石墨烯常用计量单位及简介
石墨烯性能简介

第一章石墨烯性能及相关概念1 石墨烯概念石墨烯(Graphene)是从石墨材料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体。
石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子。
但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜。
单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构。
完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比表面积高达2.6×102m2 /g。
石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa)。
此外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 / (V·s)。
石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨大兴趣,成为材料科学研究热点。
石墨烯结构图2 石墨烯结构石墨烯指仅有一个原子尺度厚单层石墨层片,由 sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构。
石墨烯中碳 -碳键长约为 0.142nm。
每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状。
垂直于晶面方向上的π键在石墨烯导电的过程中起到了很大的作用。
石墨烯是石墨、碳纳米管、富勒烯的基本组成单元,可以将它看做一个无限大的芳香族分子,平面多环烃的极限情况就是石墨烯。
形象来说,石墨烯是由单层碳原子紧密堆积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面。
在单层石墨烯中,每个碳原子通过 sp2 杂化与周围碳原子成键给构整流变形,每一个六边单元实际上类似苯环,碳原子都贡献出个一个未成键电子。
单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一。
石墨烯的结构非常稳定,碳原子之间连接及其柔韧。
受到外力时,碳原子面会发生弯曲变形,使碳原子不必重新排列来适应外力,从而保证了自身的结构稳定性。
石墨烯性能简介

第一章石墨烯性能及相关概念之迟辟智美创作1石墨烯概念石墨烯(Graphene)是从石墨资料中剥离出来、由碳原子组成的只有一层原子厚度的二维晶体.石墨烯狭义上指单层石墨,厚度为0.335nm,仅有一层碳原子.但实际上,10层以内的石墨结构也可称作石墨烯,而10层以上的则被称为石墨薄膜.单层石墨烯是指只有一个碳原子层厚度的石墨,碳原子-碳原子之间依靠共价键相连接而形成蜂窝状结构.完美的石墨烯具有理想的二维晶体结构,由六边形晶格组成,理论比概况积高达2.6×102 m2 /g.石墨烯具有优异的导热性能(3×103W/(m•K))和力学性能(1.06×103 GPa).另外,石墨烯稳定的正六边形晶格结构使其具有优良的导电性,室温下的电子迁移率高达1.5×104 cm2 /(V·s).石墨烯特殊的结构、突出的导热导电性能和力学性能,引起科学界巨年夜兴趣,成为资料科学研究热点.石墨烯结构图2石墨烯结构石墨烯指仅有一个原子标准厚单层石墨层片,由sp2 杂化的碳原子紧密排列而成的蜂窝状晶体结构.石墨烯中碳-碳键长约为0.142nm.每个晶格内有三个σ键,连接十分牢固形成了稳定的六边状.垂直于晶面方向上的π键在石墨烯导电的过程中起到了很年夜的作用.石墨烯是石墨、碳纳米管、富勒烯的基本组成单位,可以将它看做一个无限年夜的芳香族分子,平面多环烃的极限情况就是石墨烯.形象来说,石墨烯是由单层碳原子紧密聚积成二维蜂窝状晶格结构,看上去就像一张六边形网格构成的平面.在单层石墨烯中,每个碳原子通过sp2 杂化与周围碳原子成键给构整流变形,每一个六边单位实际上类似苯环,碳原子都贡献出个一个未成键电子.单层石墨烯厚度仅0.35nm ,约为头发丝直径的二十万分之一.石墨烯的结构非常稳定,碳原子之间连接及其柔韧.受到外力时,碳原子面会发生弯曲变形,使碳原子不用重新排列来适应外力,从而保证了自身的结构稳定性.石墨烯是有限结构,能够以纳米级条带形式存在.纳米条带中电荷横向移动时会在中性点附近发生一个能量势垒,势垒随条带宽度的减小而增年夜.因此,通过控制石墨烯条带的宽度即可以进一步获得需要的势垒.这一特性是开发以石墨烯为基础的电子器件的基础.石墨烯能带结构图3石墨烯性能石墨烯是一种超轻资料,面密度为0.77mg/m2,的主要性能是:一是具有超强的导电性.石墨烯的电子迁移率比纳米碳管或硅晶体高,是硅的100倍,在室温下可以到达15 000cm2 /( V·s) .电阻率比铝、铜和银低很多,只有10 ~6Ω·cm 左右.二是具有超强的导热性.石墨烯的导热性能优于碳纳米管,是铜、铝等金属的数10倍,导热系数高达5300W/m•K.三是具有超强的力学性,石墨烯的硬度超越金刚石,断裂强度到达钢铁的100倍.四是具有超强的透光性.石墨烯的吸光率非常小,透光率高达97. 7%.五是具有超强的比概况积.石墨烯的比概况积每克比普通活性炭高出1130m2,到达2630m2 /g.3.1 石墨烯的光学性能石墨烯是已知的世上最薄、最坚硬的纳米资料,它几乎是完全透明的,只吸收2.3%的光,具有优异的光学性能.理论和实验结果标明,单层石墨烯吸收2.3%的可见光,即透过率为97.7%.从基底到单层石墨烯、双层石墨烯的可见光透射率依次相差2.3%,因此可以根据石墨烯薄膜的可见光透射率来估算其层数.结合非交互狄拉克-费米子理论,模拟石墨烯的透射率,可以得出与实验数据相符的结果.根据折射和干涉原理,分歧层数的石墨烯在光学显微镜下会显示出分歧的颜色和比较度,为石墨烯层数的分辨提供了方便.理论和实验标明年夜面积石墨烯薄膜同样具有优异的光学性能,且其光学特性岁石墨烯的厚度发生变动.石墨烯薄膜是一种典范的透明导电薄膜,可以取代氧化铟锡(ITO)、掺氟氧化铟(FTO)等传统薄膜资料,即可克服ITO薄膜的脆性缺点,也可解决铟资源稀缺对应用的限制等诸多问题.石墨烯透明导电薄膜可作为染料敏化太阳能电池和液晶设备的窗口层电极.另外,当入射光的强度超越某一临界值时,石墨烯对其的吸收会到达饱和.这一非线性光学行为成为饱和吸收.在近红外光谱区,在强光辐照下,由于其宽波段吸收和零带隙的特点,石墨烯会慢慢接近饱和吸收.利用这一性质,石墨烯可用于超快速光子学,如光纤激光器等.3.2 石墨烯的电学性能石墨烯的每个碳原子均为sp2杂化,并贡献剩余一个p轨道电子形成π键,π电子可以自由移动,赋予石墨烯优异的导电性.由于原子间作用力非常强,在常温下,即使周围碳原子发生碰撞,石墨烯中的电子收到的干扰也很小.电子在石墨烯中传输时不容易发生散射,传输效率1.5×105cm2/(V·s),约为硅中电子迁移率的140倍.其电导率可达106s/m,而电阻率只约10-6Ω·cm,比铜或银更低,为世上电阻率最小的资料.因其电阻率极低,电子迁移的速度极快,因此被期待可用来发展更薄、导电速度更快的新一代电子元件或晶体管.由于石墨烯实质上是一种透明、良好的导体,也适合用来制造透明触控屏幕、光板、甚至是太阳能电池.石墨烯的呈现在科学界激起了巨年夜的波涛.人们发现,石墨烯具有非同寻常的导电性能,超越钢铁数十倍的强度和极好的透光性,它的呈现有望在现代电子科技领域引发一轮革命.在石墨烯中,电子能够极为高效地迁移,而传统的半导体和导体,例如硅和铜远没有石墨烯暗示得好.由于电子和原子的碰撞,传统的半导体和导体用热的形式释放了一些能量,2013年一般的电脑芯片以这种方式浪费72%-81%的电能,石墨烯则分歧,它的电子能量不会被损耗,这使它具有了非比寻常的优良特性.3.3 石墨烯的力学性能石墨烯是一直资料中强度和硬度最高的晶体结构.其抗拉强度和弹性模量分别为125GPa和1.1TPa.石墨烯的强度极限为42N/m2.理想石墨烯的强度约为普通钢的100倍,面积为1m2的石墨烯层片可接受4kg的质量.石墨烯可作为一种典范的二维增强资料,在复合资料领域具有潜在的应用价值.石墨烯的强度比金刚石还要硬,在高温下,还能坚持其原有的形态,从这一点就震撼了物理界,主要是因为石墨烯内碳原子排列是有规有律的,当施加外力作用于石墨烯时,内部的碳原子不会发生位移,只是发生了弯曲变形,就可以抵抗外力,保证自己的稳定性.石墨烯的室温热导率是室温下铜的热导率的10倍多,导热系数高5300W/m•K,高于碳纳米管和金刚石.石墨烯的理论比概况积可达2630m2/g,用石墨烯支撑的微传感器可以感应单个原子或分子,当气体附着或脱离石墨烯概况时,吸附的分子改变了石墨烯的局部载流子浓度,招致电阻发生阶跃型变动.这一特性可用于制作气体传感器.理论计算标明,石墨烯与锂可形成多孔复合结构,具有极强的氢气贮存能力.3.5 石墨烯的磁学性能石墨烯氢化以后往往会具有铁磁性,主要是由于石墨烯在氢化以后,在边缘处有孤对电子对,这样就使得石墨烯有磁性.研究人员还在有磁场的情况下,做过通过改变温度,看能否让石墨烯的磁性有所变动.确定磁场强度为1T,当温度T<90K 时,石墨烯会暗示出顺磁特性;当温度T>90K 时,石墨烯会呈现出了反磁特性.3.6 石墨烯的化学性能石墨烯的电子性质受到了广泛关注,然而石墨烯的化学性质却一直无人问津,至今关于石墨烯化学性能我们只知道的是:石墨烯可以将周围的原子和分子进行有序的吸附(例如:二氧化氮,氨,钾),这条性质和我们所认知的活性炭有些相似.二氧化氮,氨,钾往往是被作为给体或受体,使得石墨烯内部的碳原子浓度发生变动,然而石墨烯自己就是一种导电资料.其它的吸附物,如氢离子和氢氧根离子则会发生导电性很差的衍生物,但这些都不是新的化合物,只是石墨烯装饰分歧吸附物而已.由于石墨烯和石墨都是碳的同素异形体,从化学的角度上来看,往往它们具有一些相同的性质,所以在一些石墨烯不熟悉的领域可以通过石墨来进行相应的实验,来发现石墨烯的规律,有了这条比力简单又方便的思想,在未来,石墨烯更多的化学性质将会被挖掘出来.石墨烯的光学、电学、力学以及热学特性示意图。
石墨烯简介

石墨烯1 石墨烯的概述石墨烯(Graphene,GE)是世界上最薄,最坚硬的纳米材料,也是其他石墨材料的基本单元,以碳六元环为基本结构组成周期蜂窝状的二维点阵结构,若翘曲便可成为零维的富勒烯,若将石墨烯卷成一维结构便成为碳纳米管(Carbon nano-tube,CB),若是多层堆积便成为了三维的石墨(Graphite)。
石墨烯的基本结构单元为有机材料中最稳定的苯六元环, 是目前最理想的二维纳米材料。
平面六边形点阵结构是石墨烯最理想的结构,可以认为是单层石墨分子被从三维石墨结构中剥离出来形成的二维分子结构,所有碳原子均为sp2杂化,并且每个碳原子上均多出一个p轨道上的电子形成大π键,这个π电子可以自由移动,因此石墨烯具有良好的导电性。
因此二维石墨烯结构可以看是形成所有sp2杂化碳质材料的基本单元。
由于特殊的结构石墨稀因此拥有了很多的优异的性能,首先在电学方面,由于大π键的存在,石墨稀具有优异的导电性能,如超高的载流子迁移率,室温量子霍尔效应,弹道输运等等;而在光学方面,石墨烯具有超高的透光率,其透光率能达到97.7%的惊人数据。
力学性能方面,石墨稀是已知的具有最高强度和硬度的晶体结构,热学方面,石墨烯具有优异的导热性能,其导热是铜的很多倍。
由于这些优异的性能使得石墨稀不但成为科学界一颗明星,而且使得其拥有了极其广阔的应用前景。
石墨烯为六角型呈蜂巢晶格的平面薄膜,是由一种碳原子以sp2杂化轨道组成的,我们可以将它看成是其他石墨类材料组成的基本单元,所以石墨烯片在适当的条件下可以进行包裹和卷曲,分别可以形成零维和一维结构,层层堆叠起可以形成的是三维的石墨,零维和一维分别形成球状的富勒烯、管状的碳纳米管(见图1.1);它们和仅为单一碳原子厚度的二维碳材料作为为重要成员组成了碳纳米材料家族,它们之间通过包裹、卷曲和堆积相互进行转化。
2004年,K.S.Novoselov 等以天然鳞片石墨为原料,制得二维六角形平面原子石墨烯的方法为机械力剥离法。
石墨烯资料

定义:石墨烯(Graphene)是一种由碳原子构成的单层片状结构的新材料。
是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料。
石墨烯是人们发现的第一种由单层原子构成的材料。
发现者:安德烈·海姆(Andre Geim)和康斯坦丁·诺沃肖洛夫(Konstantin Novoselov)化学之最:最薄、最坚硬的纳米材料,电阻率最小的材料石墨烯用途:1、制造下一代超级计算机。
石墨烯是目前已知导电性能最好的材料,这种特性尤其适合于高频电路,石墨烯将是硅的替代品,可用来生产未来的超级计算机,使电脑运行速度更快、能耗降低。
2、制造“太空电梯”的缆线。
科学家幻想将来太空卫星要用缆线与地面联接起来,那时卫星就成了有线的风筝,科学家现在终于找到了可以制造这种太空缆线的特殊材料,这就是石墨烯。
3、可作为液晶显示材料。
石墨烯是一种“透明”的导体,可以用来替代现在的液晶显示材料,用于生产下一代电脑、电视、手机的显示屏。
4、制造新一代太阳能电池。
石墨烯透明导电膜对于包括中远红外线在内的所有红外线的高透明性,是转换效率非常高的新一代太阳能电池最理想材料。
5、制造光子传感器。
去年10月,IBM的一个研究小组首次展示了他们研制的石墨烯光电探测器。
6、制造医用消毒品和食品包装。
中国科研人员发现细菌的细胞在石墨烯上无法生长,而人类细胞却不会受损。
利用石墨烯的这一特性可以制作绷带,食品包装,也可生产抗菌服装、床上用品等。
7、创制“新型超强材料”。
石墨烯与塑料复合,可以凭借韧性,兼具超薄、超柔和超轻特性,是下一代新型塑料。
8、石墨烯适合制作透明触摸屏、透光板。
9、制造晶体管集成电路。
石墨烯可取代硅成为下一代超高频率晶体管的基础材料,而广泛应用于高性能集成电路和新型纳米电子器件中。
10、制造出纸片般薄的超轻型飞机材料、制造出超坚韧的防弹衣,具有军事用途物理性质:电子迁移率15000cm2/(v s)杨氏模量1100GPa断裂强度130GPa导热系数5000W/(m K)理论比表面积2630m2/g可见光透过率≥97%知识补充:电子迁移率(electron mobility)是指在外电场作用下液态介质内的电子受到加速而迁移,称电子迁移。
关于石墨烯相关知识的综述

关于石墨烯的相关知识1、石墨烯概述自从2004年英国的K.S.Novoselov和A.K.Geim发现了石墨烯(RGO)以后,它就成为了碳材料界的新星,在理论和实验方面开发它的可能性应用引起了很大的热潮。
石墨烯是由单层碳原子紧密排列堆积而成的二维蜂窝状平面晶格结构,它是构建其它维度碳材料的基本单元,它不但可以分解成零维的富勒烯[1],卷曲成一维的碳纳米管[2],而且还可以堆叠成金刚石和石墨[3]。
图1 石墨烯与富勒烯、碳纳米管和石墨的结构关系示意图[4]石墨烯由于其特殊的单原子层结构使得其拥有很多独特的物化性能,如优异的导电导热性能、超大的比表面积、良好的机械性能等,它的导热能力是金刚石的3倍[5],且由于其各碳原子之间以共价键的形式结合,连接非常柔软,即使有外力的作用依旧可以保持很好的稳定性。
石墨烯的这些特殊性能使得其在多方面领域发挥着很大的作用,例如在太阳能电池、微电子装置、液体结晶设备、传感器和复合材料方面都有着广泛的应用前景。
1.1石墨烯的制备石墨烯的制备方法主要有物理法和化学法。
物理法通常是以石墨或者膨胀石墨作为原料,通过机械剥离法、取向附生法、液相或气相直接剥离法等制备石墨烯,物理法制备石墨烯主要有操作简便、原料价格低廉、生成的石墨烯缺陷较少等优点。
而化学方法主要有化学还原法、化学气相沉积法等。
(1)机械剥离法机械剥离法[6]是通过施加机械力直接将石墨烯薄片从晶体上剥离下来,是最简单的一种方法。
2004年K.S.Novoselov等[7]就是采用机械剥离法利用离子束从高定向热解石墨上剥离下来石墨烯并观察到其单层结构。
机械剥离法制备出来的石墨烯虽然纯度较高、缺陷较少,但是尺寸不容易控制,不能准确地制备出足够长度的石墨烯,难以进行大规模生产。
(2)取向附生法取向附生法是利用稀有金属钌作为生长基质,通过基质的原子结构来生成石墨烯。
Peter W.Sutter等以钌为基底,高温下将C原子渗入钌中,冷却后大量的C 原子浮在钌表面,最终形成一片完整的石墨烯。
石墨烯

石墨烯简介
石墨烯(Graphene,G) 是 2004 年英国曼彻斯特大 学物理和天文学系的 Geim和Novoselov等发现的 一种新型二维平面碳纳米材料。石墨烯在电子、 信息、能源、材料、催化、吸附和生物医药等领 域具有潜在的应用前景。石墨烯具有大的比表面 积(2630m2/g)、大的共轭体系、很强的疏水性、 易于进行功能化修饰、很好的耐酸、耐碱、耐热 性能和化学稳定性,亦可与有机分子产生强的 π-π 相互作用。石墨烯可由天然石墨制备,因此具有 成本低廉!原料易得且容易实现规模化制备的优点, 比 CNT 更具竞争优势,因此石墨烯及其复合材料 有望成为样品前处理领域的新型、性能优良的吸 附材料。
例3涉及的文献
[5]WuQ H,Zhao G Y,Feng C,et al.[J].J C hromatogr A,2011,1218(44):7936-7942. [6] Wu Q H,Feng C,Wang C,et al.[J].Co lloids Surf B.,2013,101:210-214. [7] Luo Y B,Shi Z G,Gao Q,et al.[J].J Chromatogr A,2011,1218(10):1353-1358. [8] Shi C Y,Meng J R,Deng C H.[J].Che m Commun,2012,48(18):2418-2420. [9] Wang L,Zhang X H,Chang Q Y,et a l.[J].Food and Methods,2014,7:318-32 5. [10] Alvand M,Shemirani F.[J].Microch im Acta,2014,181(1-2):181-188. [11] Liu Q,Shi J B,Cheng M T,et a l.[J].Chem Commun,2012,48:1874-1876. [12] Wang W N,Ma R Y,Wu Q H,et a l.[J].Talanta,2013,109:133-140.
石墨烯简介

石墨烯的性质
电学特性:
石墨烯中的每个碳原子都有一个未成键的 π 电子,这些电子可形成与平面垂 直的π轨道,π电子可在这种长程π轨道中自由移动,从而赋予了石墨烯出色的导 电性能,石墨烯是具有零带隙的能带结构,其载流子可以使电子也可以是空穴
左图为石墨烯热导率测试方法,以 488nm 激 光加热,用石墨烯的拉曼光谱中 G 峰位移变化标 示石墨烯的温度变化,从而测得石墨烯热导率
Singh V, Joung D, Prog. Mater. Sci., 2011, 56, 1178–1271.
石墨烯的性质
其他性质:
单原子层的特殊结构,使石墨烯的理论比表面积高达2630m2/g 边缘及缺陷处有孤对电子,使石墨烯具有铁磁性
场效应晶体管
石墨烯基晶体管:石墨烯加偏压成为半导体,作为晶体管源电极和漏电极之间
的通道;石墨烯无禁带,不能直接用于晶体管等逻辑元件,但可以采用将石墨烯制 成石墨烯纳米带、石墨烯量子点及双层石墨烯加偏压等方法使石墨烯禁带宽度不再 为 0 ,所用石墨烯有直接剥离的,也有 CVD 等工艺合成的,所用介电材料有 SiO2 、
以松香转移的石墨烯薄膜作为透明电极制备的大面积柔性OLED器件
大面积柔性OLED器件
上述研究结果于2017年2月24日在《自然-通讯》上在线发表(Nature Communications,
10.1038/NCOMMS14560, 2017)
DOI:
石墨烯的应用
传感器
由于氧化还原法制备的石墨烯(RGO)的边缘具有不同的功能,使其在电 化学传感器和生物传感器方面具有广泛应用前景,用RGO制备的场效应晶体管通 过其电导率、电容或掺杂物性能的变化对周围化学和生物环境变化做出响应
石墨烯常用计量单位及简介

石墨烯一、常用的计量单位及含义纯度(Purity):wt% 【“wt%”是重量含量百分数(%);wt是英文weight的简写。
】比表面积SSA(Special Surface Area):m2/g 【比表面积是指单位质量物料所具有的总面积。
单位是m2/g,通常指的是固体材料的比表面积,例如粉末、纤维、颗粒、片状、块状等材料。
】电导率(Conductivity):S/m 【电导率,物理学概念,也可以称为导电率。
在介质中该量与电场强度E之积等于传导电流密度J。
对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。
生态学中,电导率是以数字表示的溶液传导电流的能力。
单位以西门子每米(S/m)表示。
电导率是用来描述物质中电荷流动难易程度的参数。
】振实密度(Tap Density):mg/mL 【振实密度是指在规定条件下容器中的粉末经振实后所测得的单位容积的质量。
振实密度或者说体积密度(在一些工业领域称为松装密度)定义为样品的质量除以它的体积,这一体积包括样品本身和样品孔隙及其样品间隙体积。
堆积密度对于表征催化剂、发泡材料、绝缘材料、陶瓷、粉末冶金和其它工业生产品都是必要的。
】片径(Scale):microns/μm灰分(ASH):wt% 【无机物,可以是锻烧后的残留物也可以是烘干后的剩余物。
但灰分一定是某种物质中的固体部分而不是气体或液体部分。
在高温时,发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。
】体积电阻率(Volume Resistivity):Ω•m【体积电阻率,是材料每单位体积对电流的阻抗,用来表征材料的电性质。
通常体积电阻率越高,材料用做电绝缘部件的效能就越高。
通常所说的电阻率即为体积电阻率。
,ρv=R v S/h式中,h是试样的厚度(即两极之间的距离);S是电极的面积,ρv的单位是Ω·m(欧姆·米)】中值粒径D(50):4-6μm【D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
石墨烯一、常用的计量单位及含义纯度(Purity): wt% 【“wt%”是重量含量百分数(%);wt是英文weight的简写。
】比表面积SSA(Special Surface Area): m2/g 【比表面积是指单位质量物料所具有的总面积。
单位是m2/g,通常指的是固体材料的比表面积,例如粉末、纤维、颗粒、片状、块状等材料。
】电导率(Conductivity):S/m 【电导率,物理学概念,也可以称为导电率。
在介质中该量与电场强度E之积等于传导电流密度J。
对于各向同性介质,电导率是标量;对于各向异性介质,电导率是张量。
生态学中,电导率是以数字表示的溶液传导电流的能力。
单位以西门子每米(S/m)表示。
电导率是用来描述物质中电荷流动难易程度的参数。
】振实密度(Tap Density): mg/mL 【振实密度是指在规定条件下容器中的粉末经振实后所测得的单位容积的质量。
振实密度或者说体积密度(在一些工业领域称为松装密度)定义为样品的质量除以它的体积,这一体积包括样品本身和样品孔隙及其样品间隙体积。
堆积密度对于表征催化剂、发泡材料、绝缘材料、陶瓷、粉末冶金和其它工业生产品都是必要的。
】片径(Scale):microns/μm灰分(ASH):wt% 【无机物,可以是锻烧后的残留物也可以是烘干后的剩余物。
但灰分一定是某种物质中的固体部分而不是气体或液体部分。
在高温时,发生一系列物理和化学变化,最后有机成分挥发逸散,而无机成分(主要是无机盐和氧化物)则残留下来,这些残留物称为灰分。
】体积电阻率(Volume Resistivity):Ω•m 【体积电阻率,是材料每单位体积对电流的阻抗,用来表征材料的电性质。
通常体积电阻率越高,材料用做电绝缘部件的效能就越高。
通常所说的电阻率即为体积电阻率。
,ρv=R v S/h式中,h是试样的厚度(即两极之间的距离);S是电极的面积,ρv的单位是Ω·m(欧姆·米)】中值粒径D(50):4-6μm【D50:一个样品的累计粒度分布百分数达到50%时所对应的粒径。
它的物理意义是粒径大于它的颗粒占50%,小于它的颗粒也占50%,D50也叫中位粒径或中值粒径。
D50常用来表示粉体的平均粒度。
】方阻(方块电阻):Ω/sq【在一长为l,宽w,高d(即为膜厚),此时L=l,S=w*d,故R=ρ*l/(w*d)=(ρ/d)*(l/w)。
方块电阻R=ρ/d令l=w于是R=(ρ/d),其中ρ为材料的电阻率,此时的R为方阻。
蒸发铝膜、导电漆膜、印制电路板铜箔膜等薄膜状导电材料,衡量它们厚度的最好方法就是测试它们的方阻。
什么是方阻呢?方阻就是方块电阻,指一个正方形的薄膜导电材料边到边“之”间的电阻,方块电阻有一个特性,即任意大小的正方形边到边的电阻都是一样的,不管边长是1米还是米,它们的方阻都是一样,这样方阻仅与导电膜的厚度等因素有关】迁移率(Mobility):cm2/V·s 【指单位电场强度下所产生的载流子平均漂移速度。
它的单位是厘米2/(伏·秒)。
迁移率代表了载流子导电能力的大小,它和载流子(电子或空穴)浓度决定了半导体的电导率。
迁移率与载流子的有效质量和散射概率成反比。
载流子的有效质量与材料有关,不同的半导体中电子有不同的有效质量。
如硅中电子的有效质量为(m0是自由电子质量),砷化镓中电子的有效质量为。
空穴分重空穴和轻空穴,它们具有与电子不同的有效质量。
半导体中载流子在低温下主要受到缺陷和杂质的散射,高温下主要受到由原子晶格振动产生的声子的散射。
散射越强,迁移率越低。
】粒度(Scale):microns/μm【粒度是指颗粒的大小。
通常球体颗粒的粒度用直径表示,立方体颗粒的粒度用边长表示。
对不规则的颗粒,可将与该颗粒有相同行为的某一球体直径作为该颗粒的等效直径。
粒度的大小常用D50,D97,比表面积等指标表示。
】厚度(Thickness):nm 【纳米】直径(Diameter):microns尺寸:μm【微米】层数(Layers):层碳含量:wt%氧含量:wt%二、石墨烯定义石墨烯(Graphene)是一种由碳原子以sp²杂化轨道组成六角型呈蜂巢晶格的二维碳纳米材料。
石墨烯具有优异的光学、电学、力学特性,在材料学、微纳加工、能源、生物医学和药物传递等方面具有重要的应用前景,被认为是一种未来革命性的材料。
三、主要应用随着批量化生产以及大尺寸等难题的逐步突破,石墨烯的产业化应用步伐正在加快,基于已有的研究成果,最先实现商业化应用的领域可能会是移动设备、航空航天、新能源电池领域。
基础研究石墨烯对物理学基础研究有着特殊意义,它使得一些此前只能在理论上进行论证的量子效应可以通过实验经行验证。
在二维的石墨烯中,电子的质量仿佛是不存在的,这种性质使石墨烯成为了一种罕见的可用于研究相对论量子力学的凝聚态物质——因为无质量的粒子必须以光速运动,从而必须用相对论量子力学来描述,这为理论物理学家们提供了一个崭新的研究方向:一些原来需要在巨型粒子加速器中进行的试验,可以在小型实验室内用石墨烯进行。
零能隙的半导体主要是单层石墨烯,这种电子结构会严重影响到气体分子在其表面上的作用。
单层石墨烯较体相石墨表面反应活性增强的功能是由石墨烯的氢化反应和氧化反应结果显示出来的,说明石墨烯的电子结构可以调变其表面的活性。
另外,石墨烯的电子结构可以通过气体分子吸附的诱导而发生相应的变化,其不但对载流子的浓度进行改变,同时可以掺杂不同的石墨烯。
传感器石墨烯可以做成化学传感器,这个过程主要是通过石墨烯的表面吸附性能来完成的,根据部分学者的研究可知,石墨烯化学探测器的灵敏度可以与单分子检测的极限相比拟。
石墨烯独特的二维结构使它对周围的环境非常敏感。
石墨烯是电化学生物传感器的理想材料,石墨烯制成的传感器在医学上检测多巴胺、葡萄糖等具有良好的灵敏性。
晶体管石墨烯可以用来制作晶体管,由于石墨烯结构的高度稳定性,这种晶体管在接近单个原子的尺度上依然能稳定地工作。
相比之下,目前以硅为材料的晶体管在10纳米左右的尺度上就会失去稳定性;石墨烯中电子对外场的反应速度超快这一特点,又使得由它制成的晶体管可以达到极高的工作频率。
例如IBM公司在2010年2月就已宣布将石墨烯晶体管的工作频率提高到了100GHz,超过同等尺度的硅晶体管。
[7]柔性显示屏消费电子展上可弯曲屏幕备受瞩目,成为未来移动设备显示屏的发展趋势。
柔性显示未来市场广阔,作为基础材料的石墨烯前景也被看好。
韩国研究人员首次制造出了由多层石墨烯和玻璃纤维聚酯片基底组成的柔性透明显示屏。
韩国三星公司和成均馆大学的研究人员在一个63厘米宽的柔性透明玻璃纤维聚酯板上,制造出了一块电视机大小的纯石墨烯。
他们表示,这是迄今为止“块头”最大的石墨烯块。
随后,他们用该石墨烯块制造出了一块柔性触摸屏。
研究人员表示,从理论上来讲,人们可以卷起智能手机,然后像铅笔一样将其别在耳后。
新能源电池新能源电池也是石墨烯最早商用的一大重要领域。
美国麻省理工学院已成功研制出表面附有石墨烯纳米涂层的柔性光伏电池板,可极大降低制造透明可变形太阳能电池的成本,这种电池有可能在夜视镜、相机等小型数码设备中应用。
另外,石墨烯超级电池的成功研发,也解决了新能源汽车电池的容量不足以及充电时间长的问题,极大加速了新能源电池产业的发展。
这一系列的研究成果为石墨烯在新能源电池行业的应用铺就了道路。
海水淡化石墨烯过滤器比其他海水淡化技术要使用的多。
水环境中的氧化石墨烯薄膜与水亲密接触后,可形成约纳米宽的通道,小于这一尺寸的离子或分子可以快速通过。
通过机械手段进一步压缩石墨烯薄膜中的毛细通道尺寸,控制孔径大小,能高效过滤海水中的盐份。
储氢材料石墨烯具有质量轻、高化学稳定性和高比表面积等优点,使之成为储氢材料的最佳候选者。
航空航天由于高导电性、高强度、超轻薄等特性,石墨烯在航天军工领域的应用优势也是极为突出的。
2014年,美国NASA开发出应用于航天领域的石墨烯传感器,就能很好的对地球高空大气层的微量元素、航天器上的结构性缺陷等进行检测。
而石墨烯在超轻型飞机材料等潜在应用上也将发挥更重要的作用。
感光元件以石墨烯作为感光元件材质的新型感光元件,可望透过特殊结构,让感光能力比现有CMOS 或CCD提高上千倍,而且损耗的能源也仅需原本10%。
可应用在监视器与卫星成像领域中,可以应用于照相机、智能手机等。
复合材料基于石墨烯的复合材料是石墨烯应用领域中的重要研究方向,其在能量储存、液晶器件、电子器件、生物材料、传感材料和催化剂载体等领域展现出了优良性能,具有广阔的应用前景。
目前石墨烯复合材料的研究主要集中在石墨烯聚合物复合材料和石墨烯基无机纳米复合材料上,而随着对石墨烯研究的深入,石墨烯增强体在块体金属基复合材料中的应用也越来越受到人们的重视。
石墨烯制成的多功能聚合物复合材料、高强度多孔陶瓷材料,增强了复合材料的许多特殊性能。
生物石墨烯被用来加速人类骨髓间充质干细胞的成骨分化,同时也被用来制造碳化硅上外延石墨烯的生物传感器。
同时石墨烯可以作为一个神经接口电极,而不会改变或破坏性能,如信号强度或疤痕组织的形成。
由于具有柔韧性、生物相容性和导电性等特性,石墨烯电极在体内比钨或硅电极稳定得多。
石墨烯氧化物对于抑制大肠杆菌的生长十分有效,而且不会伤害到人体细胞。
四、发展前景石墨烯的研究与应用开发持续升温,石墨和石墨烯有关的材料广泛应用在电池电极材料、半导体器件、透明显示屏、传感器、电容器、晶体管等方面。
鉴于石墨烯材料优异的性能及其潜在的应用价值,在化学、材料、物理、生物、环境、能源等众多学科领域已取得了一系列重要进展。
研究者们致力于在不同领域尝试不同方法以求制备高质量、大面积石墨烯材料。
并通过对石墨烯制备工艺的不断优化和改进,降低石墨烯制备成本使其优异的材料性能得到更广泛的应用,并逐步走向产业化。
中国在石墨烯研究上也具有独特的优势,从生产角度看,作为石墨烯生产原料的石墨,在我国储能丰富,价格低廉。
正是看到了石墨烯的应用前景,许多国家纷纷建立石墨烯相关技术研发中心,尝试使用石墨烯商业化,进而在工业、技术和电子相关领域获得潜在的应用专利。
如欧盟委员会将石墨烯作为“未来新兴旗舰技术项目”,设立专项研发计划,未来10年内拨出10亿欧元经费。
英国政府也投资建立国家石墨烯研究所(NGI),力图使这种材料在未来几十年里可以从实验室进入生产线和市场。
石墨烯有望在诸多应用领域中成为新一代器件,为了探寻石墨烯更广阔的应用领域,还需继续寻求更为优异的石墨烯制备工艺,使其得到更好的应用。
石墨烯虽然从合成和证实存在到今天只有短短十几年的时间,但是已成为今年学者研究的热点。
其优异的光学、电学、力学、热学性质促使研究人员不断对其深入研究,随着石墨烯的制备方法不断被开发,石墨烯必将在不久的将来被更广泛的应用到各领域中。