更高的温度后,在原来变形的金属中会重新形成新的无畸变的等轴晶,直至完全取代金属的冷变形组织的过程5.什么叫加工硬化?产生加工硬化的原因是什么?加工硬化对塑性加工生产有何利弊?加工硬化----随着金属变形程度的增加,其强度、硬度增加,而塑性、韧性降低的现象。

加工硬化的成因与位错的交互作用有关。

随着塑性变形的进行,位错密度不断增加,位错反应和相互交割加剧,结果产生固定割阶、位错缠结等障碍,以致形成胞状亚结构,使位错难以越过这些障碍而被限制在一定范围内运动。

这样,要是金属继续变形,就需要不断增加外力,才能克服位错间强大的交互作用力。

加工硬化对塑性加工生产的利弊:有利的一面:可作为一种强化金属的手段,一些不能用热处理方法强化的金属材料,可应用加工硬化的方法来强化,以提高金属的承载能力。

如大型发电机上的护环零件。

不利的一面:①由于加工硬化后,金属的屈服强度提高,要求进行塑性加工的设备能力增加;②由于塑性的下降,使得金属继续塑性变形困难,所以不得不增加中间退火工艺,从而降低了生产率,提高了生产成本。

6、什么是细晶超塑性?什么是相变超塑性?(材料在一定的条件下,其拉伸变形的延伸率超过100%的现象叫超塑性)(1)晶超塑性它是在一定的恒温下,在应变速率和晶粒度都满足要求的条件下所呈现的超塑性。

具体地说,材料的晶粒必须超细化和等轴化,并在在成形期间保持稳定。

②相变超塑性要求具有相变或同素异构转变。

在一定的外力作用下,使金属或合金在相变温度附近反复加热和冷却,经过一定的循环次数后,就可以获得很大的伸长率。

相变超塑性的主要控制因素是温度幅度和温度循环率。

7、什么是塑性?什么是塑性指标?为什么说塑性指标只具有相对意义?(衡量金属或合金的塑性变形能力的数量指标有伸长率和断面收缩率)塑性是指金属在外力作用下,能稳定地发生永久变形而不破坏其完整性的能力。

塑性指标,是为了衡量金属材料塑性的好坏而采用的某些试验测得的数量上的指标。

常用的试验方法有拉伸试验、压缩试验和扭转试验。

由于各种试验方法都是相对于其特定的受力状态和变形条件的,由此所测定的塑性指标(或成形性能指标),仅具有相对的和比较的意义。

它们说明,在某种受力状况和变形条件下,哪种金属的塑性高,哪种金属的塑性低;或者对于同一种金属,在那种变形条件下塑性高,而在哪种变形条件下塑性低。

8.试简述提高金属塑性的主要途径。

答(1) 提高材料的成分和组织的均匀性;(2) 合理选择变形温度和变形速度;(3) 选择三向受压较强的变形方式;(4) 减少变形的不均匀性。

9、试分析晶粒大小对金属塑性和变形抗力的影响。

①晶粒越细,变形抗力越大。

晶粒的大小决定位错塞积群应力场到晶内位错源的距离,而这个距离又影响位错的数目n。

晶粒越大,这个距离就越大,位错开动的时间就越长,n也就越大。

n越大,应力场就越强,滑移就越容易从一个晶粒转移到另一个晶粒。

②晶粒越细小,金属的塑性就越好。

a一定体积,晶粒越细,晶粒数目越多,塑性变形时位向有利的晶粒也越多,变形能较均匀的分散到各个晶粒上;b从每个晶粒的应力分布来看,细晶粒是晶界的影响区域相对加大,使得晶粒心部的应变与晶界处的应变差异减小。

这种不均匀性减小了,内应力的分布较均匀,因而金属断裂前能承受的塑性变形量就更大。

10.叙述下列术语的定义或含义:②张量:由若干个当坐标系改变时满足转换关系的分量所组成的集合称为张量;②应力张量:表示点应力状态的九个分量构成一个二阶张量,称为应力张量;③应力张量不变量:已知一点的应力状态④主应力:在某一斜微分面上的全应力S和正应力ζ重合,而切应力η=0这种切应力为零的微分面称为主平面,主平面上的正应力叫做主应力;⑤主切应力:切应力达到极值的平面称为主切应力平面,其面上作用的切应力称为主切应力⑥最大切应力:三个主切应力中绝对值最大的一个,也就是一点所有方位切面上切应力最大的,叫做最大切应力ηmax⑦主应力简图:只用主应力的个数及符号来描述一点应力状态的简图称为主应力图:⑧八面体应力:在主轴坐标系空间八个象限中的等倾微分面构成一个正八面体,正八面体的每个平面称为八面体平面,八面体平面上的应力称为八面体应力;⑨等效应力:取八面体切应力绝对值的3倍所得之参量称为等效应力⑩平面应力状态:变形体内与某方向垂直的平面上无应力存在,并所有应力分量与该方向轴无关,则这种应力状态即为平面应力状。

实例:薄壁扭转、薄壁容器承受内压、板料成型的一些工序等,由于厚度方向应力相对很小而可以忽略,一般作平面应力状态来处理(11)平面应变状态:如果物体内所有质点在同一坐标平面内发生变形,而在该平面的法线方向没有变形,这种变形称为平面变形,对应的应力状态为平面应变状态。

实例:轧制板、带材,平面变形挤压和拉拔等。

(12)轴对称应力状态:当旋转体承受的外力为对称于旋转轴的分布力而且没有轴向力时,则物体内的质点就处于轴对称应力状态。

实例:圆柱体平砧均匀镦粗、锥孔模均匀挤压和拉拔(有径向正应力等于周向正应力)10、试说明应力偏张量和应力球张量的物理意义。

应力偏张量只能产生形状变化,而不能使物体产生体积变化,材料的塑性变形是由应力偏张量引起的;应力球张量不能使物体产生形状变化(塑性变形),而只能使物体产生体积变化。

11、等效应力表达式:12、叙述下列术语的定义或含义:Ⅰ屈服准则:在一定的变形条件(变形温度、变形速度等)下,只有当各应力分量之间符合一定关系时,质点才开始进入塑性状态,这种关系称为屈服准则,也称塑性条件,它是描述受力物体中不同应力状态下的质点进入塑性状态并使塑性变形继续进行所必须遵守的力学条件;Ⅱ屈服表面:屈服准则的数学表达式在主应力空间中的几何图形是一个封闭的空间曲面称为屈服表面。

假如描述应力状态的点在屈表面上,此点开始屈服。

对各向同性的理想塑性材料,则屈服表面是连续的,屈服表面不随塑性流动而变化。

Ⅲ屈服轨迹:两向应力状态下屈服准则的表达式在主应力坐标平面上的集合图形是封闭的曲线,称为屈服轨迹,也即屈服表面与主应力坐标平面的交线。

13、两个屈服准则有何差别?在什么状态下两个屈服准则相同?什么状态下差别最大?Ⅰ共同点:①屈服准则的表达式都和坐标的选择无关,等式左边都是不变量的函数;②三个主应力可以任意置换而不影响屈服,同时,认为拉应力和压应力的作用是一样的;③表达式都和应力球张量无关。

不同点:①Tresca屈服准则没有考虑中间应力的影响,三个主应力的大小顺序不知道时,使用不方便;而Mises屈服准则则考虑了中间应力的影响,使用方便。

13-1请简述塑性变形时应力- 应变关系的特点。

答:(1) 应力与应变之间的关系是非线性的,即应力主轴与全量应变主轴不一定重合。

(2) 塑性变形时可以认为体积不变,即应变球张量为零,泊松比ν=0.5(3) 对于应变硬化材料,卸载后再重新加载时的屈服应力就是卸载时的屈服应力,比初始屈服应力要高。

(4)塑性变形时不可逆的,与应变历史有关,即应力-应变关系不在保持单值关系。

相关文档
最新文档