第二章 红外光谱
合集下载
红外光谱(IR)

k 大,化学键的振动波数高 。
δ
1 2c
K
如:K值:单键4-6×102N/m < 双键8-10×102N/m < 叁键12-18×102 N/m
kCC(2222cm-1) > kC=C(1667cm-1) > kC-C(1429cm-1)(质量相近)
如:
质量m大, μ 增大,化学键的振动波数低 。
远红外
(ΔE=0.05~0.005ev; =25-250μm)
红外光谱区
区域 近红外 中红外 远红外 λ(μm) 0.75~2.5 2.5~50 50~1000 σ(cm-1 ) 13000 ~4000 4000~200 200~10 ν (Hz) 4.0×1014 ~ 1.2×1014 1.2×1014 ~ 6.0×1012 6.0×1012 ~ 3.0×1011 能级跃迁类型
R—C
3
⑥ 费米共振
一基团的倍频或合频与另一基团的基频相近,且具有相同的对称性时,他们可能 产生共振,使谱带分裂,并使强度很弱的倍频或合频谱带变得异常强,这一现象称为 费米共振。 2780cm-1 O 2700cm-1 如: C-H伸缩:2800cm-1
—C—H
C-H的面内弯曲(1400cm-1)的第一倍频:2700~2800cm-1
E c h c
波长:m,cm;h-普朗克常数 波数:σ =1/ ——横坐标 红外吸收谱带的强度——纵坐标 E分子=E电子+E振动+E转动 紫 外 红外
(ΔE=0.05~1ev; =1.252 -125μm)
(ΔE=1~20ev; =0.06-1.25μm)
1942cm-1
‖
O
电负性增强,频率增大
第二章 红外吸收光谱(讲课)

6. IR光谱在化学领域中的应用
1. 分子结构基础研究 应用IR测定分子的键长、键角,以此推断出分子的立 体构型; 根据所得的力常数可以知道化学键的强弱,由简正频 率来计算热力学函数等。
2. 化学组成分析
根据光谱中吸收峰的位置和形状来推断未知物结构,依 照特征吸收峰的强度来测定混合物中各组分的含量。
第二章 红外吸收光谱
第一节 概述
1、 红外吸收光谱与紫外吸收光谱一样是一种分子吸收光谱。
红外光的能量( E=0.05-1.0ev)较紫外光( E=1-20ev) 低。红外光照射分子时不足以引起分子中价电子能级的跃迁, 而能引起分子振动能级和转动能级的跃迁,故红外吸收光谱 又称为分子振动光谱或振转光谱。
非线型分子振动自由度数目:3N-6个; 线性分子的振动自由度数目: 3N-5个。
理论上每个自由度在IR中可产生1个吸收峰,实际上IR光 谱中的吸收峰数少于基本振动自由度,原因是:
(1)振动过程中,伴随有偶极矩的振动才能产生吸收峰。 (2)频率完全相同的吸收峰,彼此发生简并(峰重叠)。 (3)强、宽峰覆盖相近的弱、窄峰。 (4)有些峰落在中红外区之外。 (5)吸收峰太弱,检测不出来。
表 化学键的力常数
键 H-F 分子 HF k(×105dyn/cm) 9.7 4.8 4.1 键 H-C H-C C-C 分子 CH≡CH k(×105dyn/cm) 5.9 4.5-5.6 CH2=CH2 5.1
H-Cl HCl H-Br HBr
H-I
H-O H-O H-S H-N H-C
HI
H2 O 游离 H2 S NH3
1. 由虎克定律计算化学键振动频率
振
1 2
k
m
1
第二章 红外光谱

(2)羧酸盐的对称伸缩振动s在1450~1300cm-1出现强 峰;硝基s 在1385~1290cm-1出现强峰;砜类as(SO2)在 1440~1300cm-1出现强峰 。
X-Y伸缩振动(13001050 cm-1 )
伸缩振动类型 醇C-O 伯醇 仲醇 叔醇 酚C-O
醚C-O 脂肪醚 芳香醚 乙烯醚
(2)醛基上的C-H在2820cm-1、2720-1处有两个吸收锋,它 是由C-H弯曲振动的倍频与C-H伸缩振动之间相互作用的结果 (费米共振),其中2720cm-1吸收峰很尖锐,且低于其他的 C-H伸缩振动吸收,易于识别,是醛基的特征吸收峰,可作为 分子中有醛基存在的一个依据。
(3)氧甲基(-OCH3)、氮甲基(-NCH3)和不与芳环相 连的仲胺、叔胺中的亚甲基(-N-CH2-),可在2850-2720cm-1 范围内产生中等强度的吸收峰。
取代基位置等有用情报。
脂肪族化合物C-H面外弯曲振动区
烯烃类型
波数(cm-1)
峰强度
RCH=CH2
990和910
RCH=CHR(顺) 690
强 中至强
RCH=CHR(反) 970
中至强
R2C=CH2 R2C=CHR
890 840-790
中至强 中至强
讨论:
(1)除了R1R2C=CR3R4类型的烯烃化合物,所有其他类 型的烯烃都可用C-H面外弯曲振动作为鉴定的重要依据,其 中=CH2基团除了基频谱带外,在1800cm-1附近可观察到C-H 面外弯曲振动的倍频谱带。
-OCH3 -O-CH2-O-
醛基C-H
波数(cm-1) 2960及2870 2930及2850
2890 2830-2810 2720-2750 2780-2765
第2章红外光谱1

a . 空间障碍: 大基团或很多基团产生的位阻作用,迫使邻 近基团间的键角变小或共轭体系之间单键键角偏转,使 基团振动频率和峰形发生变化。
1663 cm-1 1686 cm-1 1693 cm-1
b. 环张力: 环的减小导致张力变大,环内键变弱,频率降低,环外的振动频率升高
B:多原子分子振动模型
多原子分子的振动要比双原子复杂,有3n-6(非线性分 子)或3n-5个振动(线性分子)自由度,对应于3n-6或 3n-5个振动,并不是每个振动都会产生红外吸收,只有偶极距 发生变化的振动才会产生红外吸收,这样的振动为红外活性振 动,振动过程中偶极距变化越大,吸收向高频移动,并且强度 增加。偶极距不发生改变的振动为红外非活性振动,不产生红 外吸收。 非极性的同核双原子分子如:O2,N2等无红外吸收
2.3. 红外光谱的吸收频率及其影响因素
化学键的振动频率不仅与其性质有关如成键原子的杂化方式,质量效应等,还受很多外部因素的影响。相同基团的特征吸收并不总在一个固定频率上。影响因素有关: 1. 质量效应 2.电子效应 内在因素 3.空间效应 4.氢键 5.振动的偶合 外在因素
近红外区:12820 ~ 5000 cm-1 远红外区:400~33cm-1 中红外区:5000 ~ 400cm-1
2.1.1 红外光谱的产生
一个分子的总能量包括核能(En)、分子的平动能(Et)、电子能(Ee)、振动能(Ev)、和转动能(Er) E≈ En+ Et + Ee + Ev + Er 分子在辐射作用下能量的变化ΔE为 ΔE= ΔEe +ΔE v+ ΔEr
(1). O-H 醇与酚:游离态--3640~3610cm-1,峰形尖锐中等强度 缔合--3300cm-1附近,峰形宽而钝
1663 cm-1 1686 cm-1 1693 cm-1
b. 环张力: 环的减小导致张力变大,环内键变弱,频率降低,环外的振动频率升高
B:多原子分子振动模型
多原子分子的振动要比双原子复杂,有3n-6(非线性分 子)或3n-5个振动(线性分子)自由度,对应于3n-6或 3n-5个振动,并不是每个振动都会产生红外吸收,只有偶极距 发生变化的振动才会产生红外吸收,这样的振动为红外活性振 动,振动过程中偶极距变化越大,吸收向高频移动,并且强度 增加。偶极距不发生改变的振动为红外非活性振动,不产生红 外吸收。 非极性的同核双原子分子如:O2,N2等无红外吸收
2.3. 红外光谱的吸收频率及其影响因素
化学键的振动频率不仅与其性质有关如成键原子的杂化方式,质量效应等,还受很多外部因素的影响。相同基团的特征吸收并不总在一个固定频率上。影响因素有关: 1. 质量效应 2.电子效应 内在因素 3.空间效应 4.氢键 5.振动的偶合 外在因素
近红外区:12820 ~ 5000 cm-1 远红外区:400~33cm-1 中红外区:5000 ~ 400cm-1
2.1.1 红外光谱的产生
一个分子的总能量包括核能(En)、分子的平动能(Et)、电子能(Ee)、振动能(Ev)、和转动能(Er) E≈ En+ Et + Ee + Ev + Er 分子在辐射作用下能量的变化ΔE为 ΔE= ΔEe +ΔE v+ ΔEr
(1). O-H 醇与酚:游离态--3640~3610cm-1,峰形尖锐中等强度 缔合--3300cm-1附近,峰形宽而钝
第2章 红外光谱

共轭效应使 电子离域,双键性 ,K
(3)中介效应(使振动频率移向低波数区) 含有孤对电子的 O、N 和 S 等原子,能与 相邻的不饱和基团共轭(p-π共轭),其结果 使不饱和基团的振动频率降低,而自身连接 的化学键振动频率升高。
羰基的双键性
K
3、空间效应
(1)环的张力:环减小→环张力增大 →环内各键 被削弱→伸缩振动频率降低→环外的键却增强→ 伸缩振动频率升高。 环酮:环张力增大, 羰基v 增大。 环烯:环张力增大, 双键v 减小。 (2)空间障碍:共轭体系的共平面性被偏离或被 破坏时, v 增大。
O-H(缔合)
2843 cm-1
~ (游离) 3615~3605 cm-1 O-H
2.3 红外光谱仪及样品制备技术
一、红外光谱仪
红外光谱按其发展历程分为三代: 第一代是以棱镜作为单色器 第二代是以光栅作为单色器 第三代干涉型分光光度计
1、色散型红外光谱仪
(1)仪器的工作原理
仪器组成:光源,吸收池,单色器、 检测器、放大器和记录器。 仪器的工作原理:依据“光学零位平衡”
分子振动频率有以下规律:
(1)K:化学键的力常数是衡量价键性质的一个重要 参数(质量相近的基团)。 因 Kc≡c>Kc=c>Kc-c 则红外频率νc≡c>ν c=c> νc-c
(2)与氢原子相连的化学键的折合质量都小,红外吸
收在高波数区(X—H),C-H伸缩振动吸收位于
3000cm-1,O-H伸缩振动吸收位于3000-3600 cm-1,NH伸缩振动吸收位于3300 cm-1。
化学键弯曲振动的类型
弯曲振动
面内弯曲振动 剪式振动 面内摇摆振动 面外弯曲振动 面外摇摆振动 面外扭曲振动
第二章 红外光谱

2 . N-H(吸收强度比-OH弱,峰形较尖锐)
胺类: 游离——3500~3300cm-1 缔合——吸收位置降低约100cm-1 伯胺:3500,3400cm-1 仲胺:3400cm-1 叔胺:无吸收 酰胺:伯酰胺:3350,3150cm-1 附近出现双峰 仲酰胺:3200cm-1 附近出现一条谱带 叔酰胺:无吸收
远红外
25 - 1000
400 - 25
红外光谱是用频率4000~400cm-1(2.5~25m)的光波
照射样品,引起分子内振动和转动能级跃迁所产生的
吸收光谱。也称振 - 转光谱。
波长和波数
电磁波的波长( )、频率( v)、能量(E)之间的关系:
二、红外光谱图
I T % 100 % I0
O R C R
O R C H
1715 cm-1
O C
C C
O C R
1665-1685
O
H
(CH3)2N
C
H
1730 CH3C≡N
2255
1690
1663 (CH3)2C=CH-C≡N
2221
同一化合物中,如果同时存在I效应和C效应,则影 响较大的效应决定吸收峰的位移方向
1735 -I>+C
1680
能发生振动能级跃迁,产生吸收光谱。
2. 只有引起分子偶极矩发生变化的振动才能产生
红外吸收光谱。
四、影响特征吸收频率的因素
分为内因(不可变化)和外因(可变)
(一)内部因素 1、电子效应 a. 诱导效应(I 效应)
诱导效应使基团电荷分布发生变化,从而改变了键的力常
数,使振动频率发生变化.
例:
O R C X
υOH ,υNH
波谱分析教程_第2章_红外光谱(IR)

m X mD m X mD m X mH mD 2(m X 1) m X mH m X mD mH mX 2 m X mH
将(mX+1)/(mX+2)近似为1,则上式可简化为:
X H 2 X D
电子效应
诱导效应、中介效应、和共轭效应
• 诱导效应
诱导效应
红外光谱的吸收强度
红外吸收强度及其表示符号
摩尔消光系数(ε) 强度 符号
>200
75~200 25~75 5~25 0~5
很强
强 中等 弱 很弱
VS
S M W VW
• T % 愈低,吸光度就愈强,谱带强度就愈大。根 据T %,谱带强度大致分为:很强吸收带(vs,T % < 10);强吸收带(s,10<T %<40),中强吸 收带(m,40 < T %<90),弱吸收带(w,T % > 90),宽吸收带用b表示。
质量效应
X-H 键的伸缩振动波数(cm-1)
化学键 C-H 波数(cm-1) 3000 化学键 F-H Cl-H Br-H I-H Si-H Ge-H Sn-H 波数(cm-1) 4000 2890 2650 2310 2150 2070 1850
C=C-H
Ar-H C C-H
3100-3000
*有些分子既有红外“活性”振动,又有红外“非活 性”振动。
例如:二氧化碳的IR光谱
• •
O=C=O
对称伸缩振动 不产生吸收峰
O=C=O
反对称伸缩振动 2349
O=C=O
面内弯曲振动 667
O=C=O
面外弯曲振动 667
因此O=C=O的 IR光谱只有2349 和 667/cm 二个吸收峰
02第二章 红外光谱

大,吸收强度增大。
RCOOH: 3200~2500cm-1
正己酸的气态和液态IR:a: gas; b: liquid
2.5偶合作用
羰基伸缩振动:1825; 1728
醛基上C-H键的伸缩振动与C-H弯曲振动的
倍频发生费米共振引起的.
2.5 外部因素
制样方法、溶剂、物态、结晶条件、色
光谱选律
原子和分子与电磁波相互作用,从一个
能量状态跃迁至另一个能量状态,服从 一定的规律,这些规律称为光谱选律。
根据光谱选律若两个能级间的跃迁是可
能的,称之为允许跃迁(概率大,强度 大);
不可能的跃迁称为禁阻跃迁(概率小,
强度弱)。
真实分子的振动
简谐振动选律为△ν=±1,即跃迁发生在两个
第二章 红外光谱
Infrared Spectroscopy
0.75
~
2.5
~
25
~
300mm
近红外区
中红外区
远红外区
4000
400cm1
本章要点:
理解红外光谱的基本原理
掌握红外光谱与有机化合物分子结构之间的
关系 熟悉基团特征频率及其影响因素 掌握运用红外光谱解析分子结构的方法
红外光谱概述
振-转光谱;
辐射→分子振动能级跃迁→红外光谱→
分子中基团的振动和转动能级跃迁产生:
官能团→分子结构;
吸收光谱。
红外光谱的特点
不破坏样品;
特征性高,可确定化合物类型,结构;
分析时间短;
所需样品少,每次用量1~5mg;
要求纯度高。
红外光谱与有机物结构
红外吸收光谱一般用T ~ 曲线或T ~σ曲线
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
O
1650
H O O C H3C O-H 伸缩
OCH3 2835
HO 3705-3125
游离羧酸的C=O键频率出现在1760 cm-1 左右,在固体或液 体中,由于羧酸形成二聚体, C=O键频率出现在1700 cm-1 。 分子内氢键不受浓度影响,分子间氢键受浓度影响较大。 如羧酸 :RCOOH(C=O=1760cm-1 ,O-H=3550cm-1); (RCOOH)2(C=O=1700cm-1 ,O-H=3250-2500cm-1) 如乙醇:CH3CH2OH(O—H=3640cm-1 ) (CH3CH2OH)2(O—H=3515cm-1 ) (CH3CH2OH)n(O—H=3350cm-1 )
第2章 红外光谱(IR) (infrared spectroscopy)
2.1 红外光谱的基本原理 2.1.1 红外吸收光谱 红外光谱是一种分子光谱 当用一束具有连续波长的红外光照 射一物质时,该物质的分子要吸收 一定波长的红外光的光能,将其转 变为分子的振动能和转动能。
一、红外光区的划分 红外光谱在可见光区和微波光区之间,波长 范围约为 0.75 ~ 1000µm,根据仪器技术和应用 不同,习惯上又将红外光区分为三个区:近红 外光区(0.75 ~ 2.5µm ),中红外光区(2.5 ~ 25µ m ),远红外光区(25 ~ 1000 µ m )。 近红外光区的吸收带(0.75 ~ 2.5µm )主要 是由低能电子跃迁、含氢原子团(如O-H、N-H 、C-H)伸缩振动的倍频吸收产生。该区的光谱 可用来研究稀土和其它过渡金属离子的化合物 ,并适用于水、醇、某些高分子化合物以及含 氢原子团化合物的定量分析。
振动偶合:
2,4-二甲基戊烷的红外光谱
CH3的对称弯曲振动频率为1380cm-1,但当两个甲基连在同一个C原子上,形 成异丙基时发生振动偶合,即1380cm-1的吸收峰消失,出现1385 cm-1和1375 cm-1两个吸收峰。
6、Fermi共振 当一振动的倍频与另一振动的基频接近时, 由于发生相互作用而产生很强的吸收峰或发生裂 分,这种现象称为Fermi共振。 如:如环戊酮的骨架伸缩振动889㎝-1的二倍频峰 为1778㎝-1,与环戊酮的C=O伸缩振动1745㎝-1峰 离得很近,被大大增强出现了下图(a)的情况。 当用重氢氘代后,由于环戊酮的骨架伸缩振动变 成827㎝-1,其倍频峰变为1654㎝-1,离C=O伸缩 振动较远,不被加强,结果在此区域出现C=O的 单峰。如下图(b)所示。 。
>100 20< <100 10< <20 1< <10
非常强峰(vs) 强峰(s) 中强峰(m) 弱峰(w)
2.2 影响红外光谱吸收频率的因素
化学键的振动频率不仅与其本性有关,还受分
子的内部结构和外部因素影响。相同基团的特征吸
收并不总在一个固定频率上。
1. 质量效应
1 = = 2pc
化学键越强(即键的力常数K越大)原子折合质量越小,化 学键的振动频率越大,吸收峰将出现在高波数区。 键类型 力常数 峰位 —CC — > —C =C — > —C — C — 15 17 9.5 9.9 4.5 5.6 4.5mm 6.0 mm 7.0 mm 表 某些键的伸缩力常数(毫达因/埃)
2.1.2 分子振动类型
1、两类基本振动形式
1)伸缩振动
2)弯曲振动
2、基本振动的理论数
设分子由n个原子组成,每个原子在空间都有3个自由 度,原子在空间的位置可以用直角坐标中的3个坐标x 、y、z表示,因此,n个原子组成的分子总共应有3n个 自由度,即3n种运动状态。 但在这3n种运动状态中,包括3个整个分子的质心沿x 、y、z方向平移运动和3个整个分子绕x、y、z轴的转 动运动。这6种运动都不是分子振动,因此,振动形式 应有(3n-6)种。 但对于直线型分子,若贯穿所有原子的轴是在x方向, 则整个分子只能绕y、z轴转动,因此,直线性分子的 振动形式为(3n-5)种。
中红外光区吸收带(2.5 ~ 25µ m )是绝大多数 有机化合物和无机离子的基频吸收带(由基态振动 能级(=0)跃迁至第一振动激发态(=1)时,所 产生的吸收峰称为基频峰)。由于基频振动是红外 光谱中吸收最强的振动,所以该区最适于进行红外 光谱的定性和定量分析。同时,由于中红外光谱仪 最为成熟、简单,而且目前已积累了该区大量的数 据资料,因此它是应用极为广泛的光谱区。通常, 中红外光谱法又简称为红外光谱法。
费米共振例
苯甲酰氯的红外光谱
苯甲酰氯C-Cl的伸缩振动在874cm-1,其倍频峰在1730cm-1左右,正好在C=O 的伸缩振动吸收峰位置附近,发生费米共振从而倍频峰吸收强度增加。
7. 外部因素
(1) 溶剂的影响
在溶液中测定光谱时,由于溶剂的种类、溶剂
的浓度和测定时的温度不同,同一种物质所测得的
1678cm -1
1657cm -1
C H2
C H2
16 51cm -1
4.氢键效应
氢键对峰位,峰强产生极明显影响,使伸缩振动 频率向低波数方向移动。
氢键的形成使电子云密度平均化,从而使伸缩振 动频率降低。
O R
H NH R
C=O 伸缩 N - H 伸缩
游离 聚合 1690 3500 3400
HNH
例
CO2分子
4、红外光谱产生的条件
满足两个条件: 1、辐射应具有能满足物质产生振动跃迁所需的能量; 2、辐射与物质间有相互偶合作用。 即物质振动时偶极矩发生改变。
2.1.3 红外光谱的吸收峰强
瞬间偶基距变化大,吸收峰强;键两端原子电负性相差 越大(极性越大),吸收峰越强; 一般地,极性较强的基团(如C=0,C-X等)振动,吸收 强度较大;极性较弱的基团(如C=C、C-C、N=N等)振动,吸 收较弱。红外光谱的吸收强度一般定性地用很强(vs)、强 (s)、中(m)、弱(w)和很弱(vw)等表示。 按摩尔吸光系数的大小划分吸收峰的强弱等级,具体如下:
5、 振动偶合
当两个振动频率相同或相近的基团相邻具有一公共原子 时,由于一个键的振动通过公共原子使另一个键的长度发生改 变,产生一个“微扰”,从而形成了强烈的振动相互作用。其 结果是使振动频率发生变化,一个向高频移动,另一个向低频 移动,谱带分裂。振动偶合常出现在一些二羰基化合物中,如 羧酸酐。
两个羰基的振动偶合,使C=O吸收峰分裂成两个峰,波数 分别为1820 cm-1 (非对称偶合)和1760 cm-1 (对称偶合)
§2.4 各类化合物IR光谱特征
基团频率区的划分
区域名称 频率范围 氢键区 4000~2500cm-1 基团及振动形式 O-H、C-H、N-H 等的伸缩振动 叁键和 CC、CN、NN和 累积双键区 2500~2000cm-1 C=C=C、N=C=O 等的伸缩振动 双键区 2000~1500cm-1 C=O、C=C、C=N、NO2、 苯环等的伸缩振动 单键区 1500~400cm-1 C-C、C-O、C-N、 C-X等的伸缩振动及含 氢基团的弯曲振动。
当分子中有异丙基(即两个甲基连在同一个碳上)时,因为振动耦合作 用甲基的s CH31380cm-1发生裂分,在1375 cm-1和1385 cm-1左右出现强度 相近的两个峰。
二、烯烃
烯烃类型 R-CH=CH2 (强度) 3095(m) 3075(m) =C-H/cm-1 (强度) 1645(m) C=C/cm-1 面外=C-H/cm-1 (强度) 990(s) 900(s)
远红外光区吸收带 (25 ~ 1000µm )是由气体分 子中的纯转动跃迁、振动-转动跃迁、液体和固体中重 原子的伸缩振动、某些变角振动、骨架振动以及晶体 中的晶格振动所引起的。 由于低频骨架振动能灵敏地 反映出结构变化,所以对异构体的研究特别方便。
二、IR光谱的表示方法
红外吸收光谱一般用T ~ 曲线或T ~ (波数)曲线 表示。纵坐标为百分透光度T%,因而吸收峰向下,向 上则为谷;横坐标是波长(单位为µ m ),或 (波数) (单位为cm-1)。 波长与波数之间的关系为:波数 / cm-1 =104 /( / µ m )中红外区的波数范围是4000 ~ 400 cm-1 。
S S m w w w
备注
异丙基和叔丁 基在1380cm-1 附近裂分为双 峰
CH3
CH2
CH
(CH2)n
CH2
n4,n越大, 峰吸收强度越 大。
C-H弯曲振动
﹣CH2
﹣CH3
1450 1380(中)
1470(中)
2015年2月2日星期一2时15 分26秒
正癸烷的红外光谱图
2,4-二甲基戊烷的红外光谱
三、吸收峰的位置
1、双原子分子的简谐振动及其频率 化学键的振动类似于连接两个小球的弹簧
1 = = 2pc
注:各物理量的单位
1
k
m
= 4.12
k
m
K化学键的力常数,与键能和键长有关, m为双原子的折合质量 m =m1m2/(m1+m2) 发生振动能级跃迁需要能量的大小取决于键两端原子的 折合质量和键的力常数,即取决于分子的结构特征。
光谱也不同。通常在极性溶剂中,溶质分子的极性 基团的伸缩振动频率随溶剂极性的增加而向低波数 方向移动,并且强度增大。因此,在红外光谱测定 中,应尽量采用非极性的溶剂。
极性基团的伸缩振动频率通常随溶剂极性增加而降低。如羧 酸中的羰基C=O: 气态时: C=O=1780cm-1 -1 非极性溶剂: C=O=1760cm 因此在查阅标准红外图谱时,应注意试 乙醚溶剂: C=O=1735cm-1 -1 乙醇溶剂: C=O=1720cm 样状态和制样方法。 (2) 物质的状态 同一物质的不同状态,由于分子间相互作用力不同,所 得到光谱往往不同。 分子在气态时,其相互作用力很弱,此时可以观察到伴 随振动光谱的转动精细结构。 液态和固态分子间作用力较强,在有极性基团存在时, 可能发生分子间的缔合或形成氢键,导致特征吸收带频率、 强度和形状有较大的改变。 例如,丙酮在气态时的C=O为1742 cm-1 ,而在液态时为 1718 cm-1.