2017年高考数学-解析几何的第一问(综合篇)-专题练习
2017-2018年高考数学真题汇编解析几何及答案详解

2017--2018年高考数学解析几何汇编及答案解析类型一选择填空1、(2018年高考全国卷1文科4)(5分)已知椭圆C:+=1的一个焦点为(2,0),则C的离心率为()A.B.C.D.【解答】解:椭圆C:+=1的一个焦点为(2,0),可得a2﹣4=4,解得a=2,∵c=2,∴e===.故选:C.2、(2018年高考全国卷1理科8)(5分)设抛物线C:y2=4x的焦点为F,过点(﹣2,0)且斜率为的直线与C交于M,N两点,则•=()A.5 B.6 C.7 D.8【解答】解:抛物线C:y2=4x的焦点为F(1,0),过点(﹣2,0)且斜率为的直线为:3y=2x+4,联立直线与抛物线C:y2=4x,消去x可得:y2﹣6y+8=0,解得y1=2,y2=4,不妨M(1,2),N(4,4),,.则•=(0,2)•(3,4)=8.故选:D.3、(2018年高考全国卷1理科11)(5分)已知双曲线C:﹣y2=1,O为坐标原点,F为C 的右焦点,过F的直线与C的两条渐近线的交点分别为M,N.若△OMN为直角三角形,则|MN|=()A.B.3 C.2D.4【解答】解:双曲线C:﹣y2=1的渐近线方程为:y=,渐近线的夹角为:60°,不妨设过F(2,0)的直线为:y=,则:解得M(,),解得:N(),则|MN|==3.故选:B.4、(2018年高考全国卷2文科6)(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.5、(2018年高考全国卷2文科11)(5分)已知F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,则C的离心率为()A.1﹣B.2﹣C.D.﹣1【解答】解:F1,F2是椭圆C的两个焦点,P是C上的一点,若PF1⊥PF2,且∠PF2F1=60°,可得椭圆的焦点坐标F2(c,0),所以P(c,c).可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.故选:D.6、(2018年高考全国卷2理科5)(5分)双曲线=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±x B.y=±x C.y=±x D.y=±x【解答】解:∵双曲线的离心率为e==,则=====,即双曲线的渐近线方程为y=±x=±x,故选:A.7、(2018年高考全国卷2理科12)(5分)已知F1,F2是椭圆C:=1(a>b>0)的左、右焦点,A是C的左顶点,点P在过A且斜率为的直线上,△PF1F2为等腰三角形,∠F1F2P=120°,则C的离心率为()A.B.C.D.【解答】解:由题意可知:A(﹣a,0),F1(﹣c,0),F2(c,0),直线AP的方程为:y=(x+a),由∠F1F2P=120°,|PF2|=|F1F2|=2c,则P(2c,c),代入直线AP:c=(2c+a),整理得:a=4c,∴题意的离心率e==.故选:D.8、(2018年高考江苏卷理科12)(5分)在平面直角坐标系xOy中,A为直线l:y=2x上在第一象限内的点,B(5,0),以AB为直径的圆C与直线l交于另一点D.若=0,则点A的横坐标为3.【解答】解:设A(a,2a),a>0,∵B(5,0),∴C(,a),则圆C的方程为(x﹣5)(x﹣a)+y(y﹣2a)=0.联立,解得D(1,2).∴=.解得:a=3或a=﹣1.又a>0,∴a=3.即A的横坐标为3.故答案为:3.9、(2018年高考上海卷2)(4分)双曲线﹣y2=1的渐近线方程为±.【解答】解:∵双曲线的a=2,b=1,焦点在x轴上而双曲线的渐近线方程为y=±∴双曲线的渐近线方程为y=±故答案为:y=±10、(2018年高考上海卷8)(5分)在平面直角坐标系中,已知点A(﹣1,0)、B(2,0),E、F是y轴上的两个动点,且||=2,则的最小值为﹣3.【解答】解:根据题意,设E(0,a),F(0,b);∴;∴a=b+2,或b=a+2;且;∴;当a=b+2时,;∵b2+2b﹣2的最小值为;∴的最小值为﹣3,同理求出b=a+2时,的最小值为﹣3.故答案为:﹣3.11、(2018年高考上海卷12)(5分)已知实数x1、x2、y1、y2满足:x12+y12=1,x22+y22=1,x1x2+y1y2=,则+的最大值为1.【解答】解:设A(x1,y1),B(x2,y2),=(x1,y1),=(x2,y2),由x12+y12=1,x22+y22=1,x1x2+y1y2=,可得A,B两点在圆x2+y2=1上,且•=1×1×cos∠AOB=,即有∠AOB=60°,即三角形OAB为等边三角形,AB=1,+的几何意义为点A,B两点到直线x+y﹣1=0的距离d1与d2之和,显然d1+d2≤AB=1,即+的最大值为1,故答案为:1.12、(2018年高考上海卷13)(5分)设P是椭圆=1上的动点,则P到该椭圆的两个焦点的距离之和为()A.2B.2C.2D.4【解答】解:椭圆=1的焦点坐标在x轴,a=,P是椭圆=1上的动点,由椭圆的定义可知:则P到该椭圆的两个焦点的距离之和为2a=2.故选:C.13、(2018年高考浙江卷9)(4分)已知,,是平面向量,是单位向量.若非零向量与的夹角为,向量满足﹣4•+3=0,则|﹣|的最小值是()A.﹣1 B.+1 C.2 D.2﹣【解答】解:由﹣4•+3=0,得,∴()⊥(),如图,不妨设,则的终点在以(2,0)为圆心,以1为半径的圆周上,又非零向量与的夹角为,则的终点在不含端点O的两条射线y=(x>0)上.不妨以y=为例,则|﹣|的最小值是(2,0)到直线的距离减1.即.故选:A.14、(2018年高考浙江卷12)(6分)若x,y满足约束条件,则z=x+3y的最小值是﹣2,最大值是8.【解答】解:作出x,y满足约束条件表示的平面区域,如图:其中B(4,﹣2),A(2,2).设z=F(x,y)=x+3y,将直线l:z=x+3y进行平移,观察直线在y轴上的截距变化,可得当l经过点B时,目标函数z达到最小值.=F(4,﹣2)=﹣2.∴z最小值可得当l经过点A时,目标函数z达到最最大值:z最大值=F(2,2)=8.故答案为:﹣2;8.15、(2018年高考浙江卷17)(4分)已知点P(0,1),椭圆+y2=m(m>1)上两点A,B满足=2,则当m=5时,点B横坐标的绝对值最大.【解答】解:设A(x1,y1),B(x2,y2),由P(0,1),=2,可得﹣x1=2x2,1﹣y1=2(y2﹣1),即有x1=﹣2x2,y1+2y2=3,又x12+4y12=4m,即为x22+y12=m,①x22+4y22=4m,②①﹣②得(y1﹣2y2)(y1+2y2)=﹣3m,可得y1﹣2y2=﹣m,解得y1=,y2=,则m=x22+()2,即有x22=m﹣()2==,即有m=5时,x22有最大值16,即点B横坐标的绝对值最大.故答案为:5.16、(2018年高考天津卷文科12)(5分)在平面直角坐标系中,经过三点(0,0),(1,1),(2,0)的圆的方程为(x﹣1)2+y2=1(或x2+y2﹣2x=0).【解答】解:【方法一】根据题意画出图形如图所示,结合图形知经过三点(0,0),(1,1),(2,0)的圆,其圆心为(1,0),半径为1,则该圆的方程为(x﹣1)2+y2=1.【方法二】设该圆的方程为x2+y2+Dx+Ey+F=0,则,解得D=﹣2,E=F=0;∴所求圆的方程为x2+y2﹣2x=0.故答案为:(x﹣1)2+y2=1(或x2+y2﹣2x=0).17、(2018年高考天津卷文科7)(5分)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线x﹣my﹣2=0的距离.当θ、m变化时,d的最大值为()A.1 B.2 C.3 D.4【解答】解:由题意d==,tanα=﹣,∴当sin(θ+α)=﹣1时,d max=1+≤3.∴d的最大值为3.故选:C.18、(2018年高考北京卷理科14)(5分)已知椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为;双曲线N的离心率为2.【解答】解:椭圆M:+=1(a>b>0),双曲线N:﹣=1.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,可得椭圆的焦点坐标(c,0),正六边形的一个顶点(,),可得:,可得,可得e4﹣8e2+4=0,e∈(0,1),解得e=.同时,双曲线的渐近线的斜率为,即,可得:,即,可得双曲线的离心率为e==2.故答案为:;2.19、(2018年高考天津卷理科7)(5分)已知双曲线=1(a>0,b>0)的离心率为2,过右焦点且垂直于x轴的直线与双曲线交于A,B两点.设A,B到双曲线的同一条渐近线的距离分别为d1和d2,且d1+d2=6,则双曲线的方程为()A.﹣=1 B.﹣=1 C.﹣=1 D.﹣=1【解答】解:由题意可得图象如图,CD是双曲线的一条渐近线y=,即bx﹣ay=0,F(c,0),AC⊥CD,BD⊥CD,FE⊥CD,ACDB是梯形,F是AB的中点,EF==3,EF==b,所以b=3,双曲线=1(a>0,b>0)的离心率为2,可得,可得:,解得a=.则双曲线的方程为:﹣=1.故选:C.20、(2018年高考天津卷理科12)(5分)已知圆x2+y2﹣2x=0的圆心为C,直线,(t为参数)与该圆相交于A,B两点,则△ABC的面积为.【解答】解:圆x2+y2﹣2x=0化为标准方程是(x﹣1)2+y2=1,圆心为C(1,0),半径r=1;直线化为普通方程是x+y﹣2=0,则圆心C到该直线的距离为d==,弦长|AB|=2=2=2×=,∴△ABC的面积为S=•|AB|•d=××=.故答案为:.21、(2018年高考北京卷文科10)(5分)已知直线l过点(1,0)且垂直于x轴.若l被抛物线y2=4ax截得的线段长为4,则抛物线的焦点坐标为(1,0).【解答】解:∵直线l过点(1,0)且垂直于x轴,∴x=1,代入到y2=4ax,可得y2=4a,显然a>0,∴y=±2,∵l被抛物线y2=4ax截得的线段长为4,∴4=4,解得a=1,∴y2=4x,∴抛物线的焦点坐标为(1,0),故答案为:(1,0)22、(2018年高考北京卷文科12)(5分)若双曲线﹣=1(a>0)的离心率为,则a=4.【解答】解:双曲线﹣=1(a>0)的离心率为,可得:,解得a=4.故答案为:4.23、(2018年高考全国卷3文科)8.(5分)直线x+y+2=0分别与x轴,y轴交于A,B两点,点P在圆(x﹣2)2+y2=2上,则△ABP面积的取值范围是()A.[2,6]B.[4,8]C.[,3] D.[2,3]【解答】解:∵直线x+y+2=0分别与x轴,y轴交于A,B两点,∴令x=0,得y=﹣2,令y=0,得x=﹣2,∴A(﹣2,0),B(0,﹣2),|AB|==2,∵点P在圆(x﹣2)2+y2=2上,∴设P(2+,),∴点P到直线x+y+2=0的距离:d==,∵sin()∈[﹣1,1],∴d=∈[],∴△ABP面积的取值范围是:[,]=[2,6].故选:A.24、(2018年高考全国卷3文科)10.(5分)已知双曲线C:﹣=1(a>0,b>0)的离心率为,则点(4,0)到C的渐近线的距离为()A.B.2 C.D.2【解答】解:双曲线C:﹣=1(a>0,b>0)的离心率为,可得=,即:,解得a=b,双曲线C:﹣=1(a>b>0)的渐近线方程玩:y=±x,点(4,0)到C的渐近线的距离为:=2.故选:D.25、(2018年高考全国卷3理科)11.(5分)设F1,F2是双曲线C:﹣=1(a>0.b>0)的左,右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P,若|PF1|=|OP|,则C的离心率为()A.B.2 C.D.【解答】解:双曲线C:﹣=1(a>0.b>0)的一条渐近线方程为y=x,∴点F2到渐近线的距离d==b,即|PF2|=b,∴|OP|===a,cos∠PF2O=,∵|PF1|=|OP|,∴|PF1|=a,在三角形F1PF2中,由余弦定理可得|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|COS∠PF2O,∴6a2=b2+4c2﹣2×b×2c×=4c2﹣3b2=4c2﹣3(c2﹣a2),即3a2=c2,即a=c,∴e==,故选:C.26、(2018年高考全国卷3理科)13.(5分)已知向量=(1,2),=(2,﹣2),=(1,λ).若∥(2+),则λ=.【解答】解:∵向量=(1,2),=(2,﹣2),∴=(4,2),∵=(1,λ),∥(2+),∴,解得λ=.故答案为:.27、(2018年高考全国卷3理科)16.(5分)已知点M(﹣1,1)和抛物线C:y2=4x,过C 的焦点且斜率为k的直线与C交于A,B两点.若∠AMB=90°,则k=2.【解答】解:∵抛物线C:y2=4x的焦点F(1,0),∴过A,B两点的直线方程为y=k(x﹣1),联立可得,k2x2﹣2(2+k2)x+k2=0,设A(x1,y1),B(x2,y2),则x1+x2=,x1x2=1,∴y1+y2=k(x1+x2﹣2)=,y1y2=k2(x1﹣1)(x2﹣1)=k2[x1x2﹣(x1+x2)+1]=﹣4,∵M(﹣1,1),∴=(x1+1,y1﹣1),=(x2+1,y2﹣1),∵∠AMB=90°=0,∴•=0∴(x1+1)(x2+1)+(y1﹣1)(y2﹣1)=0,整理可得,x1x2+(x1+x2)+y1y2﹣(y1+y2)+2=0,∴1+2+﹣4﹣+2=0,即k2﹣4k+4=0,∴k=2.故答案为:228、(2018年高考江苏卷理科)8.(5分)在平面直角坐标系xOy 中,若双曲线﹣=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线的距离为c ,则其离心率的值是 2 .【解答】解:双曲线=1(a >0,b >0)的右焦点F (c ,0)到一条渐近线y=x 的距离为c ,可得:=b=,可得,即c=2a ,所以双曲线的离心率为:e=.故答案为:2.类型二 解答题1.(2017年高考数学北京卷(理))已知抛物线2:2C y px =过点(1,1)P ,过点1(0,)2作直线l 与抛物线C 交于不同的两点,M N ,过点M 作x 轴的垂线分别与直线,OP ON 交于点,A B ,其中O 为原点. (Ⅰ)求抛物线C 的方程,并求其焦点坐标和准线方程; (Ⅱ)求证:A 为线段BM 的中点.解:(Ⅰ)因为抛物线C 过点(1,1)P ,把(1,1)P 代入22y px =,得12p =∴2:C y x =∴焦点坐标1(,0)4,准线为14x =-。
专题05+解析几何-2017年高考数学试题分项版解析

-4-
②只需要根据一个条件得到关于 a,b,c 的齐次式,结合 b2=a2-c2 转化为 a,c 的齐次式,然后等式(不等式)两边分别除以 a 或 a2 转化为关于 e 的方程(不等式), 解方程(不等式)即可得 e(e 的取值范围).
5.【2017 天津,理 5】已知双曲线
x2 y2 1( a 0, b 0) 的左焦点为 F ,离心率为 2 .若 a 2 b2
x2 y2 2. 【 2017 课 标 II , 理 9 】 若 双 曲 线 C : 2 2 1 ( a 0 , b 0 ) 的 一 条 渐 近 线 被 圆 a b
x 2
2
y 2 4 所截得的弦长为 2,则 C 的离心率为(
)
-2-
A. 2 【答案】A 【解析】
B. 3
2p 2p 2p , 则 | DE | , 所 以 2 2 cos sin 2 cos ( ) 2 2p 2p 1 1 | AB | | DE | 2 4( 2 2 ) 2 cos sin cos sin
, 则 | AB |
4(
1 1 sin 2 cos 2 2 2 )(cos sin ) 4(2 ) 4 (2 2) 16 cos 2 sin 2 cos 2 sin 2
C.
2
D.
2 3 3
【考点】 双曲线的离心率 ;直线与圆的位置关系,点到直线的距离公式
【名师点睛】双曲线的离心率是双曲线最重要的几何性质,求双曲线的离心率(或 离心率的取值范围),常见有两种方法: ①求出 a,c,代入公式 e
c ; a
②只需要根据一个条件得到关于 a,b,c 的齐次式,结合 b2=c2-a2 转化为 a,c 的齐次式, 然后等式(不等式)两边分别除以 a 或 a2 转化为关于 e 的方程(不等式),解方程(不等式)即可得 e(e 的取值范围)。 3.【2017 浙江,2】椭圆
高中数学高考17第一部分 板块二 专题五 解析几何 第3讲 圆锥曲线中的最值、范围、证明问题(大题)

设M(x1,y1),M′(x2,y2), 设 MF1 的方程为 x=my- 3,
x=my- 3,
由x42+y2=1
得(m2+4)y2-2 3my-1=0,
故yy11+y2=y2=-mm2 221++3m44.,
设F1M与F2N的距离为d,四边形F1F2NM的面积为S,
则 S=12(|F1M|+|F2N|)d=12(|F1M′|+|F1M|)d=12|MM′|d= S△MF2M′,
2
PART TWO
真题体验 押题预测
真题体验 (2018·全国Ⅰ,文,20)设抛物线C:y2=2x,点A(2,0),B(-2,0),过点A的直线l与 C交于M,N两点. (1)当l与x轴垂直时,求直线BM的方程;
解 当l与x轴垂直时,l的方程为x=2, 可得点M的坐标为(2,2)或(2,-2). 所以直线 BM 的方程为 y=12x+1 或 y=-12x-1. 即x-2y+2=0或x+2y+2=0.
所以 y1+y2=2k,y1y2=-4.
直线 BM,BN 的斜率之和 kBM+kBN=x1y+1 2+x2y+2 2=x2y1+x1x+1y22+x22+y12+ y2.
①
将 x1=yk1+2,x2=yk2+2 及 y1+y2,y1y2 的表达式代入①式分子,
可得 x2y1+x1y2+2(y1+y2)=2y1y2+4kky1+y2=-8k+8=0.
当且仅当 t2=92,即 t=±322时取等号.
故△BPQ
的面积的最大值为
2 2.
热点二 范围问题
圆锥曲线的范围问题的常见解法 (1)几何法:若题目中的条件和结论能明显体现几何特征和意义,则考虑利用图形 性质来解决; (2)代数法:若题目中的条件和结论能体现一种明确的函数关系或不等关系或已知 参数与新参数之间的等量关系等,则可利用这些关系去求参数的范围.
解析几何的第一问(综合篇)-2017年高考数学备考艺体生百日突围系列含解析

《2017艺体生文化课-百日突围系列》综合篇专题五 解析几何的第一问直线与圆【背一背基础知识】1。
标准方程:圆心坐标(,)a b ,半径r ,方程222()()x a y b r -+-=,一般方程:22xy Dx Ey ++++0F =(其中2240D E F +->);2.直线与圆的位置关系:相交、相切、相离 ,代数判断法与几何判断法;3。
圆与圆的位置关系:相交、相切、相离、内含,代数判断法与几何判断法。
【讲一讲基本技能】 1.必备技能:①会用配方法把圆的一般方程化为标准方程;②直线和圆的位置可用方程组的解来判断,但主要是应用圆心到直线的距离d 和圆半径r 比较,d r >⇔相离,d r =⇔相切,d r <⇔相交;③圆与圆的位置关系一般也是用圆心距12OO 与两圆的半径之和(或差)比较,12OOR r >+⇔相离,12OOR r =+⇔外切,12R r OOR r -<<+⇔相交,12OOR r =-⇔内切,12OOR r <-⇔内含.④直线和圆的位置关系是这部分的重点考查内容. ⑤对直线被圆截得弦长问题,求出圆的半径r ,圆心到直线的距离为d ,则直线被圆截得弦长为222r d -2.典型例题例1【2016高考江苏卷】如图,在平面直角坐标系xOy中,已知以M为圆心的圆22:1214600M x y x y +--+=及其上一点(2,4)A(1)设圆N与x轴相切,与圆M外切,且圆心N在直线6x =上,求圆N的标准方程; (2)设平行于OA的直线l 与圆M相交于,B C两点,且BC OA=,求直线l的方程;(3)设点(,0)T t 满足:存在圆M 上的两点P和Q,使得,TA TP TQ +=,求实数t的取值范围。
【答案】(1)22(6)(1)1x y -+-=(2):25215l y x y x =+=-或(3)22212221t -≤+(2)因为直线l||OA ,所以直线l 的斜率为40220-=-。
2017年高考数学(文)-解析几何(练)-专题练习-答案

1.
2.
3. 4.【解析】依题意,不妨设 ,作出图象如下图所示
则 故离心率 .
5.
(3)设
因为 ,所以 ……①
因为点Q在圆M上,所以 …….②
将①代入②,得 .
于是点 既在圆M上,又在圆 上,
从而圆 与圆 有公共点,
所以 解得 .
因此,实数t的取值范围是 .
6. 2.练模拟
1.
2.【解析】任取一焦点 到一条渐近线 的距离为,则 ,有 ,故选D.
2017年高考数学(文)-解析几何(练)-专题练习
答案
1.练高考
1.B
2.B
3.B
4.2
5.(1) (2) (3)
6.(I) ;(II) .
2.练模拟
1.A
2.D
3.B
4.
5.(1) , ;(2) .
3.练原创
1.A
2.B
3.A
4.(1) ;(2) , .
5.(1) ;(2) .
2017年高考数学(文)-解析几何(练)-专题练习
3.
4.【解析】(1) .
(2)不存在时, 符合题意,
存在时, ,综上,直线方程为 , .
5.【解析】(1)设椭圆 的方程为 ( ),
则 解得
3.
4.【解析】由 得: 可知, 为 的中点,令右焦点.
5. ....................11分
∴ ,综上得 .....................12分
3.练原创
1.
2.【解析】动点 的轨迹满足与定点 和一定直线 距离相等,且定点不在定直线上,故是抛物线.
【推荐】 专题1.4 解析几何-2017年高考数学(理)走出题海之黄金100题系列

1.直线0x y m -+=与圆22210x y x +--=有两个不同交点的一个必要不充分条件是( )A. 01m <<B. 40m -<<C. 1m <D.31m -<<【答案】C【解析】联立直线与圆的方程得: 22{210x y m x y x -+=+--=,消去y 得: ()2222210x m x m +-+-=,根据题意得: ()()()222228141160m m m ∆=---=-++>,变形得: ()()310m m +-<,计算得出:31m -<<,因为01m <<是31m -<<的一个真子集,所以直线与圆有两个不同交点的一个充分不必要条件是01m <<.所以C 选项是正确的.2有相同的焦点,则m n +的取值范围是 ( )A.(]0,6 B. []3,6 C.D. [)6,9 【答案】C3.设F 为双曲线 O 为坐标原点,若OF 的垂直平分线)A. B. C. D. 【答案】B4.已知双曲线22:21C x my +=的两条渐近线互相垂直,则抛物线2:E y mx =的焦点坐标是( )A. B. C. ()0,1D. ()0,1- 【答案】A【解析】因为双曲线22:21C x my +=的两条渐近线互相垂直,所以两条渐近线方程为y x =±,双曲线方程为221x y -=,则,即22x y =-,则其焦点A. 5的右焦点和虚轴上的一个端点分别为,F A ,点P 为双曲线C 左支上一点,若APF ∆周长的最小值为6b ,则双曲线C 的离心率为( )A.B. C.【解析】设双曲线的右焦点为'F ,AFP ∆的周长为所以三角形周长的最小76b a =, B. 6.已知点()03,M y 是抛物线22(06)y px p =<<上一点,且M 到抛物线焦点的距离是M 到的距离的倍,则p 等于( )A. B. C. D. 【答案】B,即2p =或18p =(舍),故选B. 7.已知抛物线2:4C y x =的焦点为F ,准线为,过点F 的直线交抛物线于,A B 两点(A 在第一象限),过点A 作准线的垂线,垂足为E ,若60AFE ∠=︒,则AFE ∆的面积为( )A. B. C.D.【答案】A8的渐近线与圆22430x y y +-+=相切,则该双曲线C 的离心率为( )A. B. 2 C.【解析】圆标准方程为()2221x y +-=,圆心为()0,2,半径为1,双曲线的渐近线方程为,即0bx ay -=,所以B . 9.的右焦点F 作双曲线的一条渐近线的垂线,垂足为E , O 为坐标原点,若2,OFE EOF ∠=∠则b =( )A.B. C.D.【答案】D【解析】由题意, 260OFE EOF ∠=∠=︒,故选D.10.已知椭圆1C 和双曲线2C 焦点相同,且离心率互为倒数, 12,F F 是它们的公共焦点, P 是椭圆和双曲线在第一象限的交点,若1260F PF ∠=︒,则椭圆1C 的离心率为( )A. B. C.D.【答案】AA.B. C. 2±D.【答案】B 【解析】2,c o ,OA OB OA OB AOB ⋅=∴∠,22,2AB d ⎛+ ⎝B . 12.的一个焦点与抛物线220y x =的焦点重合,则该双曲线的标准方程为__________.【解析】的一个焦点与抛物线220y x =的焦点则222b 20c a =-=,所求的双曲线方程为: 13,则线段AB 的中点P 离轴最近时点的纵坐标为__________. 【答案】14.已知实数4,,9m 构成一个等比数列,则圆锥曲线__________.【解析】因为4,,9m 构成一个等比数列,所以24936m =⨯=,故6m =±,当6m =时椭圆,当6m =-时双曲线的焦距为15.已知圆C 过抛物线24y x =的焦点,且圆心在此抛物线的准线上,若圆C 的圆心不在轴上,相切,则圆C 的半径为__________. 【答案】14【解析】因抛物线的准线方程为1x =-,焦点坐标为()1,0F ,故设圆心坐标为()()1,0C t t -≠,由题意圆的半径解之得,所以圆的半径,应填答案14.16.已知,P Q 是椭圆上关于原点O 对称的任意两点,且点,P Q 都不在轴上.(1)若(),0D a ,求证: 直线PD 和QD 的斜率之积为定值;(2)若椭圆长轴长为,点()0,1A 在椭圆E 上,设,M N 是椭圆上异于点A 的任意两点,且AM AN ⊥.问直线MN 是否过一个定点?若过定点,求出该定点坐标;若不过定点,请说明理由.【答案】(1)见解析;(2)直线MN 恒定过点,?AM AN AM AN x x ⊥∴=,()()()()2212121110k x x k t x x t ∴++-++-=,或1t = (舍去), MN ∴方程为,则直线MN 恒定过点综上所述,直线MN 恒定过点17.已知动圆C 与圆()22:21C x y -+=外切,又与直线:1l x =-相切 .(1)求动圆C 的圆心的轨迹方程E ;(2)若动点M 为直线上任一点,过点()1,0P 的直线与曲线E 相交,A B 两点.求证:2MA MB MP k k k +=.【答案】(1) 28y x =;(2) 见解析.()()()1122,,,,1,A x y B x y M t -,则2121212128,8,82,1y y m y y x x m x x +=⋅=-+=+⋅=,所以2MA MB MP k k k +=成立.18.设已知双曲线2:2C y px =的焦点为1F ,过1F 的直线与曲线C 相交于M N 、两点. (1)若直线的倾斜角为60︒,且,求p ;2p =P Q 、P Q F 、、PQ MN ⊥四边形PMQN的面积的最小值.p (2【答案】(1)219.在平面直角坐标系xOy 中, ,M N 是轴上的动点,且,过点,M N 分的两条直线交于点P ,设点P 的轨迹为曲线E . (Ⅰ)求曲线E 的方程;(Ⅱ)过点()1,1Q 的两条直线分别交曲线E 于点,A C 和,B D ,且//AB CD ,求证直线AB 的斜率为定值.【答案】(Ⅱ)直线AB 的斜率为定值【解析】试题分析:(Ⅰ)设(),P m n ,直,令0y =,得,同理得,根据22OM ON m ⎛+= 化简可得结果;(Ⅱ) 设,,(0)AQ QC BQ QDλλλ==>,可得1,1A C A C x x y y λλλλ=+-=+-①,同理(Ⅱ)∵//AB CD,设,,(0)AQ QC BQ QD λλλ==>,()()()(),,,,,,,A A B B C C D D A x y B x y C x y D x y ,则()()1,11,1A A C C x y x y λ--=--,即1,1A C A C x x y y λλλλ=+-=+-①,同理1,1B D B D x x y y λλλλ=+-=+-②将()(),,,A A B B A x y B x y ,代入椭圆方程得化简得()()()()34A B A B A B A B x x x x y y y y +-=-+-③ 把①②代入③,得()()()()()()()()()3223422422C D C D C D C D C D C D x x x x x x y y y y y y λλλλλ+--+-=-+-+++-将()(),,,C C D D C x y D x y ,代入椭圆方程,同理得()()()()34C D C D C D C D x x x x y y y y +-=-+-代入上式得()()34C D C D x x y y -=--.∴直线AB 的斜率为定值 20.在平面直角坐标系xOy 内,动点(),M x y 与两定点()2,0-, ()2,0连线的斜率之积(1)求动点M 的轨迹C 的方程;(2)设点()11,A x y , ()22,B x y 是轨迹C 上相异的两点.(Ⅰ)过点A , B 分别作抛物线,证明: 0NA NB ⋅=;(Ⅱ)若直线OA 与直线OB 的斜率之积为 AOBS 为定值,并求出这个定值.【答案】(12)(Ⅰ)0(Ⅱ)1。
2017年高考真题分类总汇编(理数)专题5解析汇报几何(解析汇报版)

2017年高考真题分类汇编(理数):专题5 解析几何13、(2017·天津)设椭圆+ =1(a>b>0)的左焦点为F,右顶点为A,离心率为.已知A是抛物线y2=2px(p>0)的焦点,F到抛物线的准线l的距离为.(Ⅰ)求椭圆的方程和抛物线的方程;(Ⅱ)设l上两点P,Q关于x轴对称,直线AP与椭圆相交于点B(B异于A),直线BQ与x轴相交于点D.若△APD的面积为,求直线AP的方程.14、(2017•北京卷)已知抛物线C:y2=2px过点P(1,1).过点(0,)作直线l与抛物线C交于不同的两点M,N,过点M作x轴的垂线分别与直线OP、ON交于点A,B,其中O为原点.(14分)(1)求抛物线C的方程,并求其焦点坐标和准线方程;(2)求证:A为线段BM的中点.15、(2017•新课标Ⅱ)设O为坐标原点,动点M在椭圆C:+y2=1上,过M做x轴的垂线,垂足为N,点P满足= .(Ⅰ)求点P的轨迹方程;(Ⅱ)设点Q在直线x=﹣3上,且•=1.证明:过点P且垂直于OQ的直线l过C的左焦点F.16、(2017•山东)在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的离心率为,焦距为2.(14分)(Ⅰ)求椭圆E的方程.(Ⅱ)如图,该直线l:y=k1x﹣交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且看k1k2=,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.17、(2017•浙江)如图,已知抛物线x2=y,点A(﹣,),B(,),抛物线上的点P(x,y)(﹣<x<),过点B作直线AP的垂线,垂足为Q.(Ⅰ)求直线AP斜率的取值范围;(Ⅱ)求|PA|•|PQ|的最大值.18、(2017•江苏)如图,在平面直角坐标系xOy中,椭圆E:=1(a>b>0)的左、右焦点分别为F1, F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.(Ⅰ)求椭圆E的标准方程;(Ⅱ)若直线l1, l2的交点Q在椭圆E上,求点P的坐标.19、(2017•新课标Ⅰ卷)已知椭圆C:+ =1(a>b>0),四点P1(1,1),P2(0,1),P3(﹣1,),P4(1,)中恰有三点在椭圆C上.(12分)(1)求C的方程;(2)设直线l不经过P2点且与C相交于A,B两点.若直线P2A与直线P2B的斜率的和为﹣1,证明:l过定点.20、(2017•新课标Ⅲ)已知抛物线C:y2=2x,过点(2,0)的直线l交C与A,B两点,圆M是以线段AB为直径的圆.(Ⅰ)证明:坐标原点O在圆M上;(Ⅱ)设圆M过点P(4,﹣2),求直线l与圆M的方程.答案解析部分一、单选题1、【答案】B【考点】椭圆的简单性质【解析】【解答】解:椭圆+ =1,可得a=3,b=2,则c= = ,所以椭圆的离心率为:= .故选:B.【分析】直接利用椭圆的简单性质求解即可.2、【答案】B【考点】椭圆的标准方程,椭圆的简单性质,双曲线的标准方程,双曲线的简单性质【解析】【解答】解:椭圆+ =1的焦点坐标(±3,0),则双曲线的焦点坐标为(±3,0),可得c=3,双曲线C:﹣=1 (a>0,b>0)的一条渐近线方程为y= x,可得,即,可得= ,解得a=2,b= ,所求的双曲线方程为:﹣=1.故选:B.【分析】求出椭圆的焦点坐标,得到双曲线的焦点坐标,利用双曲线的渐近线方程,求出双曲线实半轴与虚半轴的长,即可得到双曲线方程.3、【答案】B【考点】斜率的计算公式,两条直线平行的判定,双曲线的简单性质【解析】【解答】解:设双曲线的左焦点F(﹣c,0),离心率e= = ,c= a,则双曲线为等轴双曲线,即a=b,双曲线的渐近线方程为y=±x=±x,则经过F和P(0,4)两点的直线的斜率k= = ,则=1,c=4,则a=b=2 ,∴双曲线的标准方程:;故选B.【分析】由双曲线的离心率为,则双曲线为等轴双曲线,即渐近线方程为y=±x,根据直线的斜率公式,即可求得c的值,求得a和b的值,即可求得双曲线方程.4、【答案】A【考点】抛物线的简单性质,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【解答】解:如图,l1⊥l2,直线l1与C交于A、B两点,直线l2与C交于D、E两点,要使|AB|+|DE|最小,则A与D,B,E关于x轴对称,即直线DE的斜率为1,又直线l2过点(1,0),则直线l2的方程为y=x﹣1,联立方程组,则y2﹣4y﹣4=0,∴y1+y2=4,y1y2=﹣4,∴|DE|= •|y1﹣y2|= ×=8,∴|AB|+|DE|的最小值为2|DE|=16,故选:A【分析】根据题意可判断当A与D,B,E关于x轴对称,即直线DE的斜率为1,|AB|+|DE|最小,根据弦长公式计算即可.5、【答案】A【考点】直线与圆相交的性质,双曲线的简单性质,圆与圆锥曲线的综合【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的一条渐近线不妨为:bx+ay=0,圆(x﹣2)2+y2=4的圆心(2,0),半径为:2,双曲线C:﹣=1(a>0,b>0)的一条渐近线被圆(x﹣2)2+y2=4所截得的弦长为2,可得圆心到直线的距离为:= ,解得:,可得e2=4,即e=2.故选:A.【分析】通过圆的圆心与双曲线的渐近线的距离,列出关系式,然后求解双曲线的离心率即可.6、【答案】A【考点】圆的标准方程,直线与圆的位置关系,椭圆的简单性质【解析】【解答】解:以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,∴原点到直线的距离=a,化为:a2=3b2.∴椭圆C的离心率e= = = .故选:A.【分析】以线段A1A2为直径的圆与直线bx﹣ay+2ab=0相切,可得原点到直线的距离=a,化简即可得出.二、填空题7、【答案】2【考点】双曲线的标准方程,双曲线的简单性质【解析】【解答】解:双曲线x2﹣=1(m>0)的离心率为,可得:,解得m=2.故答案为:2.【分析】利用双曲线的离心率,列出方程求和求解m 即可.8、【答案】[-5 ,1]【考点】平面向量数量积的运算,直线和圆的方程的应用【解析】【解答】解:根据题意,设P(x0, y0),则有x02+y02=50,=(﹣12﹣x0,﹣y0)•(﹣x0, 6﹣y0)=(12+x0)x0﹣y0(6﹣y0)=12x0+6y+x02+y02≤20,化为:12x0+6y0+30≤0,即2x0+y0+5≤0,表示直线2x+y+5≤0以及直线下方的区域,联立,解可得x0=﹣5或x0=1,结合图形分析可得:点P的横坐标x0的取值范围是[﹣5 ,1],故答案为:[﹣5 ,1].【分析】根据题意,设P(x0, y0),由数量积的坐标计算公式化简变形可得2x0+y0+5≤0,分析可得其表示表示直线2x+y+5≤0以及直线下方的区域,联立直线与圆的方程可得交点的横坐标,结合图形分析可得答案.9、【答案】2【考点】双曲线的简单性质【解析】【解答】解:双曲线﹣y2=1的右准线:x= ,双曲线渐近线方程为:y= x,所以P(,),Q(,﹣),F1(﹣2,0).F2(2,0).则四边形F1PF2Q的面积是:=2 .故答案为:2 .【分析】求出双曲线的准线方程和渐近线方程,得到P,Q坐标,求出焦点坐标,然后求解四边形的面积.10、【答案】【考点】双曲线的简单性质【解析】【解答】解:双曲线C:﹣=1(a>0,b>0)的右顶点为A(a,0),以A为圆心,b为半径做圆A,圆A与双曲线C的一条渐近线交于M、N两点.若∠MAN=60°,可得A到渐近线bx+ay=0的距离为:bcos30°= ,可得:= ,即,可得离心率为:e= .故答案为:.【分析】利用已知条件,转化求解A到渐近线的距离,推出a,c的关系,然后求解双曲线的离心率即可.11、【答案】6【考点】抛物线的简单性质【解析】【解答】解:抛物线C:y2=8x的焦点F(2,0),M是C上一点,FM的延长线交y轴于点N.若M为FN的中点,可知M的横坐标为:1,则M的纵坐标为:,|FN|=2|FM|=2 =6.故答案为:6.【分析】求出抛物线的焦点坐标,推出M坐标,然后求解即可.12、【答案】y=±x【考点】抛物线的标准方程,抛物线的简单性质,双曲线的标准方程,双曲线的简单性质,圆锥曲线的综合【解析】【解答】解:把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,∴y A+y B= ,∵|AF|+|BF|=4|OF|,∴y A+y B+2×=4×,∴=p,∴= .∴该双曲线的渐近线方程为:y=±x.故答案为:y=±x.【分析】把x2=2py(p>0)代入双曲线=1(a>0,b>0),可得:a2y2﹣2pb2y+a2b2=0,利用根与系数的关系、抛物线的定义及其性质即可得出.三、解答题13、【答案】(Ⅰ)解:设F的坐标为(﹣c,0).依题意可得,解得a=1,c= ,p=2,于是b2=a2﹣c2= .所以,椭圆的方程为x2+ =1,抛物线的方程为y2=4x.(Ⅱ)解:直线l的方程为x=﹣1,设直线AP的方程为x=my+1(m≠0),联立方程组,解得点P(﹣1,﹣),故Q(﹣1,).联立方程组,消去x,整理得(3m2+4)y2+6my=0,解得y=0,或y=﹣.∴B(,).∴直线BQ的方程为(﹣)(x+1)﹣()(y﹣)=0,令y=0,解得x= ,故D(,0).∴|AD|=1﹣= .又∵△APD的面积为,∴×= ,整理得3m2﹣2 |m|+2=0,解得|m|= ,∴m=±.∴直线AP的方程为3x+ y﹣3=0,或3x﹣y﹣3=0.【考点】椭圆的标准方程,椭圆的简单性质,抛物线的简单性质,直线与圆锥曲线的关系,圆锥曲线的综合【解析】【分析】(Ⅰ)根据椭圆和抛物线的定义、性质列方程组求出a,b,p即可得出方程;(Ⅱ)设AP方程为x=my+1,联立方程组得出B,P,Q三点坐标,从而得出直线BQ的方程,解出D点坐标,根据三角形的面积列方程解出m即可得出答案.14、【答案】(1)解:(1)∵y2=2px过点P(1,1),∴1=2p,解得p= ,∴y2=x,∴焦点坐标为(,0),准线为x=﹣,(2)(2)证明:设过点(0,)的直线方程为y=kx+ ,M(x1, y1),N(x2, y2),∴直线OP为y=x,直线ON为:y= x,由题意知A(x1, x1),B(x1,),由,可得k2x2+(k﹣1)x+ =0,∴x1+x2= ,x1x2=∴y1+ =kx1+ + =2kx1+ =2kx1+ =∴A为线段BM的中点.【考点】抛物线的简单性质,抛物线的应用,直线与圆锥曲线的综合问题【解析】【分析】(1.)根据抛物线过点P(1,1).代值求出p,即可求出抛物线C的方程,焦点坐标和准线方程;(2.)设过点(0,)的直线方程为y=kx+ ,M(x1, y1),N(x2, y2),根据韦达定理得到x1+x2= ,x1x2= ,根据中点的定义即可证明.15、【答案】解:(Ⅰ)设M(x0, y0),由题意可得N(x0, 0),设P(x,y),由点P满足= .可得(x﹣x0, y)= (0,y0),可得x﹣x0=0,y= y0,即有x0=x,y0= ,代入椭圆方程+y2=1,可得+ =1,即有点P的轨迹方程为圆x2+y2=2;(Ⅱ)证明:设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),•=1,可得(cosα,sinα)•(﹣3﹣cosα,m﹣sinα)=1,即为﹣3 cosα﹣2cos2α+ msinα﹣2sin2α=1,解得m= ,即有Q(﹣3,),椭圆+y2=1的左焦点F(﹣1,0),由k OQ=﹣,k PF= ,由k OQ•k PF=﹣1,可得过点P且垂直于OQ的直线l过C的左焦点F.【考点】数量积的坐标表达式,同角三角函数间的基本关系,斜率的计算公式,两条直线垂直与倾斜角、斜率的关系,轨迹方程【解析】【分析】(Ⅰ)设M(x0, y0),由题意可得N(x0, 0),设P(x,y),运用向量的坐标运算,结合M满足椭圆方程,化简整理可得P的轨迹方程;(Ⅱ)设Q(﹣3,m),P(cosα,sinα),(0≤α<2π),运用向量的数量积的坐标表示,可得m,即有Q的坐标,求得椭圆的左焦点坐标,求得OQ,PF的斜率,由两直线垂直的条件:斜率之积为﹣1,即可得证.16、【答案】解:(Ⅰ)由题意知,,解得a= ,b=1.∴椭圆E的方程为;(Ⅱ)设A(x1, y1),B(x2, y2),联立,得.由题意得△= >0.,.∴|AB|= .由题意可知圆M的半径r为r= .由题意设知,,∴.因此直线OC的方程为.联立,得.因此,|OC|= .由题意可知,sin = .而= .令t= ,则t>1,∈(0,1),因此,= ≥1.当且仅当,即t=2时等式成立,此时.∴,因此.∴∠SOT的最大值为.综上所述:∠SOT的最大值为,取得最大值时直线l的斜率为.【考点】函数的值域,椭圆的标准方程,椭圆的简单性质,椭圆的应用,直线与圆锥曲线的关系,直线与圆锥曲线的综合问题【解析】【分析】(Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;(Ⅱ)设A(x1, y1),B(x2, y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=.由题意设知.得到直线OC的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin = .转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为,取得最大值时直线l的斜率为.17、【答案】解:(Ⅰ)由题可知P(x,x2),﹣<x<,所以k AP= =x﹣∈(﹣1,1),故直线AP斜率的取值范围是:(﹣1,1);(Ⅱ)由(I)知P(x,x2),﹣<x<,所以=(﹣﹣x,﹣x2),设直线AP的斜率为k,则AP:y=kx+ k+ ,BP:y=﹣x+ + ,联立直线AP、BP方程可知Q(,),故=(,),又因为=(﹣1﹣k,﹣k2﹣k),故﹣|PA|•|PQ|= •= + =(1+k)3(k﹣1),所以|PA|•|PQ|=(1+k)3(1﹣k),令f(x)=(1+x)3(1﹣x),﹣1<x<1,则f′(x)=(1+x)2(2﹣4x)=﹣2(1+x)2(2x﹣1),由于当﹣1<x<﹣时f′(x)>0,当<x<1时f′(x)<0,故f(x)max=f()= ,即|PA|•|PQ|的最大值为.【考点】利用导数求闭区间上函数的最值,平面向量数量积的运算,斜率的计算公式,抛物线的应用,圆锥曲线的综合【解析】【分析】(Ⅰ)通过点P在抛物线上可设P(x,x2),利用斜率公式结合﹣<x<可得结论;(Ⅱ)通过(I)知P(x,x2)、﹣<x<,设直线AP的斜率为k,联立直线AP、BP方程可知Q点坐标,进而可用k表示出、,计算可知|PA|•|PQ|=(1+k)3(1﹣k),通过令f(x)=(1+x)3(1﹣x),﹣1<x<1,求导结合单调性可得结论.18、【答案】解:(Ⅰ)由题意可知:椭圆的离心率e= = ,则a=2c,①椭圆的准线方程x=±,由2×=8,②由①②解得:a=2,c=1,则b 2=a 2﹣c 2=3,∴椭圆的标准方程:;(Ⅱ)设P (x 0 , y 0),则直线PF 2的斜率 =,则直线l 2的斜率k 2=﹣ ,直线l 2的方程y=﹣ (x ﹣1),直线PF 1的斜率=,则直线l 2的斜率k 2=﹣ ,直线l 2的方程y=﹣(x+1),联立 ,解得: ,则Q (﹣x 0 , ),由Q 在椭圆上,则y 0= ,则y 02=x 02﹣1,则 ,解得: ,则 ,∴P ( , )或P (﹣ , )或P ( ,﹣ )或P (﹣ ,﹣ ).【考点】直线的点斜式方程,两条直线的交点坐标,椭圆的简单性质,直线与圆锥曲线的关系【解析】【分析】(Ⅰ)由椭圆的离心率公式求得a=2c ,由椭圆的准线方程x=± ,则2×=8,即可求得a 和c 的值,则b 2=a 2﹣c 2=3,即可求得椭圆方程;(Ⅱ)设P 点坐标,分别求得直线PF 2的斜率及直线PF 1的斜率,则即可求得l 2及l 1的斜率及方程,联立求得Q 点坐标,由Q 在椭圆方程,求得y 02=x 02﹣1,联立即可求得P 点坐标;19、【答案】(1)解:根据椭圆的对称性,P3(﹣1,),P4(1,)两点必在椭圆C上,又P4的横坐标为1,∴椭圆必不过P1(1,1),∴P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,得:,解得a2=4,b2=1,∴椭圆C的方程为=1.(2)证明:①当斜率不存在时,设l:x=m,A(m,y A),B(m,﹣y A),∵直线P2A与直线P2B的斜率的和为﹣1,∴= = =﹣1,解得m=2,此时l过椭圆右顶点,不存在两个交点,故不满足.②当斜率存在时,设l:y=kx+b,(b≠1),A(x1, y1),B(x2, y2),联立,整理,得(1+4k2)x2+8kbx+4b2﹣4=0,,x1x2= ,则= == = =﹣1,又b≠1,∴b=﹣2k﹣1,此时△=﹣64k,存在k,使得△>0成立,∴直线l的方程为y=kx﹣2k﹣1,当x=2时,y=﹣1,∴l过定点(2,﹣1).【考点】直线的斜截式方程,椭圆的标准方程,椭圆的简单性质,圆锥曲线的综合【解析】【分析】(1.)根据椭圆的对称性,得到P2(0,1),P3(﹣1,),P4(1,)三点在椭圆C上.把P2(0,1),P3(﹣1,)代入椭圆C,求出a2=4,b2=1,由此能求出椭圆C的方程.(2.)当斜率不存在时,不满足;当斜率存在时,设l:y=kx+b,(b≠1),联立,得(1+4k2)x2+8kbx+4b2﹣4=0,由此利用根的判别式、韦达定理、直线方程,结合已知条件能证明直线l过定点(2,﹣1).20、【答案】解:方法一:证明:(Ⅰ)当直线l的斜率不存在时,则A(2,2),B(2,﹣2),则=(2,2),=(2,﹣2),则•=0,∴⊥,则坐标原点O在圆M上;当直线l的斜率存在,设直线l的方程y=k(x﹣2),设A(x1, y1),B(x2, y2),,整理得:k2x2﹣(4k2+2)x+4k2=0,则x1x2=4,4x1x2=y12y22=(y1y2)2,由y1y2<0,则y1y2=﹣4,由•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,综上可知:坐标原点O在圆M上;方法二:设直线l的方程x=my+2,,整理得:y2﹣2my﹣4=0,设A(x1, y1),B(x2, y2),则y1y2=﹣4,则(y1y2)2=4x1x2,则x1x2=4,则•=x1x2+y1y2=0,则⊥,则坐标原点O在圆M上,∴坐标原点O在圆M上;(Ⅱ)由(Ⅰ)可知:x1x2=4,x1+x2= ,y1+y2= ,y1y2=﹣4,圆M过点P(4,﹣2),则=(4﹣x1,﹣2﹣y1),=(4﹣x2,﹣2﹣y2),由•=0,则(4﹣x1)(4﹣x2)+(﹣2﹣y1)(﹣2﹣y2)=0,整理得:k2+k﹣2=0,解得:k=﹣2,k=1,当k=﹣2时,直线l的方程为y=﹣2x+4,则x1+x2= ,y1+y2=﹣1,则M(,﹣),半径为r=丨MP丨= = ,∴圆M的方程(x﹣)2+(y+ )2= .当直线斜率k=1时,直线l的方程为y=x﹣2,同理求得M(3,1),则半径为r=丨MP丨= ,∴圆M的方程为(x﹣3)2+(y﹣1)2=10,综上可知:直线l的方程为y=﹣2x+4,圆M的方程(x﹣)2+(y+ )2=或直线l的方程为y=x﹣2,圆M的方程为(x﹣3)2+(y﹣1)2=10.【考点】直线的点斜式方程,直线的斜截式方程,圆的标准方程,点与圆的位置关系,直线与圆锥曲线的关系【解析】【分析】(Ⅰ)方法一:分类讨论,当直线斜率不存在时,求得A和B的坐标,由•=0,则坐标原点O在圆M上;当直线l斜率存在,代入抛物线方程,利用韦达定理及向量数量积的可得•=0,则坐标原点O在圆M上;方法二:设直线l的方程x=my+2,代入椭圆方程,利用韦达定理及向量数量积的坐标运算,即可求得•=0,则坐标原点O在圆M上;(Ⅱ)由题意可知:•=0,根据向量数量积的坐标运算,即可求得k的值,求得M点坐标,则半径r=丨MP丨,即可求得圆的方程.。
高考数学解析几何练习题及答案

高考数学解析几何练习题及答案解析几何是高考数学中的一个重要知识点,对于考生来说具有一定的难度。
为了帮助广大考生更好地复习和应对高考数学解析几何部分,本文提供一些常见的解析几何练习题及其答案。
考生可以借此进行自测和巩固知识点,提升解析几何的解题能力。
题目一:已知三角形ABC的顶点坐标分别为A(-3,1),B(4,2),C(1,-3),求三角形ABC的周长和面积。
解析和求解:首先,我们可以利用两点之间的距离公式计算出三角形ABC的三边长度。
设点A的坐标为(x1,y1),点B的坐标为(x2,y2),则两点之间的距离公式为d = √[(x2-x1)^2 + (y2-y1)^2]。
根据该公式,我们可以计算出:AB的距离:dAB = √[(4-(-3))^2 + (2-1)^2] = √[7^2 + 1^2] = √50BC的距离:dBC = √[(1-4)^2 + (-3-2)^2] = √[(-3)^2 + (-5)^2] = √34AC的距离:dAC = √[(-3-1)^2 + (1-(-3))^2] = √[(-4)^2 + 4^2] = √32所以,三角形ABC的周长等于AB+BC+AC,即周长=√50+√34+√32。
接下来,我们可以利用海伦公式来计算三角形ABC的面积。
海伦公式可以表示为:面积=√[s(s-a)(s-b)(s-c)],其中s为三角形的半周长,即s=(a+b+c)/2。
由此,我们可以计算出半周长s=(√50+√34+√32)/2,将其代入海伦公式,即可得到三角形ABC的面积。
题目二:设直线l1过点A(-1,2)且与直线l2:2x-y-3=0平行,求直线l1的方程。
解析和求解:首先,根据题目提示,直线l1与l2平行,可以推知l1与l2的斜率相同。
斜率可以通过直线的一般方程式y=ax+b中的a来表示。
要求得直线l1的方程,我们需要先求出直线l2的斜率k。
直线l2的一般方程式为2x-y-3=0,将其转换为斜截式方程式y=2x-3,可以看出斜率k=2。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
y 2 2 px(p 0)
(1)若直线 l 过抛物线 C 的焦点,求抛物线 C 的方程; 2. 【2016 高考天津理数】设椭圆
x2 y 2 (x> 3) 的右焦点为 F ,右顶点为 A ,已知 1 a2 3
-2-/4
1 1 3e ,其中 O 为原点, e 为椭圆的离心率. OF OA FA
2
1 2
x 轴对称,直线 l 与抛物线交于异于 M, N 的 A, B 两点,且 | NF | 坐标; 10.如图,椭圆 C :
2 2
(1)过点 M 作圆的割线交圆于 A, B 两点,若 | AB | 4 ,求直线 AB 的方程; (2)过点 M 作圆的两条切线,切点分别为 C , D ,求切线长及 CD 所在直线的方程. 2.典型例题 例 1【2016 高考新课标 1 卷】设圆 x2 y 2 2 x 15 0 的圆心为 A,直线 l 过点 B(1,0)且与 x 轴不重合,l 交圆 A 于 C,D 两点,过 B 作 AC 的平行线交 AD 于点 E. (I)证明 EA EB 为定值,并写出点 E 的轨迹方程; (II)设点 E 的轨迹为曲线 C1,直线 l 交 C1 于 M,N 两点,过 B 且与 l 垂直的直线与圆 A 交于 P,Q 两点,求四 边形 MPNQ 面积的取值范围.
-1-/4
例 2. 【2016 高考新课标Ⅲ文数】已知抛物线 C : y 2 2 x 的焦点为 F,平行于 x 轴的两条直线 l1 , l2 分别交
C 于 A,B 两点,交 C 的准线于 P, Q 两点.
(I)若 F 在线段 AB 上, R 是 PQ 的中点,证明 AR FQ ; (II)若 PQF 的面积是 ABF 的面积的两倍,求 AB 中点的轨迹方程. 【练一练趁热打铁】 1. 【2016 高考山东理数】平面直角坐标系 xOy 中,椭圆 C: 物线 E: x 2 2 y 的焦点 F 是 C 的一个顶点. (I)求椭圆 C 的方程;
2017 年高考数学-解析几何的第一问(综合篇)-专题练习
1.典型例题 例 1. 【2016 高考江苏卷】如图,在平面直角坐标系 xOy 中,已知以 M 为圆心的圆
M : x2 y 2 12 x 14 y 60 0 及其上一点 A(2,4)
(1)设圆 N 与 x 轴相切,与圆 M 外切,且圆心 N 在直线 x 6 上,求圆 N 的标准方程; (2)设平行于 OA 的直线 l 与圆 M 相交于 B,C 两点,且 BC OA ,求直线 l 的方程; (3)设点 T (t,0) 满足:存在圆 M 上的两点 P 和 Q,使得 TA TP TQ ,求实数 t 的取值范围。
2ቤተ መጻሕፍቲ ባይዱ
于 A、B 两点. (1)若 l 的倾斜角为
, F1 AB 是等边三角形,求双曲线的渐近线方程; 2
(2)设 b 3 ,若 l 的斜率存在,且 AB 4 ,求 l 的斜率. 9.已知 F ( ,0) 为抛物线 y 2 px( p 0) 的焦点,点 N ( x0 , y0 )( y0 0) 为其上一点,点 M 与点 N 关于
例 2.已知圆 C 经过点 A(2,0) ,与直线 x y 2 相切,且圆心 C 在直线 2 x y 1 0 上. (1)求圆 C 的方程; (2)已知直线 l 经过点 (0,1) ,并且被圆 C 截得的弦长为 2,求直线 l 的方程. 【练一练趁热打铁】 1.在平面直角坐标系 xOy 中,点 A(0,3) ,直线 l : y 2 x 4 ,设圆 C 的半径为 1 ,圆心在 l 上. 若圆心 C 也在直线 y x 1 上,过点 A 作圆 C 的切线,求切线的方程; 2.已知圆 P : x y 4 x 2 y 3 0 和圆外一点 M (4, 8) .
x2 y 2 3 2 1 a>b>0 的离心率是 ,抛 2 2 a b
2.已知椭圆 G :
x2 y 2 6 ,右焦点为 (2 2, 0) ,过原点 O 的直线 l 交椭圆于 2 1 (a b 0) 的离心率为 2 a b 3 A, B 两点,线段 AB 的垂直平分线交椭圆 G 于点 M .求椭圆 G 的方程.
(Ⅰ)求椭圆的方程; 3. 设双曲线 程; 4.已知圆 C : ( x 2) ( y 2) 1 ,直线 l 过定点 A(1,0) .
2 2
y 2 x2 1(a 0) 的两个焦点分别为 F1 , F2 ,离心率为 2.求此双曲线的渐近线 l1、l2 的方 a2 3
(1)若直线 l 平分圆的周长,求直线 l 的方程; (2)若直线 l 与圆相切,求直线 l 的方程; 5.已知曲线 C: x2 y 2 2 x 4 y m 0 , (1)当 m 为何值时,曲线 C 表示圆; (2)在(1)的条件下,若曲线 C 与直线 3x 4 y 6 0 交于 M、N 两点,且 MN 2 3 ,求 m 的值. 6. 已知椭圆 E 的长轴的一个端点是抛物线 y 2 4 5 x 的焦点,离心率是
2
3.已知抛物线 C1 : y 2 px p 0 的焦点为 F,抛物线上存在一点 G 到焦点的距离为 3,且点 G 在圆
C : x 2 y 2 9 上,求抛物线 C1 的方程.
解答题(10*10=100) 1. 【2016 高考江苏卷】如图,在平面直角坐标系 xOy 中,已知直线 l : x y 2 0 ,抛物线
6 .求椭圆 E 的标准方程; 3
7.已知圆 E : ( x 3)2 y 2 16 ,点 F ( 3,0) ,P 是圆 E 上任意一点.线段 PF 的垂直平分线和半径 PE 相 交于 Q. (1)求动点 Q 的轨迹 F 的方程;
y2 8. 【2016 高考上海文科】双曲线 x 2 1(b 0) 的左、右焦点分别为 F1 , F2 ,直线 l 过 F2 且与双曲线交 b