体外血脑屏障模型的建立

合集下载

药物体外ADME模型的研究助力新药的研发

药物体外ADME模型的研究助力新药的研发

新药研发的失败率之高是众所周知的,新药研发过程中一方面是依靠动物实验获得临床前数据来预测药物的药效、毒性以及在人体中的PK(药代动力学)参数,这是早期的“标准操作”,,而另一方面,以体外细胞模型来替代动物实验,建立药物体外ADME模型,当前的体外模型主要依靠二维或者简单的三维细胞培养体系,简单快速高通量是它的优势,广泛用于早期化合物的筛选。

上海美迪西生物制药公司在药代动力学方面有丰富广泛的经验,为客户提供从所有小分子到大分子(蛋白质和抗体)的高质量药代动力学服务,包括体外ADME和体内药代以及生物分析。

涉及的动物种类有非人灵长类、狗、小鼠、大鼠、兔、豚鼠等。

其中非灵长类平台及利用同位素蛋白质/抗体实验平台被上海市政认定为重要实验室平台。

对于创新药物的研发,其过程由3个阶段、4个步骤组成:靶位的发现、特性与评价(生物靶标阶段);先导化合物的发现和优化(药物发现阶段);ADMET(吸收、分布、代谢、排泄和毒性)、PK、PD研究(药物发现和开发阶段);临床试验(药物开发阶段)。

关于药物吸收(Absorption)、分布(distribution)、代谢(metabolism)、排泄(excretion)的研究已成为药物化学研究中必不可少的部分,也是药物的研发与登记中相当重要的环节。

1、为什么要进行药物开发阶段进行ADME研究?在医药领域,一旦确认了一个重要的市场需求或疾病,就需要根据病理生理学知识、已知的分子作用机制和相关化学研究来选择有价值的治疗靶标。

根据初期假设所提出的药物进入途径、分子靶标位点进行研究,往往具有较大的风险。

通常,关于 ADME 的研究会被部署于药物开发阶段,因为如果要使已经投入应用的药物同时满足靶点和 ADME的要求,需要复杂的化学改造过程。

另外,制药公司将现有的医药发现模型转化成有效的人类药物的过程中,将面临许多困难,因为在临床试验前,研发者不能对人体进行测试。

这就要求研发者在病理生物化学,药物的理化性质和 ADME 特性上进行深入的了解。

石菖蒲活性成分醒脑开窍、透过血脑屏障作用机制研究

石菖蒲活性成分醒脑开窍、透过血脑屏障作用机制研究

军医进修学院硕士学位论文图1—1.空白总离子流图甍秽一’。

一”。

‘“一一,乞二一一一—_=基j1i;1{T卜;|‘}i一。

…“_.,i,\j:=I√f一一;矗一1≮啬一二··‘一妇j—~—蔷i焉i—二一=-‘i≈·21图卜一2.石酉蒲挥发油总离子流图3.2石菖蒲水煎液主要化学成分研究水煎液正负总离子流图见图l一3,图中可见三个大峰,根据其一级正负离子质谱图,初步推测l。

峰化合物的分子量为396(30.5min,删2397为[M+I{】+,m/z793)hi2M+H】+,trdz815为【2M+Na】+,肌乞838为[2M+HCOOH]’);2。

峰化合物分子量为339(29.5min,聊幺340为【M+H】+,—比679为【2M+H】+,m/z701为[2M+Na]+);30峰化合物的分子量为452(31.3min,打以453为【M+H】+,m/z905为【2M|+川+,m/z927为【2M+Na】+,m/z950为[2M+HCOOH]。

),并且这三个化合物在260nm处都无紫外吸收,在石菖蒲已知化合物中未能检索到。

图l一3.石菖蒲水煎液HPLC/MS正负总离子流图蔼礴}j一5755Ave‘岣.of曼7墅当辑·7曼蕊in‘三墨洲·D‘+C’1僻60图1—5.样品中检测到化合物的质谱图3.2石菖蒲水煎液透过血脑屏障化学成分的研究给药前后动物脑脊液样品总离子流图见图1—6,给药组动物脑脊液在该色谱条件下未检测到石菖蒲中的化学成分。

图1.6.石菖蒲水煎液透过血脑屏障的HPLC/MS总离子流图(上图为空白脑脊液,下图为含药脑脊液)OO207e7ll5M∞1O51O7▲3,l1,J2lqO2_il1l一O,1CC0OOCO一一啪铷ⅢⅢ。

q随吖2.2取材SD大鼠16只,随机分为空白组,挥发油组,水煎液组,石菖蒲总药组(石菖蒲挥发油和水煎液按提取比例混合),每组4只,每天灌胃一次,共给药五天,按生药量计算给药剂量为8.19/kg,实验前禁食12h。

金银花中酚酸类成分及其抗炎活性研究

金银花中酚酸类成分及其抗炎活性研究

金银花中酚酸类成分及其抗炎活性研究一、本文概述金银花,作为一种传统中药材,因其独特的药用价值,被广泛应用于中医临床实践中。

近年来,随着现代科学技术的发展,金银花的化学成分和药理作用得到了深入研究。

本文旨在探讨金银花中的酚酸类成分,并分析其抗炎活性,以期为金银花的深入开发利用提供理论依据。

在本文中,我们首先综述了金银花的研究背景和意义,明确了酚酸类成分在金银花中的重要地位。

接着,我们详细介绍了金银花中酚酸类成分的种类、结构特点以及提取分离方法。

在此基础上,通过体外和体内实验,评价了这些酚酸类成分的抗炎活性,探讨了其作用机制和可能的应用前景。

本文的研究内容不仅有助于深入了解金银花的药理作用物质基础,而且为金银花在抗炎药物开发中的应用提供了科学依据。

本研究也为其他中药材中酚酸类成分的研究提供了有益的参考。

二、金银花中酚酸类成分的提取与分离金银花,作为中国传统中药材,具有清热解毒、凉血化瘀等功效,广泛应用于中医临床。

近年来,随着现代药理学和化学生物学研究的深入,金银花中的酚酸类成分因其独特的生物活性,特别是抗炎作用,受到了广泛关注。

本研究旨在从金银花中提取并分离酚酸类成分,为后续的药理活性研究奠定基础。

提取方法:采用经典的溶剂提取法,以乙醇为提取溶剂,对金银花进行多次浸提,确保酚酸类成分能够充分溶解于乙醇中。

通过控制提取温度、时间和乙醇浓度等参数,优化提取工艺,使酚酸类成分的提取率最大化。

分离纯化:提取液经过浓缩后,采用硅胶柱色谱、聚酰胺柱色谱和高效液相色谱(HPLC)等多种色谱技术进行分离纯化。

硅胶柱色谱和聚酰胺柱色谱主要根据酚酸类成分在硅胶和聚酰胺上的吸附性质差异进行初步分离。

HPLC则以其高分辨率和高选择性,对酚酸类成分进行精细分离。

结构鉴定:通过核磁共振(NMR)、质谱(MS)等现代波谱技术,对分离得到的酚酸类成分进行结构鉴定。

结合文献数据比对和波谱解析,确定各酚酸类成分的具体结构。

通过本研究的提取与分离方法,成功从金银花中获得了多种酚酸类成分,为后续的药理活性研究提供了丰富的物质基础。

创伤性脑损伤模型研究进展

创伤性脑损伤模型研究进展

生物技术进展2019年㊀第9卷㊀第1期㊀6~12CurrentBiotechnology㊀ISSN2095 ̄2341进展评述Reviews㊀收稿日期:2018 ̄05 ̄14ꎻ接受日期:2018 ̄08 ̄20㊀基金项目:国家自然科学基金项目(31500828)ꎻ北京市博士后工作经费资助项目(2017 ̄ZZ ̄019)资助ꎮ㊀作者简介:赵清辉ꎬ博士研究生ꎬ研究方向为神经生物学ꎮE ̄mail:1178968651@qq.comꎮ∗通信作者:谢飞ꎬ助理研究员ꎬ研究方向为生物医学工程ꎮE ̄mail:xiefei990815@bjut.edu.cnꎻ马雪梅ꎬ研究员ꎬ研究方向为生物医学工程ꎮE ̄mail:xmma@bjut.edu.cn创伤性脑损伤模型研究进展赵清辉ꎬ㊀琚芳迪ꎬ㊀苏泽华ꎬ㊀罗秋丽ꎬ㊀仪㊀杨ꎬ㊀张晓康ꎬ㊀张㊀鑫ꎬ㊀谢㊀飞∗ꎬ㊀马雪梅∗北京工业大学生命科学与生物工程学院ꎬ北京100124摘㊀要:创伤性脑损伤(traumaticbraininjuryꎬTBI)不仅发病率和死亡率较高ꎬ而且也会导致其幸存者的认知活动和感觉运动功能产生不同程度的障碍ꎮ建立合理的TBI模型有助于理解TBI病理生理机制并探索其治疗方案ꎮ许多创伤性脑损伤动物模型(属体内模型ꎬinvivoTBImodel)已被用来复制人类各种创伤性脑损伤ꎬ遗憾的是ꎬ在动物实验中具有神经保护作用的治疗方案在临床研究中大多无效ꎮ由于体外培养的细胞未掺杂体内复杂的影响因素ꎬ各种创伤性脑损伤体外模型(invitroTBImodel)被逐步建立起来ꎮ根据致伤方式的不同ꎬ可将常用的体内动物模型和体外细胞模型分为机械作用力损伤模型㊁压力损伤模型㊁爆炸伤模型㊁反复性轻度损伤模型ꎮ对上述常用TBI模型的特点进行了综述和比较分析ꎬ以期为寻找在临床上具有神经保护效果的策略提供帮助ꎮ关键词:创伤性脑损伤ꎻ体内模型ꎻ体外模型ꎻ动物模型ꎻ细胞模型DOI:10.19586/j.2095 ̄2341.2018.0067ProgressonModelsofTraumaticBrainInjuryZHAOQinghuiꎬJUFangdiꎬSUZehuaꎬLUOQiuliꎬYIYangꎬZHANGXiaokangꎬZHANGXinꎬXIEFei∗ꎬMAXuemei∗CollegeofLifeScienceandBioengineeringꎬBeijingUniversityofTechnologyꎬBeijing100124ꎬChinaAbstract:Traumaticbraininjury(TBI)notonlyhashighermorbidityandmortalityꎬbutalsoleadstovaryingdegreesofimpairmentincognitiveactivitiesandsensorimotorfunctionsofitssurvivors.EstablishingareasonableTBImodelhelpstounderstandthepathophysiologyofTBIandexploreitstreatmentstrategies.Manyanimalmodelsoftraumaticbraininjury(belongtoinvivoTBImodels)havealreadybeenusedtoreplicatevarioustraumaticbraininjuriesinhuman.Unfortunatelyꎬmostofthetherapeuticregimenswithneuroprotectiveeffectsinanimalexperimentsprovedtobeineffectiveinclinicalstudies.Sincecellsculturedinvitroarenotadulteratedwithcomplexfactorswhichexitinvivoꎬinvitromodelsofvarioustraumaticbraininjurieshavebeensetupprogressively.Accordingtodifferenttypesofinjuryꎬthecommon ̄usedinvivoanimalmodelsandinvitrocellmodelsaredividedintophysicalinjurymodelꎬpressureinjurymodelꎬblast ̄inducedinjurymodelandrepeatedmildinjurymodel.Thecharacteristicsoftheabovecommon ̄usedTBImodelsweresummarizedandcomparativelyanalyzedinordertohelpforthesearchofclinicalstrategieswithneuroprotectiveeffects.Keywords:traumaticbraininjuryꎻinvivomodelꎻinvitromodelꎻanimalmodelꎻcellmodel㊀㊀创伤性脑损伤(traumaticbraininjuryꎬTBI)是世界范围内的严重问题ꎮ每年ꎬ全世界大约有1000万人遭受创伤性脑损伤ꎬ并且相当多的患者会因此暂时或永久残疾㊁甚至死亡ꎮ有研究预测ꎬ到2020年ꎬTBI将成为全球负担最重的第三大疾病[1~5]ꎮ此外ꎬTBI被证实与癫痫㊁阿尔兹海默病㊁帕金森病㊁慢性神经炎等疾病密切相关[6~9]ꎮ为了寻找合理的TBI治疗方案ꎬ研究人员建立了许多体内动物模型和体外细胞模型ꎬ用于研究TBI的病理生理机制ꎮ鉴于临床上TBI发生情况. All Rights Reserved.各异ꎬ研究人员建立了不同类别的动物模型来复制不同类型的创伤性脑损伤ꎬ虽然较大的动物在尺寸上和生理上与人类更为接近ꎬ但由于啮齿类动物具有体积小㊁成本低㊁容易量化等特点ꎬ目前被广泛应用于TBI动物模型的建立[10ꎬ11]ꎮ早期的TBI动物模型主要模拟了脑损伤的生物力学变化ꎬ近年来创建的动物模型还可用于研究由头部创伤引发的分子相互作用机制以及分子级联反应[11ꎬ12]ꎮ同样的ꎬ体外TBI模型也是研究TBI病理生理机制的重要工具ꎬ其优势在于能够减少体内复杂因素的干扰ꎬ从而更准确地反映由机械损伤引起的细胞㊁组织的生物学变化ꎮ此外ꎬ与体内模型相比ꎬ体外模型具有重复性好㊁可控性好㊁实验成本较低㊁伦理问题较少等优势ꎮ根据致伤方式的不同ꎬ常用的TBI模型可分为机械作用力损伤模型㊁压力损伤模型㊁爆炸伤模型㊁反复性轻度损伤模型ꎮ本文对上述常用模型进行了综述和比较分析ꎬ以期为寻找在临床上具有神经保护效果的治疗方案提供帮助ꎮ1㊀机械作用力损伤模型1.1㊀机械作用力损伤TBI动物模型机械作用力损伤TBI动物模型常用的有自由落体打击(weight ̄dropꎬWD)模型和控制性皮层冲击损伤(controlledcorticalimpactꎬCCI)模型ꎮWD是一种常用的造模方法ꎬ通过重物自由下落打击硬脑膜或者颅骨造成脑损伤ꎬ通常采用一根导管来引导重物自由下落ꎬ通过重物的重量和下落的高度来控制损伤程度[10ꎬ11ꎬ13]ꎮFeeneyWD模型是通过直接打击硬脑膜造成脑皮质挫伤ꎬ并通过调节撞击头的重量和自由下落的高度来建立轻度㊁中度㊁重度脑损伤模型ꎬ主要用于模拟脑震荡和脑挫裂伤[14~18]ꎮMarmarouWD模型在Feeney模型的基础上做了2个方面的改进:①将麻醉大鼠固定在海绵平台上ꎬ既可确保外力的瞬时性ꎬ也可在打击后通过抽出海绵平台ꎬ避免二次打击ꎻ②在顶部正中放置1个直径1cm㊁厚0.3cm的金属片以确保外力作用的弥散性ꎬ主要用于模拟弥漫性脑损伤ꎮ此模型的优点是方法简单㊁条件易于控制等ꎻ缺点是致死率较高ꎮCCI模型是通过高速运动的空气所产生的冲击力带动金属撞击头直接打击暴露的硬脑膜ꎬ造成一定程度的脑损伤ꎮ其主要用于复制TBI后皮质组织缺失㊁急性硬膜下血肿㊁轴索损伤㊁脑震荡㊁血脑屏障(blood ̄brainbarrierꎬBBB)功能障碍甚至昏迷等症状ꎮ该模型可以通过调节撞击停留时间㊁撞击速度㊁打击深度来控制损伤程度[19~21]ꎮ与MarmarouWD模型相比ꎬCCI模型改善了机械因素ꎬ极大降低了模型致死率ꎻ还可通过脑立体定位仪对颅脑打击位置精准定位ꎬ打击力度更为精确ꎻ同时ꎬ撞击后ꎬ撞击头自动迅速回收ꎬ避免了因挤压造成的损伤或因重物反弹造成的二次损伤[11ꎬ22ꎬ23]ꎮ总之ꎬCCI模型致伤准确㊁重复性好㊁稳定性高ꎬ使TBI生物力学的研究更为有效ꎮ1.2㊀机械作用力损伤TBI细胞模型机械作用力损伤TBI细胞模型主要包括机械横断体外细胞模型(celltransectioninjury)和牵张损伤体外细胞模型(cellstretchinjury)ꎮ机械横断体外细胞模型是采用塑料细针㊁刀片或激光将附着在培养皿上的神经细胞突起与胞体离断ꎬ用于模拟穿刺伤㊁穿透性颅骨骨折以及TBI后各种脑组织病变ꎮFaden等[24]采用1个由28个不锈钢叶片连接的冲击装置ꎬ对培养的大鼠皮层神经元细胞诱导机械损伤ꎬ切割装置在96孔组织培养板的细胞层中做均匀切割ꎬ间距为1.2mmꎻ24h后通过检测乳酸脱氢酶(lactatedehydro ̄genaseꎬLDH)释放量来测定细胞活力ꎮ结果显示ꎬ切割装置直接导致叶片下的细胞死亡ꎬ24h内ꎬ伤口周围的神经细胞逐渐死亡ꎮ随后ꎬ研究人员对模型进行改进ꎬ直接省去冲击装置ꎬ采用更为简单的黄色枪头(直径1.5mm)和白色枪头(直径1mm)机械性划割培养的大鼠皮层神经元细胞ꎬ根据划伤面积的不同来建立不同程度的损伤模型[25ꎬ26]ꎮ该模型无需特殊设备条件ꎬ操作简便ꎬ是一种简单有效的体外模型ꎻ而其不足是机械损伤参数无严格的标准ꎬ损伤严重程度仅以损伤细胞数目分级ꎮ牵张损伤体外细胞模型是通过改变细胞形态造成细胞不同程度的伸展牵张ꎬ目的主要是为了研究TBI的生物力学效应ꎮ其中应用较为广泛的模型是通过压缩气体使夹持的圆形板变形ꎬ圆形板上贴壁的神经细胞也随之变形ꎬ根据施加的压力大小不同造成轻度㊁中度和重度损伤[27~29]ꎮ此模型的缺点:在较高的变形速率下ꎬ圆形板易造成不均匀变形ꎻ由于细胞需粘附在基材上ꎬ细胞的粘7赵清辉ꎬ等:创伤性脑损伤模型研究进展. All Rights Reserved.附性形变的验证就十分重要ꎮ另一种得到广泛应用的是采用微流体装置建立模型ꎬ通过向柔性聚二甲基硅氧烷(polydimeth ̄ylsiloxaneꎬPDMS)膜下方的气动通道施加气体压力ꎬ造成PDMS膜形变进而引起轴突拉伸损伤[30]ꎮ采用微流体装置模型的优势是可以检测损伤对神经细胞特定部分的影响ꎬ即可对神经细胞特定的区域(如胞体㊁轴突)进行精确损伤ꎻ而其不足之处是需要笨重的气动装置ꎬ设备仪器较为复杂[31]ꎮ2㊀压力损伤模型2.1㊀压力操作TBI动物模型压力损伤TBI动物模型主要包括液压冲击伤(fluidpercussioninjuryꎬFPI)模型和穿透性脑损伤(penetratingballistic ̄likebraininjuryꎬPBBI)模型ꎮFPI模型是通过向颅腔内快速注入一定量的生理盐水造成脑组织的变形和移位ꎬ从而导致脑损伤ꎬ损伤程度取决于压力脉冲的强度ꎮFPI模型可以复制人类TBI后颅内出血㊁脑肿胀和渐进性灰质损害等病理生理特点ꎬ主要用于复制临床无颅骨骨折的TBI[32~37]ꎮ根据颅骨钻孔位置的不同ꎬFPI模型可以分为中央(矢状缝上)FPI模型㊁矢状窦旁(距中线<3.5mm)FPI模型和侧方(距中线>3.5mm)FPI(lateralfluidpercussionin ̄juryꎬLFPI)模型ꎮ早期的FPI模型主要是通过控制钟摆下落的高度这一单一变量来控制损伤程度ꎮ为了提高可重复性ꎬKabadi等[38]开发了一种微处理器控制的气动装置ꎬ采用这种新型设备ꎬ冲击压力和停留时间均可得到精确控制以减少试验之间的差异ꎮLFPI模型产生的认知功能障碍㊁神经行为障碍等是临床上TBI患者常见的症状ꎮ但是由于造成脑干损伤ꎬ呼吸暂停时间延长ꎬFPI模型与其他模型相比具有较高的致死率ꎮ因此ꎬ大鼠LFPI模型中开颅手术部位的选择确定对损伤程度至关重要ꎬ建模时要精确控制开颅手术的位置ꎬ以提高模型的可靠性和重复性ꎮ另一种模拟颅内压升高的模型是PBBI模型ꎬ其由高能量弹头和冲击波造成ꎬ这种冲击波在大脑中产生了数倍于弹丸本身尺寸的临时腔ꎬ而其损伤程度取决于弹射的路径和能量转移的程度ꎮ目前ꎬ已开发出多种新的PBBI啮齿动物模型ꎮDavis等[39]将PBBI探针经由骨窗进入大脑右半球ꎬ进针深度为1.2cmꎬ由计算机程序控制ꎬ向探针内充水ꎬ使探针弹性头膨胀ꎬ产生1个椭圆形的水球ꎬ体积等于大脑体积的10%ꎬ球囊放水后ꎬ探头缩回ꎬ从而建立PBBI模型ꎮ大鼠PBBI模型会造成白质和灰质损伤㊁脑水肿㊁癫痫㊁皮层扩散㊁神经胶质细胞增生㊁神经炎症等ꎬ还会体现出由此造成的感觉障碍以及认知功能障碍的症状ꎮ与其他TBI模型相比ꎬ由于PBBI模型损伤的渗透性及其形成的暂时性腔ꎬ其在整个原发病灶中会引起广泛的脑内出血[11ꎬ40]ꎮ正是PBBI模型所具有的特点ꎬ使其对研究中度或重度颅脑损伤的机制具有重要意义ꎮ2.2㊀压力损伤TBI细胞模型压力损伤TBI细胞模型包括加压损伤(com ̄pressioninjury)神经细胞模型和负压引流损伤(vacuumassistedinjury)神经细胞模型ꎮ加压损伤神经细胞模型即通过向体外培养的细胞施加一定的压力从而造成细胞损伤ꎬ主要用于复制闭合性脑损伤或FPI模型ꎮ但为了获得细胞反应ꎬ增加的压力需远超过TBI期间发生的水平ꎮ在培养基产生的静水压力条件下ꎬ脑部变形可能非常小ꎬ因为脑组织几乎是不可压缩的ꎬ因此ꎬ需要更高的压力(15个大气压左右)才能造成损伤ꎮ陈翰博[41]将星形胶质细胞的培养盒与加压器连接并密封ꎬ注入氮氧混合气体ꎬ分别给予不同大小的压力ꎬ结果显示加压后细胞体积增大㊁水肿明显ꎬ且随着压力的增加ꎬ水肿更为明显ꎮ加压损伤模型与TBI后临床病理生理相似ꎬ且方法简单㊁条件易于控制ꎬ可通过调整压力值来控制损伤程度ꎬ主要用于中枢神经系统(centralnervoussys ̄temꎬCNS)中神经细胞机械性损伤的研究ꎬ也适用于TBI后各神经细胞继发性损伤的研究[42~44]ꎮ负压引流损伤神经细胞模型是通过使用微流控装置和实验室真空来损伤轴突ꎮ一旦轴突生长至相邻隔室ꎬ采用巴斯德吸管在第二隔室入口真空抽吸ꎬ在第二隔室产生一个气泡ꎬ此气泡会对第二隔室的轴突产生剪切力ꎬ造成轴突损伤ꎮ因此ꎬ该装置会导致轴突损伤且不影响胞体ꎬ这种损伤方法随后被用于筛选潜在的轴突再生的治疗ꎮ基于微流体和真空的损伤机制也可用于模拟和表征急性轴索变性(acuteaxonaldegenerationꎬ8生物技术进展CurrentBiotechnology. All Rights Reserved.AAD)[31]ꎮZhou等[45]使用微流体真空吸入损伤模型来研究损伤后观察到的成熟轴突再生减少的途径ꎮ在成熟轴突中ꎬ线粒体锚定蛋白(mitochon ̄dria ̄anchoringproteinsyntaphilin)SNPH阻碍线粒体运输ꎬ从而在损伤部位产生能量缺陷ꎮ通过敲除SNPH基因增强线粒体运输ꎬ通过增加线粒体转运和维持受损轴突的ATP供应促进了损伤后的轴突再生ꎮ因此ꎬ真空吸入损伤模型可以表征线粒体运输以及受损轴突的能量供应ꎬ并且能够为轴突再生提供新的治疗策略[31]ꎮ此模型的不足之处在于需要互相连接的隔室之间的高流体阻力以限制对特定神经元区域的伤害ꎮ该阻力通常由微流体装置中的微槽提供ꎬ因此ꎬ必须仔细调整真空的持续时间和强度以减少对非特定区域的损害ꎮ3㊀爆炸伤模型颅脑爆炸伤主要指的是由爆炸冲击波和投射物造成的颅脑损伤(blast ̄inducedtraumaticbraininjuryꎬbTBI)ꎬ是现代战争中的主要伤型ꎮ国内外学者针对bTBI建立了各种各样的模型ꎬ其中常用的有自由场爆炸模型㊁爆炸管模型㊁小型爆炸源模型㊁以及高级爆炸模拟器(advancedblastsimulatorꎬABS)模型[46~49]ꎮABS模型无需使用炸药ꎬ而是以压缩气体作为动力ꎮ其结构为一圆柱形管ꎬ中间采用一种特殊材质的薄膜将圆柱形管分割为2个室ꎬ分别为加压区和测试区ꎬ当加压区气压上升到一定程度击破隔膜所产生的冲击波ꎬ会对放置于测试区的动物头部造成损伤ꎮRodriguez等[49]采用的激波管待测区长度为2m㊁加压区长度为2.54m㊁隔膜厚度为0.4mmꎬ将大鼠头部放于激波管待测区ꎬ通过将空气加压至1230kPa左右冲破隔膜产生冲击波ꎬ造成大鼠头部损伤ꎬ从而建立bTBI动物模型ꎮABS模型是目前bTBI研究领域中应用最多的模型ꎬ其优点主要是安全性高㊁可在室内操作ꎬ从而降低了外界的干扰ꎻ且可通过调节隔膜的材料ꎬ产生不同大小的冲击波[36ꎬ50~52]ꎮ但需要注意的是ꎬABS模型也有其自身的重要缺点:①气体驱动冲击波的物理特性可能不同于爆炸冲击波ꎻ②隔膜碎片可能对受试对象产生影响ꎻ③管出口附近产生的射流效应可能对受试对象产生影响[46]ꎮ同样的ꎬ将培养的神经细胞以及脑组织切片放在激波管待测区ꎬ则可建立bTBI体外模型ꎮCampos ̄Pires等[53]将小鼠海马脑片细胞面向激波管ꎬ分别采用不同冲击压力来建立创伤模型ꎬ并利用碘化丙啶(propidiumiodideꎬPI)染色法检测细胞死亡水平ꎮ结果表明ꎬ爆炸伤的损伤程度随冲击压峰值和冲击波的增加而增加ꎬ且冲击波诱导的细胞死亡方式主要是细胞凋亡ꎮ4㊀反复性轻度损伤模型反复性轻度创伤性脑损伤(repeatedmildtraumaticbraininjury)模型通常发生在需接触的运动(拳击㊁篮球㊁足球㊁橄榄球)及家暴等情况中[11ꎬ54]ꎮ越来越多的证据表明ꎬ反复脑震荡会导致行为异常和病理改变ꎮ目前已建立了多种反复性轻度创伤性脑损伤模型ꎬ如CCI模型㊁WD模型㊁FPI模型㊁Blast ̄TBI模型㊁cellstretchinjury模型[37ꎬ55~58]ꎮ研究表明ꎬ短时间内反复轻度TBI可以造成弥漫性轴索损伤和慢性神经炎ꎬ而这些病理生理现象与阿尔兹海默病㊁帕金森综合症等神经退行性疾病密切相关ꎮ由于轻度脑损伤往往被人们忽略ꎬ但反复性轻度创伤性脑损伤可能是灾难性或致命性的ꎬ因此ꎬ反复性轻度创伤性脑损伤模型对TBI后神经退行性疾病的研究具有重要意义ꎮ综上所述ꎬTBI模型的建立为研究相关发病机制㊁开发有效治疗方案奠定了基础ꎮ现将各模型的特点做一总结ꎬ具体见表1ꎮ5㊀展望尽管利用TBI模型开展脑损伤研究已取得了一定进展ꎬ但仍存在一些难以克服的不足ꎮ常用的TBI模型动物(特别是啮齿类动物)的大脑与人脑在生理学上存在一定程度的相似性ꎬ但在脑结构和功能方面仍存在显著差异ꎬ如在脑几何形状㊁颅角度㊁回旋复杂性㊁灰质与白质灰分比例等方面均存在差异ꎬ这对TBI模型的建立会产生不良影响[11ꎬ33]ꎮ许多TBI模型的研究并未严格测量TBI前后的生理变量ꎬ包括CO2分压㊁O2分压㊁pH㊁血压和脑温等ꎬ而这些变量在确定机体对损伤和治疗的病理生理反应中非常重要ꎮ此外ꎬ年9赵清辉ꎬ等:创伤性脑损伤模型研究进展. All Rights Reserved.表1㊀常用TBI动物模型及细胞模型的特点Table1㊀Characteristicsofcommon ̄usedTBIanimalandcellmodels.类别致伤类型局限性优势机械损伤动物模型细胞模型FeeneyWD[11ꎬ14~18ꎬ59]脑皮质挫伤ꎬ脑震荡需开骨窗ꎬ致死率高方法简单ꎬ条件易控MarmarouWD[10ꎬ11ꎬ13]弥漫性损伤ꎬ轴索损伤致死率高方法简单ꎬ条件易控CCI[19~23ꎬ37ꎬ55]脑皮质缺失ꎬ脑震荡设备昂贵㊁需开骨窗重复性好ꎬ致伤准确牵张损伤体外细胞模型[24~26]轴索损伤以及穿刺伤需标准化不需特殊设备仪器条件机械横断体外细胞模型[28~31ꎬ60ꎬ61]神经细胞的轴索损伤仪器复杂㊁设备昂贵细胞特定区域精确损伤压力损伤动物模型细胞模型FPI[32~38ꎬ57]颅内出血以及脑肿胀致伤机制与临床不同重复性好㊁稳定性高PBBI[11ꎬ39ꎬ40]颅内出血及颅内压升高需标准化以及特殊设备致伤与临床类似加压损伤精神细胞模型[41ꎬ43ꎬ44]复制颅内压升高需控压装置方法简单ꎬ条件易控负压引流损伤神经细胞模型[31ꎬ45]神经细胞的轴索损伤压力控制需精细化致伤准确ꎬ方法简单爆炸伤blast ̄TBI[46~51]爆炸冲击波损伤特殊设备ꎬ射流效应致伤与战创伤类似ABS[52ꎬ53]爆炸冲击波损伤隔膜碎片影响可室内操作ꎬ安全性高重复性轻度损伤[37ꎬ55~58]弥漫性脑损伤需标准化致伤与临床类似龄㊁性别㊁物种对TBI结果也会产生影响[2ꎬ4ꎬ5ꎬ62~64]ꎬ需多加研究ꎮ而TBI体外模型的局限性主要表现在组织细胞可能在离体后产生有害的应激反应ꎻ其次ꎬ组织细胞在取材的过程中已经受到损伤ꎬ这在一定程度上可能对组织的实验性损伤产生影响ꎮTBI体外模型需要重点解决的问题是减少细胞外环境(如血液㊁活化的巨噬细胞等)对神经细胞的影响ꎬ以及降低组织细胞在取材过程中造成的损伤[60ꎬ65ꎬ66]ꎮ有时ꎬ基于体内模型与体外模型的研究会产生相互矛盾的结果ꎬ但这并不意味着体外模型检测结果不准确ꎬ可能与环境(如炎症反应㊁温度调节㊁氧合和局部离子浓度)的差异有密切关系[11ꎬ47ꎬ59ꎬ61ꎬ65ꎬ67]ꎮ利用2种TBI模型进行研究各有利弊ꎬ因此ꎬ在研究一种新的治疗手段或药物时ꎬ应联合应用不同类型的TBI体内㊁体外模型ꎬ以模拟在损伤期间引起的不同病理生物学反应ꎬ采用这种交叉验证的方式ꎬ可使实验结果更为真实㊁可靠ꎬ减少假阳性结果的产生ꎮ参㊀考㊀文㊀献[1]㊀RuffRLꎬRiechersRG.Effectivetreatmentoftraumaticbraininjury:Learningfromexperience[J].J.Am.Med.Assoc.ꎬ2012ꎬ308(19):2032-2033.[2]㊀HyderAAꎬWunderlichCAꎬPuvanachandraPꎬetal..Theimpactoftraumaticbraininjuries:Aglobalperspective[J].NeuroRehabilitationꎬ2007ꎬ22(5):341-353. [3]㊀TaylorCAꎬBellJMꎬBreidingMJꎬetal..Traumaticbraininjury ̄relatedemergencydepartmentvisitsꎬhospitalizationsꎬanddeaths ̄UnitedStatesꎬ2007and2013[J].MMWRSurveill.Summ.ꎬ2017ꎬ66(9):1-16.[4]㊀MajdanMꎬPlancikovaDꎬBrazinovaAꎬetal..EpidemiologyoftraumaticbraininjuriesinEurope:Across ̄sectionalanalysis[J].LancetPublicHealthꎬ2016ꎬ1(2):e76-e83. [5]㊀ChengPꎬYinPꎬNingPꎬetal..Trendsintraumaticbrainin ̄jurymortalityinChinaꎬ2006-2013:Apopulation ̄basedlongi ̄tudinalstudy[J].PLoSMed.ꎬ2017ꎬ14(7):e1002332. [6]㊀ScottGꎬRamlackhansinghAFꎬEdisonPꎬetal..Amyloidpa ̄thologyandaxonalinjuryafterbraintrauma[J].Neurologyꎬ2016ꎬ86(9):821-828.[7]㊀JafariSꎬEtminanMꎬAminzadehFꎬetal..HeadinjuryandriskofParkinsondisease:Asystematicreviewandmeta ̄analysis[J].MovementDisord.ꎬ2013ꎬ28(9):1222-1229. [8]㊀WebsterKMꎬSunMꎬCrackPꎬetal..Inflammationinepi ̄leptogenesisaftertraumaticbraininjury[J].J.Neuroinflamm.ꎬ2017ꎬ14:10.[9]㊀DeKoskySTꎬBlennowKꎬIkonomovicMDꎬetal..Acuteandchronictraumaticencephalopathies:Pathogenesisandbiomarkers[J].Nat.Rev.Neurol.ꎬ2013ꎬ9(4):192-200. [10]㊀HouJꎬNelsonRꎬWilkieZꎬetal..Mildandmild ̄to ̄moderatetraumaticbraininjury ̄inducedsignificantprogressiveanden ̄duringmultiplecomorbidities[J].J.Neurotraum.ꎬ2017ꎬ34(16):2456-2466.[11]㊀XiongYꎬMahmoodAꎬChoppM.Animalmodelsoftraumaticbraininjury[J].Nat.Rev.Neurosci.ꎬ2013ꎬ14(2):128-142.[12]㊀KatzenbergerRJꎬLoewenCAꎬWassarmanDRꎬetal..ADrosophilamodelofclosedheadtraumaticbraininjury[J].01生物技术进展CurrentBiotechnology. All Rights Reserved.Proc.Natl.Acad.Sci.USAꎬ2013ꎬ110(44):4152-4159. [13]㊀MaramarouAꎬFodaMAꎬvandenBrinkW.Anewmodelofdiffusebraininjuryinrats[J].J.Neurosurg.ꎬ1994ꎬ80(2):301-313.[14]㊀FeeneyDMꎬBoyesonMGꎬLinnRTꎬetal..Responsestocorticalinjury:I.Methodologyandlocaleffectsofcontusionsintherat[J].BrainRes.ꎬ1981ꎬ211(1):67-77.[15]㊀PangALꎬXiongLLꎬXiaQJꎬetal..Neuralstemcelltrans ̄plantationisassociatedwithinhibitionofapoptosisꎬBcl ̄xLup ̄regulationꎬandrecoveryofneurologicalfunctioninaratmodeloftraumaticbraininjury[J].CellTransplant.ꎬ2017ꎬ26(7):1262-1275.[16]㊀ChenXꎬWuSꎬChenCꎬetal..Omega ̄3polyunsaturatedfattyacidsupplementationattenuatesmicroglial ̄inducedinflamma ̄tionbyinhibitingtheHMGB1/TLR4/NF ̄κBpathwayfollowingexperimentaltraumaticbraininjury[J].J.Neuroinflamm.ꎬ2017ꎬ14:143.[17]㊀JiaJꎬChenFꎬWuY.RecombinantPEP ̄1 ̄SOD1improvesfunctionalrecoveryafterneuralstemcelltransplantationinratswithtraumaticbraininjury[J].Exp.Ther.Med.ꎬ2018ꎬ15(3):2929-2935.[18]㊀HeHꎬLiuWꎬZhouYꎬetal..Sevofluranepost ̄conditioningattenuatestraumaticbraininjury ̄inducedneuronalapoptosisbypromotingautophagyviathePI3K/AKTsignalingpathway[J].DrugDes.Dev.Ther.ꎬ2018ꎬ12:629-638.[19]㊀LighthallJW.Controlledcorticalimpact:Anewexperimentalbraininjurymodel[J].J.Neurotraum.ꎬ1988ꎬ5(1):1-15. [20]㊀WangWꎬZhangHꎬLeeDHꎬetal..Usingfunctionalandmo ̄lecularMRItechniquestodetectneuroinflammationandneuro ̄protectionaftertraumaticbraininjury[J].BrainBehav.Im ̄mun.ꎬ2017ꎬ64:344-353.[21]㊀ChengSXꎬXuZWꎬYiTLꎬetal..iTRAQ ̄basedquantitativeproteomicsrevealsthenewevidencebasefortraumaticbrainin ̄jurytreatedwithtargetedtemperaturemanagement[J].Neuro ̄therapeuticsꎬ2018ꎬ15(1):216-232.[22]㊀WangLꎬZhaoCꎬWuSꎬetal..Hydrogengastreatmentim ̄provestheneurologicaloutcomeaftertraumaticbraininjuryviaincreasingmiR ̄21expression[J].Shockꎬ2018ꎬ50(3):308-315.[23]㊀LearyJBꎬBondiCOꎬLaPorteMJꎬetal..Thetherapeuticef ̄ficacyofenvironmentalenrichmentandmethylphenidatealoneandincombinationaftercontrolledcorticalimpactinjury[J].J.Neurotraum.ꎬ2017ꎬ34(2):444-450.[24]㊀FadenAIꎬMovsesyanVAꎬKnoblachSMꎬetal..Neuropro ̄tectiveeffectsofnovelsmallpeptidesinvitroandafterbrainin ̄jury[J].Neuropharmacologyꎬ2005ꎬ49(3):410-424. [25]㊀黄卫东ꎬ费舟ꎬ章翔ꎬ等.体外培养大鼠脑皮层神经元机械性损伤模型的建立[J].第四军医大学学报ꎬ2004ꎬ25(4):307-309.[26]㊀LiuWꎬChenYꎬMengJꎬetal..Ablationofcaspase ̄1protectsagainstTBI ̄inducedpyroptosisinvitroandinvivo[J].J.Neu ̄roinflamm.ꎬ2018ꎬ15:48.[27]㊀SaykallyJNꎬHaticHꎬKeeleyKLꎬetal..Withaniasomniferaextractprotectsmodelneuronsfrominvitrotraumaticinjury[J].CellTransplant.ꎬ2017ꎬ26(7):1193-1201.[28]㊀CaterHLꎬSundstromLEꎬMorrisonIIIB.Temporaldevelop ̄mentofhippocampalcelldeathisdependentontissuestrainbutnotstrainrate[J].J.Biomech.ꎬ2006ꎬ39(15):2810-2818.[29]㊀SalvadorEꎬBurekMꎬFörsterCY.Stretchand/oroxygenglu ̄cosedeprivation(OGD)inaninvitrotraumaticbraininjury(TBI)modelinducescalciumalterationandinflammatorycas ̄cade[J].Front.Cell.Neurosci.ꎬ2015ꎬ9:323.[30]㊀YapYCꎬKingAEꎬGuijtRMꎬetal..Mildandrepetitiveverymildaxonalstretchinjurytriggerscytoskeletalmislocaliza ̄tionandgrowthconecollapse[J].PLoSONEꎬ2017ꎬ12(5):e0176997.[31]㊀ShriraoABꎬKungFHꎬOmelchenkoAꎬetal..Microfluidicplatformsforthestudyofneuronalinjuryinvitro[J].Biotechnol.Bioeng.ꎬ2018ꎬ115(4):815-830.[32]㊀DixonCEꎬLyethBGꎬPovlishockJTꎬetal..Afluidpercus ̄sionmodelofexperimentalbraininjuryintherat[J].J.Neoro ̄surg.ꎬ1987ꎬ67(1):110-119.[33]㊀MoralesDMꎬMarklundNꎬLeboldDꎬetal..Experimentalmodelsoftraumaticbraininjury:Dowereallyneedtobuildabettermousetrap?[J].Neuroscienceꎬ2005ꎬ136(4):971-989.[34]㊀AlderJꎬFujiokaWꎬLifshitzJꎬetal..Lateralfluidpercussion:Modeloftraumaticbraininjuryinmice[J].J.Vis.Exp.ꎬ2011(54):e3063.[35]㊀LiuYRꎬCardamoneLꎬHoganREꎬetal..Progressivemeta ̄bolicandstructuralcerebralperturbationsaftertraumaticbraininjury:Aninvivoimagingstudyintherat[J].J.Nucl.Med.ꎬ2010ꎬ51(11):1788-1795.[36]㊀EvansLPꎬNewellEAꎬMahajanMAꎬetal..Acutevitreoret ̄inaltraumaandinflammationaftertraumaticbraininjuryinmice[J].Ann.Clin.Trans.Neurol.ꎬ2018ꎬ5(3):240-251. [37]㊀FehilyBꎬFitzgeraldM.Repeatedmildtraumaticbraininjury:Potentialmechanismsofdamage[J].CellTransplant.ꎬ2017ꎬ26(7):1131-1155.[38]㊀KabadiSVꎬHiltonGDꎬStoicaBAꎬetal..Fluid ̄percussion ̄inducedtraumaticbraininjurymodelinrats[J].Nat.Protoc.ꎬ2010ꎬ5(9):1552.[39]㊀DavisARꎬShearDAꎬChenZꎬetal..Acomparisonoftwocognitivetestparadigmsinapenetratingbraininjurymodel[J].J.Neurosci.Meth.ꎬ2010ꎬ189(1):84-87.[40]㊀ShearDAꎬLuXCMꎬPedersenRꎬetal..Severityprofileofpenetratingballistic ̄likebraininjuryonneurofunctionalout ̄comeꎬblood ̄brainbarrierpermeabilityꎬandbrainedemafor ̄mation[J].J.Neurotraum.ꎬ2011ꎬ28(10):2185-2195. [41]㊀陈翰博.下调水通道蛋白 ̄4在脑水肿时可能产生双刃剑作用的研究[D].昆明:昆明医科大学ꎬ博士学位论文ꎬ2015. [42]㊀PopovaDꎬKarlssonJꎬJacobssonSOP.ComparisonofneuronsderivedfrommouseP19ꎬratPC12andhumanSH ̄SY5Ycellsintheassessmentofchemical ̄andtoxin ̄inducedneurotoxicity[J].BMCPharmacol.Toxicol.ꎬ2017ꎬ18:42. [43]㊀张永和ꎬ赵宁ꎬ易声禹ꎬ等.气压致离体中枢神经细胞损伤模型[J].第四军医大学学报ꎬ2002ꎬ23(5):423-425. [44]㊀SmithMEꎬEskandariR.Anoveltechnologytomodelpressure ̄inducedcellularinjuriesinthebrain[J].J.Neurosci.11赵清辉ꎬ等:创伤性脑损伤模型研究进展. All Rights Reserved.Meth.ꎬ2018ꎬ293:247-253.[45]㊀ZhouBꎬYuPꎬLinMYꎬetal..Facilitationofaxonregenera ̄tionbyenhancingmitochondrialtransportandrescuingenergydeficits[J].J.CellBiol.ꎬ2016ꎬ214(1):103-119. [46]㊀KovacsSKꎬLeonessaFꎬLingGSF.BlastTBImodelsꎬneu ̄ropathologyꎬandimplicationsforseizurerisk[J].Front.Neu ̄rol.ꎬ2014ꎬ5:47.[47]㊀RislingMꎬPlantmanSꎬAngeriaMꎬetal..Mechanismsofblastinducedbraininjuriesꎬexperimentalstudiesinrats[J].Neuroimageꎬ2011ꎬ54:S89-S97.[48]㊀楚燕飞ꎬ李兵仓ꎬ陈菁ꎬ等.大鼠爆炸性脑创伤模型建立[J].第三军医大学学报ꎬ2006ꎬ28(6):606-607. [49]㊀RodriguezUAꎬZengYꎬDeyoDꎬetal..Effectsofmildblasttraumaticbraininjuryoncerebralvascularꎬhistopathologicalꎬandbehavioraloutcomesinrats[J].J.Neurotraum.ꎬ2018ꎬ35(2):375-392.[50]㊀李彦腾ꎬ程岗ꎬ刘邦鑫ꎬ等.几种颅脑爆震伤动物模型建立方法的比较[J].中华神经外科疾病研究杂志ꎬ2017ꎬ16(1):87-89.[51]㊀WangZꎬSunLꎬYangZꎬetal..Developmentofserialbio ̄shocktubesandtheirapplication[J].Chin.Med.J.ꎬ1998ꎬ111(2):109-113.[52]㊀Campos ̄PiresRꎬDickinsonR.ModellingBlastBrainInjury[A].In:BullAMJꎬClasperJꎬMahoneyPF.Blastinjuryscienceandengineering:Aguideforcliniciansandresearchers[M].NewYork:Springerꎬ2016ꎬ173-182.[53]㊀Campos ̄PiresRꎬKoziakovaMꎬYonisAꎬetal..Xenonprotectsagainstblast ̄inducedtraumaticbraininjuryinaninvitromodel[J].J.Neurotraum.ꎬ2018ꎬ35(8):1037-1044. [54]㊀LithgowKꎬChinAꎬDebertCTꎬetal..UtilityofserumIGF ̄1fordiagnosisofgrowthhormonedeficiencyfollowingtraumaticbraininjuryandsport ̄relatedconcussion[J].BMCEndocr.Disord.ꎬ2018ꎬ18:20.[55]㊀YuFꎬShuklaDKꎬArmstrongRCꎬetal..Repetitivemodelofmildtraumaticbraininjuryproducescorticalabnormalitiesde ̄tectablebymagneticresonancediffusionimagingꎬhistopatholo ̄gyꎬandbehavior[J].J.Neurotraum.ꎬ2017ꎬ34(7):1364-1381.[56]㊀KaneMJꎬAngoa ̄PérezMꎬBriggsDIꎬetal..Amousemodelofhumanrepetitivemildtraumaticbraininjury[J].J.Neurosci.Meth.ꎬ2012ꎬ203(1):41-49.[57]㊀ShultzSRꎬMacFabeDFꎬFoleyKAꎬetal..Sub ̄concussivebraininjuryintheLong ̄Evansratinducesacuteneuroinflam ̄mationintheabsenceofbehavioralimpairments[J].Behav.BrainRes.ꎬ2012ꎬ229(1):145-152.[58]㊀SkotakMꎬWangFꎬChandraN.AninvitroinjurymodelforSH ̄SY5Yneuroblastomacells:Effectofstrainandstrainrate[J].J.Neurosci.Meth.ꎬ2012ꎬ205(1):159-168. [59]㊀Estrada ̄RojoFꎬMartínez ̄TapiaRJꎬEstrada ̄BernalFꎬetal..Modelsusedinthestudyoftraumaticbraininjury[J].Rev.Neurosci.ꎬ2018ꎬ29(2):139-149.[60]㊀MorrisonIIIBꎬCaterHLꎬBenhamCDꎬetal..Aninvitromodeloftraumaticbraininjuryutilisingtwo ̄dimensionalstretchoforganotypichippocampalslicecultures[J].J.Neurosci.Meth.ꎬ2006ꎬ150(2):192-201.[61]㊀ElkinBSꎬMorrisonB.Region ̄specifictolerancecriteriaforthelivingbrain[J].Stapp.Car.CrashJ.ꎬ2007ꎬ51:127-138. [62]㊀PuntambekarSSꎬSaberMꎬLambBTꎬetal..Cellularplayersthatshapeevolvingpathologyandneurodegenerationfollowingtraumaticbraininjury[J].BrainBehav.Immun.ꎬ2018ꎬ71:9-17.[63]㊀ErcoleAꎬMagnoniSꎬVeglianteGꎬetal..Currentandemer ̄gingtechnologiesforprobingmolecularsignaturesoftraumaticbraininjury[J].Front.Neurol.ꎬ2017ꎬ8:450.[64]㊀PrexlOꎬBruckbauerMꎬVoelckelWꎬetal..Theimpactofdi ̄rectoralanticoagulantsintraumaticbraininjurypatientsgreaterthan60 ̄years ̄old[J].Scand.J.TraumaResus.ꎬ2018ꎬ26:20.[65]㊀MorrisonIIIBꎬElkinBSꎬDolléJPꎬetal..Invitromodelsoftraumaticbraininjury[J].Annu.Rev.Biomed.Eng.ꎬ2011ꎬ13:91-126.[66]㊀AdamchikYꎬFrantsevaMVꎬWeisspapirMꎬetal..Methodstoinduceprimaryandsecondarytraumaticdamageinorganotypichippocampalslicecultures[J].BrainRes.Protoc.ꎬ2000ꎬ5(2):153-158.[67]㊀ThelinEPꎬHallCEꎬGuptaKꎬetal..Elucidatingpro ̄in ̄flammatorycytokineresponsesaftertraumaticbraininjuryinahumanstemcellmodel[J].J.Neurotraum.ꎬ2018ꎬ35(2):341-352.21生物技术进展CurrentBiotechnology. All Rights Reserved.。

冰片促进葛根素和梓醇口服吸收入脑的研究_汤丹丹

冰片促进葛根素和梓醇口服吸收入脑的研究_汤丹丹

37 ℃ 、 5 % CO 2 培 养 箱 中 培 养 。 取 细 胞 融 合 度 为 80 % ~ 90 % 的 BMECs , 消 化, 收集细胞并调整密
5 度 至 5 × 10 个 / mL , 种 植 于 细 胞 培 养 池 内, 1 mL / 孔 。
浓度低, 使其临床应用受到较大限制。 本研究分别从细胞水平和动物水平研究冰片对 葛根素、 梓醇口服吸收入脑的促进作用, 并筛选适合 梓葛复方口服制剂的较佳浓度, 以期为将葛根素、 梓 醇开发成治疗缺血性脑卒中的口服中药新药奠定实 验基础。 1 材料 AB 135S 天平 ( 梅特勒 · 托利多仪 器 有 限 公 2Millipore 司) ; Milieell 细胞电阻仪 ( 美 国 MilliERS-

葛 根 素 是 从 豆 科 植 物 野 葛 Pueraria lobata ( Wrilld. ) Ohwi 中提取的一种水难溶性黄酮类化合 物, 梓醇是 从 玄 参 科 植 物 地 黄 Rehmannia glutinosa Libosch 中提取的一种强水溶性环烯醚萜类化合物 。 课题组已研究证实, 葛根素与梓醇配伍可改善神经 促脑血管和神经元再生, 对缺血性脑卒中 功能症状、
-1 mg·kg - 1 ) 、 梓醇( 45 mg·kg ) 纳米晶混悬液, 比较葛根素、 梓醇在血浆和脑组织中的药动学参数 。 脑微血管内皮细胞和星 -1 型胶质细胞共培养 7 d 后, 屏障功能基本形成。与未加入冰片组相比, 冰片质量浓度为 12. 5 ~ 100 mg·L 时, 葛根素、 梓醇跨
doi: 10. 4268 / cjcmm20161425 BBB ) 是存在于血 血脑屏障( blood brain barrier, 液系统与脑组织之间的屏障系统 。它的存在有利于 维持脑内环境的相对稳定, 但同时也阻碍了约 98% 的小分子药物和几乎 100% 的大分子药物向脑内的 递送, 成为脑部疾病诊断和治疗的主要阻碍。 如何 BBB , 克服 将药物有效的递送至脑内, 成为脑部疾 病药物治疗的关键和研究热点。 冰片是从龙脑香科植物龙脑香的树脂和挥发油 。《本草纲目 》 中获得的结晶 谓其可“通诸窍, 散郁 。历代医家都认为冰片“有 引 药 上 行, 佐使之 火” [1 ] 功” 。现代研究证实, 冰片能调节血脑屏障通透 , 性, 促进丹参酮 , 栀子苷 山柰酚 等药物透 冰片还能促进药物透过胃肠道上 过血脑屏障; 此外, 皮细胞, 增加难溶性药物的口服吸收

先导化合物结构优化策略(三)

先导化合物结构优化策略(三)

药修饰策略,可以有效增加药物进入中枢系统的浓度。但二
氢吡啶前药不稳定,需要注射给药。
• 将γ-分泌酶抑制剂41与N-甲基二氢吡啶片段拼合,形成化学 递送系统前药42。其给药后,2h脑浓度可达到345ng·g−1,约
为化合物41(240ng·g−1)的1.5倍。因此,通过化学递送系统
前药修饰,可以有效改善化合物的脑通透性,增加了化合物 的脑内浓度。

• 增加化合物的脂溶性可以有效的改善血脑屏障通透性,然 而也可能对血脑屏障通透性带来负面效应。按照“药动学 规则”,增加化合物的脂溶性往往会增加其在脑中的非特
异性结合,这将会降低脑细胞外液中游离化合物的浓度,从
而降低化合物的活性。因此,进行脂溶性的结构改造时要 注意平衡各项参数,既要优化化合物的通透性,又要减少与 脑蛋白的非特异性结合,提高脑内的药物浓度。
4.1.2减少氢键供体
• 中枢药物普遍具有更少的氢键供体数目,且许多具有裸露 NH的化合物具有较为明显的P-糖蛋白外排,故减少化合物 氢键供体是中枢药物优化的重要改造策略之一。常用减少
氢键供体的方法包括:封闭氢键供体、生物电子等排替换
氢键供体及形成分子内氢键等。
4.1.3简化结构
4.1.4增加刚性
3.2体外测定模型
• 体外血脑屏障通透性的测定模型虽然不能精确反映转运蛋 白和酶等因素的影响,但其快速且花费较低,对药物研发早 期的决策具有重要的指导意义。体外测定的常用细胞模型
有犬肾传代(MDCK)细胞、人结肠癌-2(Caco-2)细胞、膀胱
癌ECV304/C6细胞模型,以及磷脂膜色谱法(IAM)和平行人 工膜渗透性测试(PAMPA)等非细胞技术。
4.2修饰为主动转运体底物
• 对于不能通过被动扩散进入中枢神经系统的化合物,可以将其修 饰为主动转运体的底物以增加其进入中枢系统的能力,提高脑内 化合物浓度。尽管化合物需同时与靶标蛋白和转运体结合,在一

银杏内酯和银杏黄酮干预β-淀粉样蛋白跨血脑屏障低氧模型转运的体外研究

银杏内酯和银杏黄酮干预β-淀粉样蛋白跨血脑屏障低氧模型转运的体外研究

银杏内酯和银杏黄酮干预β-淀粉样蛋白跨血脑屏障低氧模型转运的体外研究张云莎;杨琳;庞赓;李虎虎;范英昌;姜希娟【期刊名称】《广东医学》【年(卷),期】2016(037)016【摘要】目的:观察银杏内酯和银杏黄酮干预β-淀粉样蛋白(Aβ)跨血脑屏障(BBB)低氧模型的转运情况及与晚期糖基化终产物受体(RAGE)、低密度脂蛋白受体相关蛋白1(LRP1)表达的相关性。

方法利用 Tran-swell 装置共培养大鼠脑微血管内皮细胞与星形胶质细胞建立BBB 模型,并分为对照组、低氧模型组、银杏内酯组、银杏黄酮组及联合用药组。

观察Aβ由脑侧向血管侧的转运情况,并检测 TEER 值及 FD4通透率以评价 BBB完整性,采用 RT -qPCR 及 Western blot 法检测转运体 RAGE、LRP1的表达。

结果在低氧条件下,受试药物单独或联合干预后,Aβ的外向转运率明显上升,差异有统计学意义,且联合用药效果更优。

各组处理均未破坏 BBB 的完整性;低氧上调 RAGE 的表达,下调 LRP1的表达,药物单独干预均能改善低氧对 LRP1的抑制作用,但不影响RAGE 的表达;而联合用药下调 RAGE 表达,同时上调 LRP1表达。

结论银杏叶活性成分银杏内酯和银杏黄酮通过干预 BBB 低氧模型 RAGE 及 LRP1的表达,促进Aβ的外向转运,从而降低脑Aβ水平,延缓了阿尔茨海默病的进展。

%Objective To observe the effects of glingolide and ginkgo flavone on β-amlyoid (Aβ) transcytosis across the blood -brain barrier (BBB) in hypoxic condition and its correlation with BBB transporter RAGE and LRP1. Methods The BBB models were established by co -culturing rat brain microvascular endothelial cellsand astrocytes in vitro in the Transwell device, and divided into control group, hypoxic group, Glingolide or Ginkgo Flavone alone and com-bined treatment groups.The basolateral -to -apical permeability of Aβwas detected by using enzyme -linked immu-nosorbent assay (ELISA).The BBB integrity was evaluated by measuring transepithelial -astocyte electrical resistance (TEER) and FD4 permeability rate.The expression of RAGE and LRP1 was assessed by RT -qPCR and Western blot. Results The efflux rate of Aβacross the BBB under hypoxic condition was lower compared with that in the control group. Th e efflux rate of Aβwas significantly increased after application of glingolide and/or ginkgo flavone.The BBB integrity was not damaged with any treatments.RAGE expression was up -regulated while LRP1 expression was down -regulated under hypoxiccondition.Administration of any single compound enhanced the inhibitory effect of low oxygen on LRP1 without affecting RAGE.The RAGE was down -regulated but LRP1 was up -regulated in combined treatment.Conclu-sion Glingolide and ginkgo flavone can promote Aβefflux th rough intervening RAGE and LRP1 expression to delay the development of Alzheimer′s disease.【总页数】4页(P2389-2392)【作者】张云莎;杨琳;庞赓;李虎虎;范英昌;姜希娟【作者单位】天津中医药大学病理教研室天津 300193;天津中医药大学病理教研室天津 300193;天津中医药大学病理教研室天津 300193;天津中医药大学病理教研室天津 300193;天津中医药大学病理教研室天津 300193;天津中医药大学病理教研室天津 300193【正文语种】中文【相关文献】1.药物跨血脑屏障转运的实验模型研究进展 [J], 姜波;刘伟;金晓玲;王长虹2.β淀粉样蛋白跨血脑屏障转运机制研究进展 [J], 张海静;赵春晖;张文生3.帕金森病细胞旁路开放对FLZ体外跨血脑屏障模型转运特性的影响 [J], 刘潜;侯金凤;张金兰;张丹;鲍秀琦;孙华4.血脑屏障上的转运蛋白及中药有效成分跨血脑屏障转运研究进展 [J], 陈阳;朱臻宇;洪战英;柴逸峰5.薄荷醇、苏合香挥发油对川芎嗪纳米粒跨血脑屏障模型转运行为的影响 [J], 张翼;杨凯丽;毕嘉谣;王迪磊;郭子硕;杜守颖;李鹏跃因版权原因,仅展示原文概要,查看原文内容请购买。

血-脑屏障(中英双语解读生理、功能与临床意义)

血-脑屏障(中英双语解读生理、功能与临床意义)

血-脑屏障目录血-脑屏障 (1)一、概述: (1)二、解剖结构: (2)三、血-脑屏障的生理机能: (3)四、血-脑屏障的功能: (3)五、改变血-脑屏障通透性的临床意义: (4)血-脑屏障:早在1885年有人发现,静脉注射苯胺染料后,全身组织均被染色,但脑却不染色,以后的研究表明许多药物和物质都不易从血液中进入脑实质中去,这种现象称为血—脑屏障。

一、概述:学术界认为血脑屏障是由两层膜和其间的细胞浆所构成。

系脑屏障的组成部分之一。

脑、脊髓各毛细血管壁的相邻内皮细胞间以牢固的结合方式彼此相连,这样可以阻止某些有害成分进入脑组织内,以利于脑、脊髓的物质代谢。

由于有屏障作用,故名。

某些感染性疾病、中毒等可破坏血-脑的屏障作用,而造成脑损害,出现相应的临床表现。

血-脑屏障:是血液与脑组织之间的屏障,可限制物质在血液和脑组织之间的自由交换。

可防止有害物质进入脑组织,对脑、脊髓起到保护作用。

毛细血管的内皮、基底膜和星状胶质细胞的血管周足等,可能就是血脑屏障的形态学基础。

二、解剖结构:血-脑屏障一种特殊的解剖结构,一般认为由软脑膜、脉络丛、脑血管和星状胶质组织所组成。

它能防止毒素及其他有害物质进入脑内损害神经细胞,同时又能保证输送脑代谢所需物质的进入和代谢产物的排出,使内环境相对稳定,以维持神经细胞的正常功能。

血-脑屏障:是隔开血液和脑组织、脑脊液的解剖功能结构。

实质上它是指血液与脑细胞、血液与脑脊液及脑脊液与脑细胞之间的三个屏障。

血脑屏障的生理、解剖基础:一是中枢神经系统的毛细血管内皮细胞间连接比较紧密、细胞之间仅有少数或没有微孔,二是比其他部位毛细血管壁多一层星形胶质细胞,三是间质液中蛋白质含量比其他部位少。

这些特征使其具有半透膜性质,因而营养物质可以通过血脑屏障,代谢产物亦可由脑细胞转移到血液中去。

外源化学物较少进入脑组织,对中枢神经系统起保护作用。

化学物质的进入与其脂/水分配系数、蛋白质结合率、解离度有关。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

体外血脑屏障模型的建立
王卫东;黄虹;邹浩元;钟锋;谢彦鹏
【期刊名称】《医学理论与实践》
【年(卷),期】2008(21)1
【摘 要】目的:利用自发转化的人脐静脉内皮细胞系ECV304和分离纯化的大鼠星
形胶质细胞共培养试图建立一种具有重复性好、细胞纯度高、培养操作简便、接近
在体状态的体外血脑屏障模型.方法:分3步:(1)分离纯化培养大鼠星形胶质细胞;(2)
建立体外血脑屏障BBB模型(内皮细胞系/星形胶质细胞非接触共培养);(3)模型鉴定.
结果:利用ECV304与原代培养的星形胶质细胞共培养建立的血脑屏障模型无论是
在形态学、屏障功能上还是内皮细胞的特异性标志物的表达水平上都与在体血脑屏
障的特性相似.结论:可以利用ECV304与原代培养的星形胶质细胞共培养建立体外
血脑屏障模型.

【总页数】4页(P5-8)
【作 者】王卫东;黄虹;邹浩元;钟锋;谢彦鹏
【作者单位】嘉应学院医学院内科,广东省梅州市,514031;湖南省长沙市第一医院;
嘉应学院医学院内科,广东省梅州市,514031;嘉应学院医学院内科,广东省梅州
市,514031;嘉应学院医学院内科,广东省梅州市,514031

【正文语种】中 文
【中图分类】R-33
【相关文献】
1.人血脑屏障体外实验模型的建立及缺氧-复氧对其通透性的影响 [J], 冯洁;叶丽亚;
张文健;刘杰文;娄晋宁;李成辉
2.体外血脑屏障模型的建立及发展 [J], 李珺n;彭亮;黄胜和;吴春华;曹虹
3.体外血脑屏障模型的建立 [J], 彭镜;尹飞;甘娜;张红媛
4.大鼠脑微血管内皮细胞与周细胞、星形胶质细胞共培养建立体外血脑屏障模型
[J], 查雨锋;傅晓钟;张顺;罗敏;欧瑜;董永喜;王爱民;王永林
5.大鼠脑微血管内皮细胞与星形胶质细胞共培养血脑屏障体外模型的建立 [J], 胡
利民;范祥;张艳军;张伯礼;梅建勋;高秀梅

因版权原因,仅展示原文概要,查看原文内容请购买

相关文档
最新文档