红外光谱分析

合集下载

红外光谱分析测试

红外光谱分析测试

红外光谱分析测试红外光谱分析测试是一种广泛应用于化学、生物、材料科学等领域的分析技术。

本文将介绍红外光谱分析测试的原理、应用以及分析结果的解读。

一、原理红外光谱分析测试基于物质在红外光区的吸收特征,通过测量物质在不同波长的红外光下的吸收强度,来获得物质的红外光谱。

红外光谱图由红外光吸收与波数之间的关系所构成,每个特定的物质都有其独特的红外光谱特征。

二、应用1. 化学分析:红外光谱分析可以用于鉴定化学物质的结构和组成。

通过与已知物质的红外光谱进行对比,可以确定未知物质的成分和结构特征。

2. 生物医药:红外光谱分析在生物医药领域有着广泛应用。

例如,通过检测人体组织、体液中的红外光谱特征,可以实现疾病的早期诊断和治疗效果的评估。

3. 材料科学:红外光谱分析可用于表征材料的组成和结构,研究材料的光学性质、导电性质以及材料的热学性质等。

这对于新材料的开发和性能改良具有重要意义。

三、分析结果解读红外光谱图包含多个峰,每个峰代表了不同化学官能团的振动模式。

通过峰的位置、形状和强度,可以分析物质的成分和结构特征。

1. 峰的位置:不同官能团的振动模式对应不同的峰位。

通过查阅红外光谱数据库或已知物质的红外光谱图,可以确定特定峰位所代表的官能团。

2. 峰的形状:峰的形状可以提供关于官能团的对称性和键的强度信息。

对称性越高,峰的形状越尖锐;键的强度越强,峰的形状越宽。

3. 峰的强度:峰的强度与物质中特定官能团的含量有关。

峰的强度越高,表示特定官能团的含量越多。

根据红外光谱分析测试的结果,可以得出结论并作出相应的应用决策。

但需要注意的是,红外光谱分析只是一种辅助手段,综合其他分析方法和实验结果来进行综合分析是更可靠的。

综上所述,红外光谱分析测试是一种重要的化学分析技术,广泛应用于各个领域。

通过分析红外光谱图的峰位、形状和强度,可以确定物质的成分和结构特征,为相关领域的科研和应用提供有力的支持。

红外吸收光谱分析

红外吸收光谱分析

基团频率区旳划分
分区根据:因为有机物数目庞大,而构成有
机物旳基团有限;基团旳振动频率取决于K 和
m,同种基团旳频率相近。
划分措施
氢键区 ❖基团特征频率区 叁键区和累积双键区
双键区
❖指纹区
单键区
区域名称 频率范围
基团及振动形式
氢键区 4000~2500cm-1 O-H、C-H、N-H
等旳伸缩振动
叁键和
溶剂效应,极性基团旳伸缩振动频率随溶剂旳极性增 大而降低,但其吸收峰强度往往增强,一般是因为极 性基团和极性溶剂之间形成氢键旳缘故,形成氢键旳 能力越强吸收带旳频率就越低。如丙酮在环己烷中νC=O 为1727cm-1 ,在四氯化碳中为1720cm-1 ,在氯仿中为 1705cm-1 。
分子振动旳自由度
• 电子效应
①诱导效应 ②共轭效应
• 空间效应
①空间位阻 ②环张力
• 氢键
• 二.外部原因
• ①物态效应 • ②溶剂效应
❖电子效应
(1)诱导效应 经过静电诱导作用使分子中 电子云分布发生变化引起K旳变化,从而影 响振动频率。 如 C=O
吸电子诱导效应使羰基双键性增长,振动频 率增大。
(2)共轭效应 共轭效应使共轭体系中
Varian 680-IR
• 日本岛津: • 傅立叶变换红外光谱仪 IRAffinity-1 • 高信噪比:30,000:1 以上;配置自动除湿装
置,易于维护;外形小巧,占地面积小;标配 杂质分析程序;多种附件能够选择。 • 傅立叶变换红外光谱仪 IRPrestige-21 • 研究级傅立叶红外光谱仪。 • 岛津红外显微镜系统 AIM-8800 • 具有AIM VIEW先进控制系统;具有高敏捷度 旳不需维护旳MCT检测器;多种附件使应用范 围进一步扩展。

红外光谱图分析

红外光谱图分析

红外光谱图分析简介红外光谱图分析是一种常见的分析方法,广泛应用于化学、生物、材料等领域。

通过测量样品在红外光谱范围内的光吸收,可以获得关于样品中分子结构和化学键的信息。

本文将简要介绍红外光谱图的基本原理、数据处理和常见应用。

基本原理红外光谱图是由红外光谱仪测量得到的,其原理基于分子吸收特性。

在红外光谱范围内,分子会吸收特定波长的红外光,这些波长对应于分子振动和转动。

通常,红外光谱图的横坐标为波数(cm^-1),纵坐标为吸光度或透射率。

数据处理对于红外光谱图的数据处理,通常需要进行以下几个步骤:1.基线校正:红外光谱中可能存在噪声或基线漂移,需要通过基线校正来消除这些干扰。

一种常见的方法是使用多项式函数拟合基线。

import numpy as npimport matplotlib.pyplot as plt# 生成示例数据x = np.linspace(4000, 400, 1000)y = np.random.normal(0, 0.1, size=1000) + np.exp (-0.01 * x)# 多项式拟合coefficients = np.polyfit(x, y, 3)baseline = np.polyval(coefficients, x)# 绘制结果plt.plot(x, y, label='Original Spectrum')plt.plot(x, baseline, label='Baseline')plt.legend()plt.xlabel('Wavenumber (cm$^{-1}$)')plt.ylabel('Absorbance')plt.title('Baseline Correction')plt.show()2.峰提取:在光谱图中,各个峰代表了样品中不同的化学键和功能团。

通过峰提取可以定量分析样品中的各个成分。

红外光谱分析

红外光谱分析

红外光谱分析红外光谱分析是一种用于物质表征和分析的重要技术方法。

它利用红外光波与物质相互作用的特性,通过测量物质对不同波长红外光的吸收、散射或透射行为,来了解物质的结构、组成和特性。

红外光谱分析在化学、生物、医药、农业、环保等领域得到广泛应用。

红外光谱分析是一种非破坏性的分析技术,可以对样品进行快速、准确的分析,而无需对样品进行特殊处理。

这使得红外光谱分析在实际应用中非常方便,特别适用于对大多数无机和有机化合物的分析。

在红外光谱分析中,主要利用了物质与红外光的相互作用。

红外光的频率范围通常被分为近红外区、中红外区和远红外区。

这些不同区域的红外光与样品分子之间的相互作用方式也不相同,因而可以提供不同的信息。

近红外区主要用于有机物的结构表征和定性分析,中红外区则用于有机物和无机物的定性和定量分析,而远红外区则常用于无机物的分析。

红外光谱仪是进行红外光谱分析的主要工具。

红外光谱仪的核心部分是一个光学系统,用于将红外光进行分光和检测。

光谱仪通过扫描不同波长的红外光,得到样品在不同波长下的吸收、散射或透射光强度的变化。

这些光谱数据可以表示为一个光谱图,通常是以波数(cm-1)作为横坐标,吸光度或透射率作为纵坐标。

红外光谱图是红外光谱分析的结果,它可以提供有关样品组成和结构的信息。

根据不同波数下的吸收峰位置和强度,可以推断样品中的官能团、键合情况、分子构型等信息。

通过与已知物质的红外光谱进行比对,还可以对未知物质进行鉴定和定性分析。

红外光谱分析在化学研究和工业实践中具有广泛的应用。

它可以用于药物开发中的药物结构表征和质量控制,可用于环境监测中的水质和空气质量分析,也可以用于食品和农产品的质量安全检测。

此外,红外光谱分析还可以用于病理学、生物学和生物医药等领域的研究。

红外光谱分析作为一种重要的分析方法,不仅可以为科学研究提供强有力的技术支持,也为工业生产和品质管理提供了有效的工具。

它不仅具有分析速度快、结果准确、操作简便的特点,还能够将样品准备工作降到最低,减少了对环境和样品的破坏。

红外光谱分析法

红外光谱分析法

例题: 由表中查知C=C键旳k=9.5 9.9 ,令其为 9.6, 计算波数值。
v 1 1 k 1307 k 1307 9.6 1650cm1
2c
12 / 2
正己烯中C=C键伸缩振动频率实测值为1652 cm-1
只合用于双原子分子和影响原因小旳多原子分子,实 际旳分子构造中,基团与基团间、基团旳化学键之间 都会有影响而造成振动波数旳变化
例:计算C-C、C=C、C≡C旳振动波数? 已知键旳力常数分别为5、10、15N·cm-1
某些键旳伸缩力常数(毫达因/埃)
键类型 力常数 峰位
—CC — > —C =C — > —C — C —
15 17 9.5 9.9
4.5 5.6
4.5m
6.0 m
7.0 m
化学键键强越强(即键旳力常数K越大)原子折合质量 越小,化学键旳振动频率越大,吸收峰将出目前高波数区。
1、红外光谱旳区域划分 常见旳化学基团在4000-670 cm-1范围内有
特征吸收。常将该波数范围提成四个区域 (1)X-H伸缩振动区 4000-2500 cm-1 (2)叁键和积累双键区 2500-1900 cm-1 (3)双键伸缩振动区 1900-1200 cm-1 (4)X-Y伸缩振动及X-H变形振动区
特征吸收:指基团在特定旳区域有吸收,且其他 部分对此吸收位置旳影响较小,并有较强旳吸收谱带。
最有分析价值旳基团频率在4000 cm-1 ~ 1300 cm-1 之间, 这一区域称为基团频率区、官能团区或特征区。区内旳峰是由 伸缩振动产生旳吸收带,比较稀疏,轻易辨认,常用于鉴定官 能团。
在1300 cm-1 ~600 cm-1 区域内,除单键旳伸缩振动外,还 有多数基团因变形振动产生旳谱带。这种振动与整个分子旳构 造有关。当分子构造稍有不同步,该区旳吸收就有细微旳差别, 并显示出分子特征,称为指纹区。

红外光谱的分析实验报告

红外光谱的分析实验报告

一、实验目的1. 了解红外光谱的基本原理和实验方法。

2. 掌握红外光谱仪的操作技能。

3. 通过红外光谱分析,鉴定样品的化学成分。

二、实验原理红外光谱分析是一种基于分子振动和转动能级跃迁的光谱分析方法。

当分子吸收红外光时,分子中的化学键发生振动和转动,从而产生特征的红外光谱。

红外光谱具有特征性强、灵敏度高、样品用量少等优点,广泛应用于化学、化工、生物、医药等领域。

三、实验仪器与试剂1. 仪器:傅里叶变换红外光谱仪、样品制备仪、样品瓶、玻璃棒、酒精、丙酮等。

2. 试剂:待测样品、KBr、压片机、滤纸等。

四、实验步骤1. 样品制备:将待测样品研磨成粉末,用玻璃棒搅拌均匀,然后将粉末与KBr按一定比例混合,压制成薄片。

将薄片放置在样品室中。

2. 红外光谱扫描:打开红外光谱仪,预热仪器至规定温度。

将样品薄片放入样品室,进行红外光谱扫描。

扫描范围为4000~400cm-1,分辨率为4cm-1。

3. 数据处理:将扫描得到的数据输入计算机,进行数据处理和峰位定位。

4. 结果分析:根据红外光谱的特征峰,对照标准光谱图,对样品进行定性分析。

五、实验结果与分析1. 样品A:在红外光谱图中,出现以下特征峰:(1)3340cm-1:O-H伸缩振动峰,表明样品中含有羟基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1450cm-1:C-H弯曲振动峰,表明样品中含有烷烃基。

综合以上特征峰,样品A为醇类化合物。

2. 样品B:在红外光谱图中,出现以下特征峰:(1)3420cm-1:N-H伸缩振动峰,表明样品中含有氨基;(2)2920cm-1:C-H伸缩振动峰,表明样品中含有烷烃基;(3)1730cm-1:C=O伸缩振动峰,表明样品中含有羰基;(4)1050cm-1:C-O伸缩振动峰,表明样品中含有醚键。

综合以上特征峰,样品B为酰胺类化合物。

六、实验讨论1. 实验过程中,样品制备是关键步骤,需确保样品均匀、无气泡。

5红外光谱分析

5红外光谱分析

伸缩
3700-3500 3600-3000 1420-1350 1500-1340 1500-1200 1200-1010 1100-800
弯曲
1200-600 1650-1600 900-800 900-700 800-600 680-580 560-420
42
红外-拉曼
5 典型红外图谱(7)
化学键 -CH3 -CH-
16
红外-拉曼
4 红外分析方法(3)
17
4 红外分析方法(5)
红外光谱测定中的样品处理技术 1
液体样品 固体样品 气体样品
液膜法 溶液法 水溶液测定
压片法 调糊法(或重烃油法,Nujol法) 薄膜法 ATR法、显微红外、DR、PAS、RAS 气体池
18
红外光谱测定中的样品处理技术 2
1液膜法
用组合窗板进行测定
(KBr从4000-250cm-1都是透明的,即 不产生红外吸收)
34
红外-拉曼
5 典型红外图谱(1)
3500 cm-1: O-H stretching vibrations. 1600 cm-1 :O-H bending vibration band.
~1100 cm-1:Si-O-Si fundamental vibration.
➢Examination of materials that are not amenable to the film analysis method
➢Analysis of extremely thin films applies on the top surfaces
➢Sample in solution
12
红外-拉曼
3 红外吸收产生的原理(8)

红外光谱测试分析

红外光谱测试分析

红外光谱测试分析引言:红外光谱测试是一种常用的实验技术,用于分析样品的化学结构、官能团及其化学环境。

它是通过观察和记录样品在红外区域(4000至400 cm^-1)的吸收、散射或透射红外辐射而得到的。

红外光谱测试广泛应用于有机、无机、生物、聚合物等领域。

本文将介绍红外光谱测试的原理、仪器、样品制备以及数据分析等内容。

一、红外光谱测试原理红外光谱测试基于物质与红外辐射的相互作用。

红外光谱仪将红外辐射通过样品,然后测量样品吸收、散射或透射的光强。

红外辐射包含许多波长,在红外区域中的每种波长都与特定的分子振动模式相对应。

当样品中的分子振动发生时,它们会吸收特定波长的红外光,从而产生特征峰。

根据这些特征峰的位置和强度可以推断样品的化学组成和结构。

二、红外光谱测试仪器红外光谱测试仪器主要由光源、样品盒、分光器和探测器等组成。

常见的红外光谱仪有傅里叶变换红外光谱仪(FTIR)和色散红外光谱仪(dispersive IR)。

其中,FTIR光谱仪具有高分辨率、高灵敏度和快速测量的优点,被广泛应用于科研和工业领域。

三、样品制备样品制备是红外光谱测试的关键步骤之一、样品可以是固体、液体或气体。

对于固体样品,常用的方法是将样品与适合的红外吸收剂混合,然后挤压成适当的片状样品。

对于液体样品,可以使用液态电池夹持装置保持样品在红外光束中。

对于气体样品,需要将气体置于透明的气室中,并对室内气体进行红外光谱的测量。

四、红外光谱数据分析红外光谱数据分析是针对测得的吸收谱进行的。

常见的红外光谱数据分析包括鉴定功能性团、质谱相关性分析和量子化学计算等。

鉴定功能性团是通过对比样品的吸收峰位置和精确峰位表进行的。

质谱相关性分析是利用红外光谱和质谱数据之间的相关性,为红外光谱的解释提供重要信息。

量子化学计算是通过计算得到的理论红外光谱与实际测量的红外光谱进行比对,以验证实验结果的准确性。

结论:红外光谱测试是一种重要的化学分析技术,广泛应用于化学、材料、药物和环境等领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2) 红外光与分子之间有偶合作用:分子振动时其偶极矩(μ) 必须发生变化,即Δμ≠0。
3) 能级跃迁选律:振动量子数(ΔV)变化为±1时,跃迁几 率最大。从基态(V=0)到第一振动激发态(V=1)的跃迁最重要,
产生的吸收频率称为基频。
精品课件
红外光的能量是通过分子振动时偶极矩的变化传递给分子。
对称分子:没有偶极矩, 辐射不能引起共振,无红外活 性。
精品课件
例如: R-CH=CH2
(对称性最差) 顺式 R-CH=CH-R´
(对称性次之) 反式 R-CH=CH-R´
(对称性最强)
➢ 吸收强度增大 形成氢键后,相应基团的振动偶极矩变化增大,因此 吸收强度增大。
精品课件
醇、酚、羧酸、胺类等化合物中可以形成氢键。
例如: 醇、酚中的OH ,当分子处于游离状态时,其振动频
率为3640cm-1左右,是中等强度的尖锐吸收峰,当分子 处于缔合状态时,其振动频率红移到3300cm-1附近,谱 带增强并加宽。胺类化合物中的N-H也有类似情况。除 伸缩振动外,OH、NH的弯曲振动受氢键影响也会发生谱 带位置移动和峰形展宽。
R-COF C=0
吸电子诱导效应使羰基双精键品性课增件 加,振动频率增大。
b. 共轭效应: 共轭效应使共轭体系中的电子云密度平 均化,即双键键强减小,振动频率红移 (减小)。
也以C=O为例:
O H 3CCC3H
O CC3H
O CC3H
O C
1715 1685
1685 1660
C=C
CH2=CH2 1650 cm-1
C-C、C-O、C-N、
等的伸缩振动及含
精品课件
C-X
• 基团特征频率区的特点和用途
– 吸收峰数目较少,但特征性强。不同化合物 中的同种基团振动吸收总是出现在一个比较窄 的波数范围内。
– 主要用于确定官能团。
• 指纹区的特点和用途
– 吸收峰多而复杂,很难对每一个峰进行归属 。
– 单个吸收峰的特征性差,而对整个分子结构 环境十分敏感。
区域名称 氢键区
频率范围
4000~2500cm-1
基团及振动形式
O-H、C-H、N-H
等的伸缩振动
叁键和
CC、CN、NN和
累积双键区 2500~2000cm-1
C=C=C、N=C=O

的伸缩振动
双键区
2000~1500cm-1 C=O、C=C、C=N、NO2、 苯环等的伸缩振动
单键区
1500~400cm-1
精品课件
红外光谱中除了前述基本振动产生的基本频率吸收峰外 ,还有一些其他的振动吸收峰:
❖倍频:是由振动能级基态跃迁到第二、三激发态时 所产生的吸收峰。由于振动能级间隔不等距,所以 倍频不是基频的整数倍。
❖组合频:一种频率红外光,同时被两个振动所吸收 即光的能量由于两种振动能级跃迁。
组合频和倍频统称为泛频。因为不符合跃迁选律, 发生的几率很小,显示为弱峰。
如:N2、O2、Cl2 等。
非对称分子:有偶极 矩,红外活性。
偶极子在交变电场中的作用示意图
精品课件
基频峰(0→1)
2885.9 cm-1 最强
二倍频峰( 0→2 ) 5668.0 cm-1 较弱
三倍频峰( 0→3 ) 8346.9 cm-1 很弱
四倍频峰( 0→4 ) 10923.1 cm-1 极弱
分子的振动能级(量子化):
E振=(V+1/2)h V :化学键的 振动频率; :振动量子数。
精品课件
(2) 分子振动方程式
任意两个相邻的能级间的能量差为:
E h h k 2
K化学键的力常数,与键能和键长有关, (为m1双+m原2)子的折合质量 =m1m2/
1 1 2c
k 1307
k
发生振动能级跃迁需要能量的大小取决于 键两端原子的折合质量和键的力常数,即
O H NH 游离
R
R
HN H O 氢键
C=O 伸缩 N-H 伸缩 N-H 变形
1690
3500
1620-1590
1650
3400
1650-1620
HO O
C H3C
O-H 伸缩
OCH3 2835
HO 3705-3125
精品课件
氢键的形成对吸收峰的影响:
➢ 吸收峰展宽 氢键形成程度不同,对力常数的影响不同,使得吸收 频率有一定范围。氢键形成程度与测定条件有关。
❖振动偶合:相同的两个基团相邻且振动频率相近时 ,可发生振动偶合,引起吸收峰裂分,一个峰移向 高频,一个移向低频。
❖费米共振:基频与倍频或组合频之间发生的振动偶 合,使后者强度增强。
精品课件
振动偶合:
2,4-二甲基戊烷的红外光谱
CH3的对称弯曲振动频率为1380cm-1,但当两个甲基连在同一个C原子上,形成 异丙基时发生振动偶合,即1380cm-1的吸收峰消失,出现1385 cm-1和1375 cm-1 两个吸收峰。
分子的红外光谱
精品课件
2.3.4 影响谱带强度的因素
谱带强度与振动时偶极矩变化有关,偶极矩变化愈大,谱带强 度愈大;偶极矩不发生变化,谱带强度为0,即为红外非活性 。
影响偶极矩变化的因素:
➢ 分子或基团本身的极性大小:极性越大,偶极矩变化 越大,对应的吸收谱带越强。如C-O吸收峰强度大于C-C 吸收峰强度。 ➢ 化合物结构的对称性:对称性越强,偶极矩变化越小 ,吸收谱带越弱。
精品课件
费米共振:
苯甲酰氯的红外光谱
苯甲酰氯C-Cl的伸缩振动在874cm-1,其倍频峰在1730cm-1左右,正好落在C=O 的伸缩振动吸收峰位置附近,发生精费品米课共件 振从而倍频峰吸收强度增加 。
影响振动频率的因素
振动方程
1 K 2 m
K当m固定时,基团振动频率随化
学键力常数增强而增大。
精品课件
如果诱导和共轭效应同时存在,则须具体分析哪种效应占主要 影响。如:
共轭效应:
N上的孤对电子与羰基形成p-共轭, C=O 红移(减小)
诱导效应:
N比C原子的电负性大, 导致C=O 蓝移(增大)
共轭效应大于诱导效应, C=O 红移至1690 cm-1
精品课件
O
R
OR
共轭效应:
O上的孤对电子与羰基形成p-共轭, C=O 红移(减小)
CH2=CH-CH=CH2 1630 cm-1
若考虑共轭体系中的单键,情况如何?
精品课件
若考虑共轭体系中的单键,情况如何?
例如: 脂肪醇中C-O-H基团中的C-O反对称伸缩振
动 ( as)位于1150-1050cm-1,而在酚中因为
氧与 芳环发生p-共轭,其 as在1230-1200cm
–因1此。: 对共轭体系中的单键而言,则键强增强,振动频率增大。
精品课件
影响基团频率位移的具体因素
❖ 电子效应 ❖ 空间效应 ❖氢键
精品课件
1)电子效应
a.诱导效应:通过静电诱导作用使分子中电子云分布发生变
化引起K的改变,从而影响振动频率。
R-COR C=0 1715cm-1
;
1730cm -1 ;
R-COH C=0
R-COCl C=0 1800cm-1
;
1920cm-1 ;
例如:
基团
C C C=C C-C
化学键力常数(K/N·cm-1) 振动频率( /cm-1)
12~18
2262~2100
8~12 增大 1600~1680
4~6
1000~1300
精品课件
振动频率与基团折合质量的关系
基团
C-H C-C C-Cl C-I
折合质量 (m)
0.9 6 7.3 8.9
振动频率 ( /cm-1)
精品课件
2.3 红外光谱与分子结构的关系
2.3.1 分子中基团的基本振动形式
(1) 两类基本振动形式
精品课件
(2) 峰位、峰数与峰强
1)峰位
化学键的力常数k 越大,原子折合质量越小,
键的振动频率越大,吸收峰将出现在高波数区(短波长区);
反之,出现在低波数区(高波长区)。
例1 水分子
2)峰数
峰数与分子自由度有关。无瞬间偶基距变化
精品课件
红外吸收光谱的特点: 特征性强、适用范围广;
测样速度快、操作方便; 不适合测定含水样品。
引起化合物红外光谱的差异: 原子质量不同 化学键的性质不同 原子的连接次序不同 空间位置不同
精品课件
红外光谱的表示方法
横坐标:波长/λ或波数/cm-1。cm1
1
m
104
红外谱图有等波长及等波数两种,对照标准谱图时应注意。
精品课件
CH3 CH(CH3)2
b. 环的张力:环的大小影响环上有关基团的频率。
随着环张力增加,环外基团振动频率蓝移(增大), 环内基团振动频率红移(减小)。
精品课件
3) 氢键效应
氢键(分子内氢键;分子间氢键):氢键的形成使原有的化
学键O-H或N-H的键长增大,力常数K 变小,使伸缩振动频率向
低波数方向移动。
纵坐标:吸光度A或透光率T。 A log(1 ) T
一般情况下,一张红外光精品谱课图件有5~30个吸收峰。
2.2 红外光谱的基本原理
2.2.1 红外光谱产生的条件
满足两个条件: (1) 辐射应具有能满足物质产生振动跃迁所需的能量; (2) 辐射与物质间有相互偶合作用。
1) E红外光=ΔE分子振动 或υ红外光=υ分子振动
取决于分子的结构特征。
不同分子的结构不同,化学键的力常数不同,成键原子的质 量不同,导致振动频率不同。
用红外光照射有机分子,样品将选择性地吸收那些与其振动 频率相匹配的波段,从而产生红外光谱。
相关文档
最新文档