平方根课件[1].ppt

合集下载

3.1 平方根(一)(课件)湘教版数学八年级上册

3.1 平方根(一)(课件)湘教版数学八年级上册

知1-练
感悟方新法知点拨:求一个正数的平方根的方法:先找出 知1-练
平方等于这个正数的数,这样的数有两个,它们 互为相反数,因而这两个数均为这个正数的平方 根 . 如果一个数为带分数,一般先将其转化为假 分数,再求平方根;如果有乘方运算,那么先求 出乘方运算的结果,针对结果再求平方根;如果 一个正数 a 不能写成有理数的平方的形式,那么 可以将 a 的平方根表示成 ± a.
综上所述, x = 4 或 x = 1.
感悟新知
知1-练
方法点拨:利用平方根的定义解方程的一般步骤: 第一步:移项,使含未知数的项在等号的一边,常 数项在等号的另一边; 第二步:系数化为 1,将方程化为“ x2=a”的形式; 第三步:根据平方根的定义求出未知数 x 的值 .
2-1. (1)若 x2 = 4,则x =___±__2__ ;
第三章 实 数
3.1 平方根
感悟新知
知识点 1 平方根及其性质
知1-讲
1. 定义 : 如果有一个数 r,使得 r2=a,那么我们把 r 叫作 a 的 一个平方根,也叫作二次方根 . 这就是说,若 r2=a,则 r 是 a 的一个平方根 . 表示方法:非负数 a 的平方根记作± a ,读作“正、负根 号 a”
知1-讲
特别解读 1.平方根的定义中a是非负数,即a ≥ 0. 2.平方与开平方互为逆运算,平方的结果叫作
幂,而开平方的结果叫作平方根 .
2. 平方根的性质:
知1-讲
(1)正数有两个平方根,它们互为相反数;
(2)0 的平方根是 0;(3)负数没有平方根 .
3. 开平方 : 求一个非负数的平方根的运算,叫作开平方 .
∵ 0.9 2=0.81,0.2 2=0.04, ∴ 0.81 =0.9,

平方根ppt课件

平方根ppt课件
在直角三角形中,直角边的平方和等 于斜边的平方。因此,斜边的平方根 是直角边的长度与另一条直角边的长 度之间的比例中项。
平方根的历史背景
平方根的早期发展
在古代文明中,人们已经意识到某些数的平方的值。例如,古埃及人和古巴比 伦人已经知道π和√2的近似值。随着数学的发展,人们对平方根的认识逐渐深 入。
电容
在计算电容时,需要使用平方根来 计算电容器容纳电荷的能力。
在日常生活中的应用
建筑测量
在建筑测量中,需要使用平方根 来计算建筑物的面积和体积。
土地测量
在土地测量中,需要使用平方根 来计算土地的面积和周长。
商业交易
在商业交易中,需要使用平方根 来计算商品的价格和利润。
05
平方根的注意事项
Chapter
平方根函数的奇偶性
平方根函数的值域
函数$y = sqrt{x}$的值域为所有非负 实数。
函数$y = sqrt{x}$是非奇非偶函数, 因为对于所有的x值,都有$sqrt{-x} neq sqrt{x}$。
平方根的几何性质
平方根与数轴的关系
在数轴上,一个数的平方根表示该数距离原点的距离。例如,4位 于2的右边,因为2是4的平方根。
平方根的除法性质
如果a和b都是正数,那么 $frac{sqrt{a}}{sqrt{b}} = sqrt{frac{a}{b}}$。
平方根的加法性质
如果a和b都是正数,那么 $sqrt{a} + sqrt{b}$不一 定等于$sqrt{a + b}$。
平方根的函数性质
平方根函数的单调性
对于函数$y = sqrt{x}$,当x的值从 负无穷增加到正无穷时,y的值也从负 无穷增加到正无穷,因此该函数是单 调递增的。

2024年人教版数学七年级下册6.1第3课时平方根[1]-课件

2024年人教版数学七年级下册6.1第3课时平方根[1]-课件
36,2 9 5 ,1.21.
(1)36 36有是两正个数 平方根
解 由于62=36, 因此36的平方根是6与-6. 即 ± 36=±6.
(2) 2 5 9
有两个平方根
解:
由于 =
5
2
3
25 9

因此
25 9
的平方根是
5 3
与-
5 3
.
即±
25 9

5 3
.
(3)1.21
有两个平方根
解: 由于1.12=1.21,
填一填2
写出左圈和右圈中的“?”表示的数:
x
8 -8
3
4
-
3 4
11 ?
-11 ?
0.6 ?
-0.6 ?
0
? ?
没有? ?
x2
?64
9 ?
16
121 0.36
0 -4
一、平方根的概念 根据上述问题,即要找出一个数,使它的平
方等于给定的数.我们抽象出下述概念:
如果有一个数x,使得x2=a,那么我们把x叫作 a的一个平方根,也叫作二次方根.
B. 22的平方根是2
C.非负数的平方根互为相反数 D.一个正数的算术平方根一定大于这个数的相反数
3. 判断下列说法是否正确.
(1)75

2 4
5 9
的一个平方根;
(2)6 是6的算术平方根;
正确. 正确.
(3)1 6 的值是±4; (4)(-4)2的平方根是-4.
不正确,是 4.
不正确,是 ±4.





我们,还在路上……
4.
分别求

七级数学下册六实数平方根一新版新人教版PPT课件

七级数学下册六实数平方根一新版新人教版PPT课件

.-6
D.-8
课后巩固
23.计算下列各题:
(1)(1 0.09 1 0.25) 100
;(1)23
5
(2) 196 6( 5 4 20
27
(3) 2 1 (2)2 1 9 25
;4
25
(3)7
课后巩固
24.学校小会议室面积为27 m2,小明数了一下地面 所铺的地砖,正好是300块一样大小的正方
(2)∵ 6 =
5


的算
课堂导学
1. 3
对点训练一 表示3的__算__术__平__方__根_________;
2.5的算术平方根可写成_____5_____;
3.(1)4的算术平方根是____2______;
3
(2)2的算术平方根是2__________;
(3)0的算术平方根是0__________.
核心目标
了解算术平方根的概念,会用根号表示正数的算术 平方根,并了解算术平方根的非负性.
课前预习
1.如果一个正数x的平方等于a,即x2=a,那么这个 正数x叫做a算的术__平__方__根________,记作a______.
2.25的算术平方根是____5____,49的算术平方根是 7________.
课堂导学
知识点:算术的平方根
【例题】求下列各数的算术平方根: (1)0.11215; (2)
25
【解析】尝试哪一个数的平方等于已知数,然后依据
算术平方根的概念进行计算.
【答案】解:(1)∵0.52=0.25,
方根是0.5 ,=
∴0.25的算术平
1 11
36
62 ()
36
25 25 5 25

北师大版八年级数学上册《平方根(1)》课件

北师大版八年级数学上册《平方根(1)》课件
谢谢观赏
You made my day!
我们,还在路上……
的算术平方根是____非__负__数____.
1.(2 分)(2014·陕西)4 的算术平方根是( B )
A.-2
B.2
C.-12
1 D.2
2.(2 分)下列说法正确的是( A )
A.5 是 25 的算术平方根
B.±4 是 16 的算术平方根
C.-6 是(-6)2 的算术平方根
D.0.01 是 0.1 的算术平方根
(1)计算冰川消失 16 年后苔藓的直径. (2)如果测得一些苔藓的直径是 35 厘米,问冰川约是在多少年前消失 的?
解:(1)当 t=16 时,d=7× t-12=7× 16-12=7×2=14(cm).即 冰川消失 16 年后苔藓的直径约为 14 cm
(2)当 d=35 时, t-12=5,即 t-12=25,解得 t=37.即冰川约是 在 37 年前消失的
(B ) A.28 cm C.25 cm
B.24 cm D.不能确定
9.(10 分)全球气候变暖导致一些冰川融化并消失.在冰川消失 12 年后,一种低等植物苔藓就开始在岩石上生长.每一个苔藓都会长成近 似圆形的形状,苔藓的直径和其生长年限近似地满足如下的关系式:d =7× t-12(t≥12).其中 d 代表苔藓的直径,单位是厘米;t 代表冰川 消失的时间,单位是年.
3.(2 分) 81的算术平方根是( B )
A.9
B.3
C. 9
D. 3
4.(2 分)算术平方根等于它本身的数是( D )
A.0
B.1
C.-1
D.0,1
5.(2 分)(-5)2 的算 100;
解:(1)10

1.第2课时算术平方根PPT课件(沪科版)

1.第2课时算术平方根PPT课件(沪科版)

;(3) .;(4) (-) .
第2课时
算术平方根
解: (1)因为 52=25,所以 =5.
(2)因为
2
= ,所以




= .

(3)因为(0.2)2=0.04,所以 .=0.2.

(4)因为(-4) =16=4 ,所以 (-) = =4.
2
2
第2课时


平方米,

= =0.8(米).

所以这种正方形地板砖的边长为 0.8 米.
第2课时
算术平方根
总结反思







正数a的正的 平方根叫做a的
算术平方根, 0的算术平方根
是0
求一个非负数的
算术平方根


用计算器求一个数
的算术平方根
算术平方根的实
际应用


算术平方根的
双重非负性:
± ≥0
(a ≥0)
第2课时
算术平方根
小结
知识点一 算术平方根的概念
正数 a 的正的平方根叫做 a 的算术平方根,用 Nhomakorabea
表示.
[点拨] 算术平方根的双重非负性: 是一个非负数,
而被开方数 a 也是一个非负数,因此 具有双重非负性,即
a≥0, ≥0.
第2课时
算术平方根
知识点二
算术平方根的性质
一下,用 25 块某种正方形的地板砖正好铺满客厅,请你计算一下
这种正方形地板砖的边长.
第2课时
算术平方根
[解析] 根据题意可知,25 块这种正方形地板砖的面积

人教版《平方根》上课课件PPT

人教版《平方根》上课课件PPT
方形图片,他还想设计一个面积与其相等的圆,请你帮助 他求出该圆的半径.
解:设圆的半径为r,则有 πr2140π35π, 解得 r 70 .
21. 把二次根式 2 3 a 与 8 分别化简后,被开方数相同. (1)如果a是正整数,那么符合条件的a的值有哪些? (2)如果a是整数,那么符合条件的a的值有多少个?最大 值是什么?有没有最小值?
9. (例4)计算:
(1)3 6 2 8; 解:原式=3 2 6 8
=6 42 3 =64 3 =24 3
(2) 18 32;
解:原式= 1 8 3 2 = 32 42 22 =3 4 2 =24
(3) 3x
(23) ==________________=_=________;_;
7. (例3)化简:
(1) 5 1 0 =_____5_2___2_______=___5 __2___; (2) 9 a 2 =______3_2__a_2______=____3 _a ___; (3) 4 a b 2 =_____2_2__b_2__a_____=__2_b__a___; (4) 1 2 a 2 b =_____2_2_a__2 _3_b_____=__2_a__3_b__.
(解4):设=圆__的_半__径__为__r,__则__有___=______,__;
(D3.) =________;
(,7) ,=____,____;,
(4) =________;
(正4)方形的=面__积__为__5_0_,_则__它__的__边_=长_为________. _.
积,的算术,平方根,
积的算术平方根
1. 填空:1 2 = 1 ,2 2 = 4 ,3 2 = 9 ,4 2 = 16 ,5 2 = 25 , 1 = 1 ,4 = 2 ,9 = 3 ,1 6 = 4 ,2 5 = 5 , 6 2 = 36 ,7 2 = 49 ,8 2 = 64 ,9 2 = 81 ,

算术平方根课件

算术平方根课件

直接开平法
对于形如a^(1/2)的算术平方根, 可以直接开平方得到结果。
迭代法
通过不断逼近的方式求得算术平方 根的值。
算术平方根的运算性质
非负性
有序性
算术平方根的结果总是非负的,即对 于任意实数a,其算术平方根√a≥0。
对于任意两个实数a和b(a≥0,b≥0 ),如果a≥b,那么√a≥√b。
唯一性
进行因式分解或化简。
几何学
在几何学中,算术平方根用于计 算图形的边长、面积和体积等, 例如,求圆的半径、矩形的宽或
长等。
数学分析
在数学分析中,算术平方根用于 研究函数的单调性、极值和积分
等。
算术平方根在物理中的应用
力学
在力学中,算术平方根用于计算速度、加速度和力的关系,例如 ,根据牛顿第二定律计算物体的加速度。
在此添加您的文本16字
题目:计算 $sqrt{25}$。
在此添加您的文本16字
答案:5
在此添加您的文本16字
解析:同样根据算术平方根的定义,$sqrt{25}$ 的解为 5 。
进阶练习题
题目:计算 $sqrt{16}$。
解析:进阶题目需要理解平方根的性质,$sqrt{16}$ 的 解为 4。 答案:9
电磁学
在电磁学中,算术平方根用于计算与电场、磁场相关的物理量,例 如,计算带电粒子的洛伦兹力。
热学
在热学中,算术平方根用于计算热量、温度和压力等物理量的关系 ,例如,计算热容和热传导系数。
算术平方根在日常生活中的应用
1 2 3
建筑学
在建筑学中,算术平方根用于计算建筑物的横梁 、立柱和地基等结构的尺寸和强度。
03
答案
约等于 1.73205(四舍五入到小数点后五位 )
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2)一个数的算术平方根等于它 本身,这个数是 0、1 ;
3)一个数的平方根等于它本身, 这个数是 0 。
(1)若a+1没有平方根,那么a的范围 是 a﹤-1 。 (2)若4a+1的平方根是±5,则a= 6 。
(3)一个正数x的平方根等于m+1和m-3, 则m= 1 ,x= 4 。
例3说出下列各式的含义,求下 列各式的值:
祝你进步,再见!
1) 144
— 2)
0.81
2 (-7)
3)

121 196
4)
例4:求下列各式中的x: (1) x² =16
(2) 4x² =81
(3)(x-1)2=25
请谈谈你这节课的收获
请谈谈你这节课的收获
指数 根指 数
根号
2
x a
2
底数 幂
ቤተ መጻሕፍቲ ባይዱ
互为
逆运算
x a
a的平方根 被开方数
布置作业:1)书75页3和4题 2)预习下一课.
问题.
1)什么是算术平方根?
问题.
2)说出下列各式的意义,并
说出它们的值

25

1 4
√0
一个数的平方是9,
那么这个数是什么数?
3 9, 3 9
2 2
所以这个数是3或-3.
(简记为±3)
13.1 平方根(2)
•完成下表
2 X
1
16
36
0.49
4/ 25
X ±1 ±4 ± 6
2、下列说法对不对?为什么?
①4有一个平方根 ②只有正数有平方根 ③任何数都有平方根
1) 1.21 的平方根是 ± 1.1 2) 9 的平方根是 3
(
√ √
)
(×) ( )
3) -5 是 25 的平方根 4) 16的平方根是 ± 4
( ×)
5) 平方根是本身的数有0 ,1
( ×)
1)一个数的平方等于它本身, 这个数 是 0、1 ;
思考:
-4、-8、-36有平方根吗? 为什么?
正数的平方根有什么特点?
0的平方根是多少?
负数有平方根吗?
正数有 两个 平方根,它们 互为相反数 0的平方根是 0 ; 负数 没有平方根 。
仔细看一看
1、下列各数是否有平方根, 为什么? 2 ① 2 ② 0 2 ③ -0.01 ④ (-3)
认真辨一辨
±0.7
±2/5
一、平方根: 一般地,如果一个数的平方
等于a,这个数就叫做 a的平方根
(二次方根).
就是说,如果 x 2 a,那么x就叫做a的平方根.
例1:填表
原数 算术平 方根 平方根
81 0
49 121
7 11
7 ± 11
(-25)2 11
(a≥0)
a
9
0
25
±25
±
11
a
±9 0
11 ± a
观察 讨论
X
+1 -1 +2 -2 +3 -3
x
2
X
2
X
+1 -1 +2 -2 +3 -3
1 4
1
4

9
平方运算
开平方运算
例2 . 求下列各数的平方根: (1)81 (3) 0.49
16 ( 2) 25
1 ( 4) 2 4
练一练
1、说出下列各数的平方根: (1)49 (2)1600; (3)1.44 (4)0.81;
相关文档
最新文档