高考理科数学:《基本初等函数》题型归纳与训练

合集下载

专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)(新高考地区专用)(解析版)

专题10 基本初等函数(知识梳理)一、指数与指数函数(一)指数式的化简与求值1、化简原则:①化根式为分数指数幂;②化负指数幂为正指数幂; ③化小数为分数; ④注意运算的先后顺序。

提醒:有理数指数幂的运算性质中,其底数都大于零,否则不能用性质来运算。

2、结果要求:①题目以根式形式给出,则结果用根式表示;②题目以分数指数幂形式给出,则结果用分数指数幂形式表示;③结果不能同时含有根式和分数指数幂,也不能既有分母又有负分数指数幂。

例1-1.已知41<a ,则化简42)14(-a 的结果是( )。

A 、a 41-- B 、14--a C 、14-a D 、a 41- 【答案】D【解析】a a a 41)41()14(4242-=-=-,故选D 。

变式1-1.化简3a a ⋅-的结果是( )。

A 、65a - B 、65a -- C 、65a - D 、52a -【答案】B【解析】∵0≤a ,则656565312131213)()()()()(a a a a a a a a a --=--=--=-⋅--=⋅-=⋅-,故选B 。

变式1-2.已知31=+-x x ,求下列各式的值:(1)2121-+xx ;(2)22-+x x ;(3)2323-+xx 。

【解析】(1)∵52)(2)()(1221212122122121=++=+⋅+=+----x x xxx x xx ,∴52121±=+-x x ,又由31=+-x x 得0>x ,∴52121=+-xx ;(2)72)(2122=-+=+--x x x x ; (3)]1))[((])())[(()()(12121221212122121213213212323-++=+⋅-+=+=+-------x x xx xxx x xx xx xx52)13(5=-=。

(二)指数函数的图像和性质1、定义:一般地,函数x a x f =)((0>a 且1≠a )叫做指数函数,其中x 是自变量。

基本初等函数复习题型最全最细最精

基本初等函数复习题型最全最细最精

根本初等函数复习一、根底复习:1、a 的次方根: , x 叫a 的n 次方根根式的性质:(1)n n a )(= ,(),1+∈>N n n 且;〔2〕⎩⎨⎧=为偶数时当为奇数时当n a n a a nn|,|,2、分数指数幂与根式:=mna =-n a =1a =0a3、幂的运算性质:=⋅s r a a =÷s r a a =s r a )( =r ab )(4、指数式与对数式的互化:⇒=N a b5、对数的性质:〔1〕N 〔2〕=1log a 〔3〕=a a log6、对数恒等式:=Naa log=b a a log7、对数的运算法那么:=⋅)(log N M a =)(log NMa =αM a log 8、换底公式:=b a log =b a log =n a b mlog 9、常用对数:=N 10log 自然对数:=N e log 10、幂、指、对函数函数的性质 二、典型例题: 1、指数、对数运算: 1、以下各式中,正确的选项是〔 〕A .100=B .1)1(1=--C .74471aa=-D .53531aa=-2. 计算:210319)41()2(4)21(----+-⋅- = ;)31()3)((656131212132b a b a b a ÷-的结果〔 〕A .a 6B .a -C .a 9-D .29a4.2x =72y =A ,且1x +1y=2,那么A 的值是 A .7 B .7 2 C .±72 D .98 a 、b 、c ∈R +,那么3a =4b =6c,那么( )A .bac111+=B .b a c 122+=C .b a c 221+= D .ba c 212+=6. 假设a<12,那么化简4(2a -1)2的结果是A.2a -1 B .-2a -1 C.1-2a D .-1-2a7、计算以下各式的值〔1〔2〕;21lg5(lg8lg1000)(lg lg lg 0.066++++8、设1245100,2()a b a b==+求的值.9、4(),01,42xx f x a =<<+且(1)()(1)f a f a +-求的值;1231000(2)()()()...()1001100110011001f f f f ++++求的值.说明:如果函数()xf x =,那么函数()f x 满足()(1)1f x f x +-=2、指数函数、对数、幂函数的图像:〔1〕定义考察:1、以下函数中指数函数的个数是 ( ). ①②③④A .0个 2.以下函数是指数函数的是〔 〕A. x y 5=B. x y +=25C. x y 52⋅=D. 15-=x y〔2〕定点问题1.函数0.(12>+=-a a y x 且)1≠a 的图像必经过点〔 〕)1,0.(A )1,1.(B )0,2.(C )2,2.(D2. 函数恒3()25x f x a -=+过定点 ( )A .(3 , 5)B .( 3, 7 )C .( 0, 1 )D .( 1, 0 )1log )()2(2+=-x x f 恒过定点___________〔3〕图像问题1.当a >1时,函数y=log a x 和y=(1-a)x 的图像只可能是( )2如图中函数21-=xy 的图象大致是〔 〕图3-73.在统一平面直角坐标系中,函数ax x f =)(与x a x g =)(的图像可能是〔 〕4.设d c b a ,,,都是不等于1的正数,x x x x d y c y b y a y ====,,,在同一坐标系中的图像如下图,那么d c b a ,,,的大小顺序是〔 d c b a A <<<. c d b a B <<<. c d a b C <<<. d c a b D <<<.5.图中所示曲线为幂函数n x y =在第一象限的图象,那么1c 、2c 、3c 、4c 大小关系为 〔 〕A.4321c c c c >>>B.3412c c c c >>>C.3421c c c c >>>D.2341c c c c >>> 3、指数函数、对数函数的单调性、奇偶性 〔1〕单调性1、比拟以下每组中两个数的大小0.30.4 1.3 1.60.3 1.3111(1)2.1_____2.1; (2)()_____(); (3)2.1_____()555-550.70.543(4)log 1.9_____log 2; (5)log 0.2_____log 2; (6)log 2_____log 4xyo 1Axyo1B xyo1Cxyo1Dxa =xby =xc y =xd y =yo2、031log 31log >>b a ,那么a 、b 的关系是 〔 〕 A .1<b <a B .1<a <b C .0<a <b <1 D .0<b <a <1 3.设10<<a ,使不等式531222+-+->x x x x a a 成立的x 的集合是4.以下函数中,在区间(0,1)上是增函数的是 ( ) A.y=-xB.y=log 21xC.y=31x D.y=-x 2+2x+15.〔1〕函数)26(log 21.0x x y -+=的单调增区间是________〔2〕log (2)a y ax =-在[0,1]是减函数,那么a 的取值范围是_________6.(31)4,1()log ,1a a x a x f x x x -+<⎧=⎨>⎩是(,)-∞+∞上的减函数,那么a 的取值范围是 〔 〕〔A 〕(0,1) 〔B 〕1(0,)3 〔C 〕11[,)73〔D 〕1[,1)77、 解以下不等式:(1)22332<-+x x ; 〔2〕2332)21(2--+<x x x ; 〔3〕)1,0(5213222≠>>-++-a a a a x x x x2()(1)x f x a R a =-在上是减函数,求实数的取值范围9、求以下函数的单调区间。

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

高中数学必修一基本初等函数知识点+练习题含答案解析(非常详细)

第一部分基本初等函数知识点整理第二章 基本初等函数一、指数函数 (一)指数1、 指数与指数幂的运算:复习初中整数指数幂的运算性质: a m *a n =a m+n(a m )n=a mn(a*b)n =a n b n2、根式的概念:一般地,若a x n =,那么x 叫做a 的n 次方根,其中n >1,且n ∈N *.当n 是奇数时,正数的n 次方根是一个正数,负数的n 次方根是一个负数。

此时,a 的n 次方根用符号 表示。

当n 为偶数时,正数的n 次方根有两个,这两个数互为相反数。

此时正数a 的正的n 次方根用符号 表示,负的n 的次方根用符号 表示。

正的n 次方根与负的n 次方根可以合并成 (a>0)。

注意:负数没有偶次方根;0的任何次方根都是0,记作00=n。

当n 是奇数时,a a n n =,当n 是偶数时,⎩⎨⎧<≥-==)0()0(||a a a a a a nn 式子n a 叫做根式,这里n 叫做根指数,a 叫做被开方数。

3、 分数指数幂正数的分数指数幂的)1,,,0(*>∈>=n N n m a a an m nm ,)1,,,0(11*>∈>==-n N n m a a aanmnm nm0的正分数指数幂等于0,0的负分数指数幂没有意义4、 有理数指数米的运算性质(1)r a ·s r ra a+=),,0(R s r a ∈>; (2)rss r a a =)( ),,0(R s r a ∈>;(3)s r r a a ab =)(),,0(R s r a ∈>.5、无理数指数幂一般的,无理数指数幂a a(a>0,a 是无理数)是一个确定的实数。

有理数指数幂的运算性质同样使用于无理数指数幂。

(二)、指数函数的性质及其特点1、指数函数的概念:一般地,函数)1,0(≠>=a a a y x 且叫做指数函数,其中x 是自变量,函数的定义域为R .注意:指数函数的底数的取值范围,底数不能是负数、零和1.为什么?(1)在[a ,b]上,值域是)]b (f ),a (f [或)]a (f ),b (f [;(2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当a>1时,若X 1<X 2 ,则有f(X 1)<f(X 2)。

基本初等函数经典复习题+答案

基本初等函数经典复习题+答案

必修1根本初等函数复习题求函数的定义域时列不等式组的主要依据是:⑴偶次方根的被开方数不小于零;(2)对数式的真数必须大于零;⑶分式的分母不等于零;[4〕指数、对数式的底必须大于零且不等于1.4、函数单调区间与单调性的判定方法(八)定义法:①任取xι,X 2∈D,且XKX2;Q)作差千(xι)—fa);(3)变形〔通常是因式分解和配方];④定号[即判断差千(x∣)-f(x2)的正负〕;@下结论[指出函数f(x)在给定的区间D 上的单调性].(B)图象法(从图象上看升降)⑹复合函数的单调性:复合函数Hg"]的单调性与构成它的函数u=g(x),y 二人。

的单调性密切相关,其规律:"同增异减〃 1、以下函数中,在区间(0,÷oo)不是增函数的是()1、暴的运算性质 〔1〕a r ∙a s = a r+s (r,5 ∈ R); 〔3〕a r ∙b r = (ab)r (r ∈ R) 2对数的运算性质 如果 α>0,且 awl, M >0, ① Iog“(M ・N)= Iogq M +log” N ; ③ IOg“M" =〃Iog"M,(Y ∈R). 换底公式:log” b = l°g 。

■ 〔 a IogC α(1)log b n= —log rt ⅛ ; [2 〃7 〔2〕S)' =α" ; (r,StR)(4)a" =yja n, (a>0,m,n E N ∖n> 1) a' = N Q IOga N = x N>0,那么:② log 噂=log” M Tog” N ;④ IOgQl= O, bg" = lO,且 awl ; c>0,且 CW1; b>0〕 log” b =; ---- ∙log/y = a x a>1 0<a<1 y = Iog tj X a>1 II0<a<1定义域R 值域y>0 在R 上单调递增 非奇非偶函数 函数图象都过定点[0, 1〕 3、定义域: 定义域R 值域y>0 在R 上单调递减 非奇非偶函数 函数图象都过定点〔〕 定义域x>0 值域为R在R 上递增 非奇非偶函数 函数图象都过定点定义域x>0值域为R 在R 上递减 非奇非偶函数 函数图象都过定点[1, 能使函数式有意义的实数X 的集合称为函数的定义域。

2020年高考理科数学:《基本初等函数》题型归纳与训练

2020年高考理科数学:《基本初等函数》题型归纳与训练

2020年高考理科数学《解三角形》题型归纳与训练【题型归纳】题型一正弦定理、余弦定理的直接应用例1ABC ∆的内角A ,B ,C 的对边分别为a ,b ,c ,已知2sin()8sin2BA C +=. (1)求cos B(2)若6a c +=,ABC ∆面积为2,求b . 【答案】(1)15cos 17B =(2)2b =. 【解析】由题设及A B C π++=得2sin 8sin2BB =,故sin 4(1cos )B B =-. 上式两边平方,整理得217cos 32cos 150B B -+=, 解得cos 1B =(舍去),15cos 17B =.(2)由15cos 17B =得8sin 17B =,故14sin 217ABC S ac B ac ∆==. 又2ABC S ∆=,则172ac =. 由余弦定理及6a c +=得22222cos ()2(1cos )b a c ac B a c ac B =+-=+-+1715362(1)4217=-⨯⨯+=. 所以2b =.【易错点】二倍角公式的应用不熟练,正余弦定理不确定何时运用 【思维点拨】利用正弦定理列出等式直接求出例2 ABC △的内角,,A B C 的对边分别为,,a b c ,若2cos cos cos b B a C c A =+,则B =. 【答案】π3【解析】1π2sin cos sin cos sin cos sin()sin cos 23B B AC C A A C B B B =+=+=⇒=⇒=.【易错点】不会把边角互换,尤其三角恒等变化时,注意符号。

【思维点拨】边角互换时,一般遵循求角时,把边换成角;求边时,把角转换成边。

例3在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若b =1,c =3,C =23π,则S △ABC =________.【答案】34【解析】因为c >b ,所以B <C ,所以由正弦定理得b sin B =c sin C ,即1sin B =3sin 2π3=2,即sin B =12,所以B=π6,所以A =π-π6-2π3=π6.所以S △ABC =12bc sin A =12×3×12=34. 【易错点】大边对大角,应注意角的取值范围【思维点拨】求面积选取公式时注意,一般选取已知角的公式,然后再求取边长。

高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析

高一数学 基本初等函数(对、指、幂函数)高考考纲及典型例题高考真题解析
x x 2 2x 2 x 4 1 4 a a 2 1
.
2
a 3 3a
【法二】 8 x 8 x 2 x
2
3 2
x 3
2 2 2 x 2 x 2 x 2 x 2 x 2 x
1

2 3
3
37 48
5 9 37 100 3 100 . 3 16 48
4
(4)原式 0.4 1 1 2 2 3 0.1

5 1 1 1 143 . 1 2 16 8 10 80
4.函数 f x a 2 7a 7 a x 是指数函数,求实数 a 的值. 【解析】∵函数 f x a 2 7a 7 a x 是指数函数,
1
0 a2 a1 1 a4 a3 . 1 又由题知: 0 10 1 3 10 ,∴ A 项正确. 3
1 x
a1 a2
O
x 1 x
b 7.已知二次函数 y ax 2 bx 与指数函数 y 的图象只能是下列图形中的 a y
1 1
1 2
1 1 , y x 2 的图像,了解它们的变化情况. x
二、重点知识总结
1.指数与指数幂运算 (1)①
a
n n n
n
a. a , 当n是奇数时 . a , 当n是偶数时
② a
(2)分数指数幂 ①a ②a
m n
n a m ( a 0 , m, n N * ,且 n 1 )
x y
2
是非负数,故④对.
7 (3) 2 9

高考一轮复习 基本初等函数 知识点+例题+练习

高考一轮复习 基本初等函数 知识点+例题+练习

1.指数幂的概念(1)根式如果一个数的n次方等于a(n>1且n∈N*),那么这个数叫做a的n次实数方根.也就是,若x n=a,则x叫做______________,其中n>1且n∈N*.式子na叫做________,这里n叫做____________,a叫做____________.(2)根式的性质①当n为奇数时,正数的n次实数方根是一个正数,负数的n次实数方根是一个负数,这时,a的n次实数方根用符号________表示.②当n为偶数时,正数的n次实数方根有两个,它们互为相反数,这时,正数a的正的n次实数方根用符号______表示,负的n次实数方根用符号________表示.正负两个n次实数方根可以合写成________(a>0).③(na)n=____.④当n为偶数时,na n=|a|=⎩⎪⎨⎪⎧a,a≥0,-a,a<0.⑤当n为奇数时,na n=____.⑥负数没有偶次方根.⑦零的任何次方根都是零.2.有理指数幂(1)分数指数幂的表示①正数的正分数指数幂是mna=________(a>0,m,n∈N*,n>1).②正数的负分数指数幂是mna-=____________=____________(a>0,m,n∈N*,n>1).③0的正分数指数幂是____,0的负分数指数幂无意义.(2)有理指数幂的运算性质①a s a t=________(a>0,s,t∈Q).②(a s)t=_______(a>0,s,t∈Q).③(ab)t=_______(a>0,b>0,t∈Q).3.指数函数的图象与性质a >10<a<1图象定义域值域性质(1)过定点________(2)当x>0时,______;当x<0时,________(2)当x>0时,________;当x<0时,______(3)在(-∞,+∞)上是______(3)在(-∞,+∞)上是______自我检测1.下列结论中正确的有________(填序号).①当a<0时,322()a=a3;②na n=|a|;③函数y=12(2)x -(3x-7)0的定义域是(2,+∞);④若100a=5,10b=2,则2a+b=1.2.函数y=(a2-3a+3)a x是指数函数,则a=________.3.如图所示的曲线C1,C2,C3,C4分别是函数y=a x,y=b x,y=c x,y=d x的图象,则a,b,c,d的大小关系为____________.4.若a>1,b>0,且a b+a-b=22,则a b-a-b的值为________.5.函数f(x)=a x-b的图象如图,其中a、b为常数,则下列结论正确的是________(填序号).①a>1,b<0;②a>1,b>0;③0<a<1,b>0;④0<a<1,b<0.探究点一 有理指数幂的化简与求值例1 已知a ,b 是方程9x 2-82x +9=0的两根,且a <b ,求:(1)a -1+b -1(ab )-1; 733338152a a a a --.变式迁移1 3322114443()a b ab ba b a(a 、b >0)的结果为____________.探究点二 指数函数的图象及其应用例2 已知函数y =(13)|x +1|.(1)作出函数的图象(简图); (2)由图象指出其单调区间;(3)由图象指出当x 取什么值时有最值,并求出最值.变式迁移2 若曲线|y |=2x +1与直线y =b 没有公共点,则b 的取值范围为________.探究点三 指数函数的性质及应用例3 如果函数y =a 2x +2a x -1(a >0且a ≠1)在区间[-1,1]上的最大值是14,求a 的值.变式迁移3 已知函数f (x )=(12x -1+12)x 3.(1)求f (x )的定义域; (2)证明:f (-x )=f (x ); (3)证明:f (x )>0.分类讨论思想例 已知f (x )=a a 2-1(a x -a -x )(a >0且a ≠1).(1)判断f (x )的奇偶性; (2)讨论f (x )的单调性;(3)当x ∈[-1,1]时f (x )≥b 恒成立,求b 的取值范围.一、填空题1.已知a =133()4-,b =143()4-,c =343()2-,则a 、b 、c 的大小关系为______________.2.函数y =|2x -1|在区间(k -1,k +1)内不单调,则k 的取值范围为________.3.已知集合M ={-1,1},N ={x ∈Z |12<2x +1<4},则M ∩N =________.4.定义运算a b =⎩⎪⎨⎪⎧a (a ≤b ),b (a >b ),则函数f (x )=12x 的值域为________.5.若关于x 的方程|a x -1|=2a (a >0,a ≠1)有两个不等实根,则a 的取值范围为________.6.函数f (x )=⎩⎪⎨⎪⎧-x +3a ,x <0,a x , x ≥0(a >0且a ≠1)是R 上的减函数,则a 的取值范围为________.7.设函数f (x )=x (e x +a e -x ),x ∈R 是偶函数,则实数a =________. 8.若函数f (x )=a x -1(a >0且a ≠1)的定义域和值域都是[0,2],则实数a 的值为________.二、解答题9.已知定义域为R 的函数f (x )=-2x +b2x +1+a是奇函数.(1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.10.已知函数f (x )=3x ,f (a +2)=18,g (x )=λ·3ax -4x 的定义域为[0,1]. (1)求a 的值.(2)若函数g (x )在区间[0,1]上是单调递减函数,求实数λ的取值范围.11.函数y =1+2x +4x a 在x ∈(-∞,1]上y >0恒成立,求a 的取值范围.。

高考理科数学:《基本初等函数》题型归纳与训练(有答案)

高考理科数学:《基本初等函数》题型归纳与训练(有答案)

2020年高考理科数学:基本初等函数题型归纳与训练【题型归纳】题型一 指数运算与对数运算例1 已知函数2log ,0,()31,0,x x x f x x ->⎧=⎨+≤⎩则f (f (1))+f 31log 2⎛⎫ ⎪⎝⎭的值是( ) A.5B.3C.-1D.72 【答案】A【解析】由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,31log 0,2<∴f 31log 2⎛⎫ ⎪⎝⎭=31log 23-+1=2+1=3,所以f (f (1))+f ⎝⎛⎭⎫log 312=5. 【易错点】确定31log 2的范围再代入. 【思维点拨】本题较简单,分段函数计算题代入时要先确定范围,再代入函数.例2 定义在R 上的函数f (x )满足f (x )=2log 1,0,6,0,x x f x x -≤⎧⎨->⎩()()则f (2 019)=( ) A .-1 B .0 C .1 D .2【答案】D【解析】∵2 019=6×337-3,∴f (2 019)=f (-3)=log 2(1+3)=2.故选D.【易错点】转化过程【思维点拨】x >6时可以将函数看作周期函数,得到f (2 019)=f (3),然后再带入3,得出f (3)=f (-3). 题型二 指对幂函数的图象与简单性质例1 函数f (x )=a x-b 的图象如图所示,其中a ,b 为常数,则下列结论正确的是( ) A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0 【答案】D【解析】由f (x )=a x-b 的图象可以观察出,函数f (x )=a x -b 在定义域上单调递减,所以0<a <1. 函数f (x )=a x -b 的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.【易错点】注意b 的符号【思维点拨】(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除;(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.2 例2 已知定义在R 上的函数f (x )=2|x-m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( )A.a <b <cB.c <a <bC.a <c <bD.c <b <a 【答案】B【解析】由函数f (x )=2|x -m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 23|>0,∴b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0),故选B.【易错点】①对称性的条件转化;②利用单调性或图象转化到同一单调区间比较大小.【思维点拨】函数()f x m -的图象关于x m =对称;指对幂函数比较大小时像本题中a,b 一样可以换成同底数的数,可以化为一样的底数利用单调性比较大小.题型三 二次函数的图象与性质例1 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________.【答案】(-22,0) 【解析】由于f (x )=x 2+mx -1=mx +(x 2-1),可视f (x )为关于m 的一次函数,故根据题意有 2222()10,(1)(1)(1)10,f m m m f m m m m ⎧=++<⎪⎨+=++++<⎪⎩解得-22<m <0. 【思维点拨】恒成立问题转化为最值问题.例2 已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值.【答案】a<1时,f (x )min =a -2;a ≥1时,f (x )min =-1a. 【解析】①当a =0时,f (x )=-2x 在[0,1]上单调递减,∴f (x )min =f (1)=-2.②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为直线x =1a. 当1a≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增. ∴f (x )min =1()f a =1a -2a =-1a . 当1a>1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧, ∴f (x )在[0,1]上单调递减.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考理科数学:基本初等函数题型归纳与训练【题型归纳】题型一 指数运算与对数运算例1 已知函数2log ,0,()31,0,x x x f x x ->⎧=⎨+≤⎩则f (f (1))+f 31log 2⎛⎫ ⎪⎝⎭的值是( )A.5B.3C.-1D.72【答案】A【解析】由题意可知f (1)=log 21=0,f (f (1))=f (0)=30+1=2,31log 0,2<∴f 31log 2⎛⎫ ⎪⎝⎭=31log 23-+1=2+1=3,所以f (f (1))+f ⎝⎛⎭⎫log 312=5. 【易错点】确定31log 2的范围再代入. 【思维点拨】本题较简单,分段函数计算题代入时要先确定范围,再代入函数. 例2 定义在R 上的函数f (x )满足f (x )=2log 1,0,6,0,x x f x x -≤⎧⎨->⎩()()则f (2 019)=( )A .-1B .0C .1D .2 【答案】D【解析】∵2 019=6×337-3,∴f (2 019)=f (-3)=log 2(1+3)=2.故选D. 【易错点】转化过程【思维点拨】x >6时可以将函数看作周期函数,得到f (2 019)=f (3),然后再带入3,得出f (3)=f (-3). 题型二 指对幂函数的图象与简单性质 例1 函数f (x )=a x-b的图象如图所示,其中a ,b 为常数,则下列结论正确的是( )A.a >1,b <0B.a >1,b >0C.0<a <1,b >0D.0<a <1,b <0【答案】D 【解析】由f (x )=a x-b 的图象可以观察出,函数f (x )=a x-b在定义域上单调递减,所以0<a <1.函数f (x )=a x-b的图象是在f (x )=a x 的基础上向左平移得到的,所以b <0.【易错点】注意b 的符号【思维点拨】(1)已知函数解析式判断其图象一般是取特殊点,判断选项中的图象是否过这些点,若不满足则排除;(2)对于有关指数型函数的图象问题,一般是从最基本的指数函数的图象入手,通过平移、伸缩、对称变换而得到.特别地,当底数a 与1的大小关系不确定时应注意分类讨论.例2 已知定义在R 上的函数f (x )=2|x -m |-1(m 为实数)为偶函数,记a =f (log 0.53),b =f (log 25),c =f (2m ),则a ,b ,c 的大小关系为( ) A.a <b <c B.c <a <b C.a <c <bD.c <b <a【答案】B【解析】由函数f (x )=2|x-m |-1为偶函数,得m =0,所以f (x )=2|x |-1,当x >0时,f (x )为增函数,log 0.53=-log 23,∴log 25>|-log 23|>0, ∴b =f (log 25)>a =f (log 0.53)>c =f (2m )=f (0),故选B.【易错点】①对称性的条件转化;②利用单调性或图象转化到同一单调区间比较大小. 【思维点拨】函数()fx m -的图象关于x m =对称;指对幂函数比较大小时像本题中a,b 一样可以换成同底数的数,可以化为一样的底数利用单调性比较大小. 题型三 二次函数的图象与性质例1 已知函数f (x )=x 2+mx -1,若对于任意x ∈[m ,m +1],都有f (x )<0成立,则实数m 的取值范围是________. 【答案】(-22,0) 【解析】由于f (x )=x 2+mx -1=mx +(x 2-1),可视f (x )为关于m 的一次函数,故根据题意有 2222()10,(1)(1)(1)10,f m m m f m m m m ⎧=++<⎪⎨+=++++<⎪⎩解得-22<m <0. 【思维点拨】恒成立问题转化为最值问题. 例2 已知f (x )=ax 2-2x (0≤x ≤1),求f (x )的最小值. 【答案】a<1时,f (x )min =a -2;a ≥1时,f (x )min =-1a.【解析】①当a =0时,f (x )=-2x 在[0,1]上单调递减,∴f (x )min =f (1)=-2. ②当a >0时,f (x )=ax 2-2x 的图象的开口方向向上,且对称轴为直线x =1a .当1a ≤1,即a ≥1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]内, ∴f (x )在⎣⎡⎦⎤0,1a 上单调递减,在⎣⎡⎦⎤1a ,1上单调递增. ∴f (x )min =1()f a=1a -2a =-1a .当1a >1,即0<a <1时,f (x )=ax 2-2x 的图象的对称轴在[0,1]的右侧, ∴f (x )在[0,1]上单调递减.∴f (x )min =f (1)=a -2.③当a <0时,f (x )=ax 2-2x 的图象的开口方向向下,且对称轴x =1a <0,在y 轴的左侧,∴f (x )=ax 2-2x 在[0,1]上单调递减. ∴f (x )min =f (1)=a -2.综上所述,f (x )min =2,1,1, 1.a a a a-<⎧⎪⎨-≥⎪⎩【易错点】忽略a =0情形;对称轴不确定分类讨论【思维点拨】二次函数f (x )=ax 2+bx +c (不妨设a >0)在区间[m ,n ]上的最大或最小值如下:(1)当2ba-∈[m ,n ],即对称轴在所给区间内时,f (x )的最小值在对称轴处取得,其最小值是2424b ac bf a a -⎛⎫-= ⎪⎝⎭;若2b a -≤m +n 2,f (x )的最大值为f (n );若2b a -≥m +n 2,f (x )的最大值为f (m ).(2)当2b a -∉[m ,n ],即给定的区间在对称轴的一侧时,f (x )在[m ,n ]上是单调函数.若2ba-<m ,f (x )在[m ,n ]上是增函数,f (x )的最小值是f (m ),最大值是f (n );若n <2ba-,f (x )在[m ,n ]上是减函数,f (x )的最小值是f (n ),最大值是f (m ).(3)当不能确定对称轴2ba-是否属于区间[m ,n ]时,则需分类讨论,以对称轴与区间的关系确定讨论的标准,然后转化为上述(1)(2)两种情形求最值. 题型四 函数图象的综合考查 例1 函数ln x xy x=的图象可能是( )【答案】B.【解析】法一 函ln x x y x =的图象过点(e ,1),排除C ,D ;函数ln x xy x=的图象过点(-e ,-1),排除A ,选B.法二 由已知,设ln x xy x=,定义域为{x |x ≠0}.则f (-x )=-f (x ),故函数f (x )为奇函数,排除A ,C ;当x >0时,f (x )=ln x 在(0,+∞)上为增函数,排除D ,故选B.【思维点拨】含对数函数的图象要考虑定义域,对于含对数函数的复合函数图象题,要注意判断复合后的奇偶性,进而分析图象对称性.例2 函数2()x xe ef x x --=的图像大致为 ( )【答案】B【解析】 由f (x )的奇偶性,排除A ;f (1)>0,排除D ;当x 趋近于正无穷大时,f (x )趋近于正无穷大,故选B. 【易错点】忽略正无穷大时的函数值【思维点拨】判断函数奇偶性→根据选项代入特殊值判断函数值正负→根据极限判断趋近值. 题型五 复合函数的简单性质 例1 设f (x )=lg 2()1a x+-是奇函数,则使f (x )<0的x 的取值范围是________. 【答案】(-1,0).【解析】由f (x )是奇函数可得a =-1,∴f (x )=lg11xx+-,定义域为(-1,1). 由f (x )<0,可得0<11xx+-<1,∴-1<x <0. 【易错点】奇偶性判断【思维点拨】含对数函数的复合函数如果为奇函数,代入-x 时真数部分与原真数部分互为倒数.可记住常见具有奇偶性的复合函数.常见奇函数:1()log 1ax f x x +=-或1log 1a xx-+;)()log af x x =或)log ax常见偶函数:()f x (如log a y x =)、2()f x (如21log 1ay x =+)例2 若函数22log ()y x ax a =---在区间(,1-∞上是增函数,求a 的取值范围.【答案】[22]-【解析】令2()u g x x ax a ==--,∵函数2log y u =-为减函数,∴在区间(,1-∞上递减,且满足0u >,∴12(10ag ⎧≥⎪⎨⎪≥⎩,解得22a -≤≤,所以,a的取值范围为[22]-.【易错点】对数型函数的定义域【思维点拨】利用复合函数同增异减的性质得出参数需满足的不等式组. 题型六 函数性质综合例1 设函数y =f (x )的图象与y =2x +a的图象关于直线y =-x 对称,且f (-2)+f (-4)=1,则a =( ) A .-1 B .1 C .2 D .4【答案】C.【解析】设(x ,y )是函数y =f (x )图象上任意一点,它关于直线y =-x 的对称点为(-y ,-x ),由y =f (x )的图象与y =2x+a的图象关于直线y =-x 对称,可知(-y ,-x )在y =2x+a的图象上,即-x =2-y +a,解得y =-log 2(-x )+a ,所以f (-2)+f (-4)=-log 22+a -log 24+a =1,解得a =2,选C. 【易错点】关于直线对称的函数求法例2 设函数f (x )是定义在R 上的偶函数,且对任意的x ∈R 恒有f (x +1)=f (x -1),已知当x ∈[0,1]时,f (x )=⎝⎛⎭⎫121-x ,则: ①2是函数f (x )的周期;②函数f (x )在(1,2)上递减,在(2,3)上递增; ③函数f (x )的最大值是1,最小值是0; ④当x ∈(3,4)时,f (x )=⎝⎛⎭⎫12x -3.其中所有正确命题的序号是________. 【答案】①②④【解析】由已知条件:f (x +2)=f (x ),则y =f (x )是以2为周期的周期函数,①正确;当-1≤x ≤0时,0≤-x ≤1,f (x )=f (-x )=⎝⎛⎭⎫121+x,函数y =f (x )的图象如图所示:2()u g x x ax a ==--当3<x <4时,-1<x -4<0,f (x )=f (x -4)=⎝⎛⎭⎫12x -3, 因此②④正确,③不正确.【思维点拨】研究函数性质时一般要借助于函数图象,体现了数形结合思想.【巩固训练】题型一 指数运算与对数运算1. 设函数211log ,1,()2,1,x x x f x x -+-<⎧=⎨≥⎩(2)则f (-2)+f (log 212)=( )A.3B.6C.9D.12【答案】C【解析】因为-2<1,log 212>log 28=3>1,所以f (-2)=1+log 2[2-(-2)]=1+log 24=3,f (log 212)=2log 212-1=2log 212×2-1=12×12=6,故f (-2)+f (log 212)=3+6=9,故选C.2. 化简:2lg 5+lg 2(lg 2+2lg 5)+(lg 2)2=________. 【答案】2.【解析】原式=2lg 5+(lg 2)2+2lg 2·lg 5+(1-lg 5)2=(lg 2)2+2lg 2·lg 5+(lg 5)2+1=(lg 2+lg 5)2+1=2. 3.已知2x =3,log 483=y ,则x +2y 的值为____________. 【答案】3.【解析】原式=2228log 3log log 833+==. 题型二 指对幂函数的图象与简单性质1. 函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14B.12 C .2 D .4 【答案】B【解析】f (x )=a x +log a (x +1)是单调递增(减)函数(原因是y =a x 与y =log a (x +1)的单调性相同),且在[0,1]上的最值分别在两端点处取得,最值和为f (0)+f (1)=a 0+log a 1+a +log a 2=a , ∴log a 2+1=0, ∴a =12.2.若a =⎝⎛⎭⎫23x,b =x 2,c =23log x ,则当x >1时,a ,b ,c 的大小关系是( ) A.c <a <b B.c <b <aC.a <b <cD.a <c <b【答案】A【解析】当x >1时,223220,1,log 0,33xa b x c x ⎛⎫<=<=>=< ⎪⎝⎭所以c <a <b .3. 当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A.(0,2B.,1)2C .(1,2)D .(2,2) 【答案】B【解析】由题意得,当0<a <1时,要使得4x <log a x 1(0)2x <≤,即当0<x ≤12时,函数y =4x 的图象在函数y=log a x 图象的下方.又当x =12时,124=2,即函数y =4x 的图象过点1(,2)2.把点1(,2)2代入函数y =log a x ,得a =22.若函数y =4x 的图象在函数y =log a x 图象的下方,则需22<a <1(如图所示).当a >1时,不符合题意,舍去.所以实数a的取值范围是2. 题型三 二次函数的图象与性质1.若10,2x ⎛⎤∈ ⎥⎝⎦时220x ax ++>恒成立,求实数a 的取值范围.【答案】9,.2⎛⎫-+∞ ⎪⎝⎭【解析】分离参数a ,可得2,a x x >--则当10,2x ⎛⎤∈ ⎥⎝⎦时,令()()221,10,f x x f x x x '=--=-+>所以f (x )在10,2x ⎛⎤∈ ⎥⎝⎦时单调递增,所以199()(),.222f x f a ≤=->-也可利用二次函数性质分类讨论.2.设二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,且f (m )≤f (0),则实数m 的取值范围是( ) A.(]-∞,0 B .[2,+∞) C .(-∞,0]∪[2,+∞) D .[0,2] 【答案】D【解析】二次函数f (x )=ax 2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x )=2a (x -1)<0,x ∈[0,1], 所以a >0,即函数的图象开口向上,又因为对称轴是直线x =1.所以f (0)=f (2),则当f (m )≤f (0)时,有0≤m ≤2. a >0也可利用f (x )=ax 2-2ax +c=a (x 2-2x )+c=a (x -1)2-a +c 在对称轴左边递减得到. 3.已知函数f (x )=x 2-2ax +5(a >1).(1)若f (x )的定义域和值域均是[1,a ],求实数a 的值;(2)若f (x )在区间(-∞,2]上是减函数,且对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4,求实数a 的取值范围.【答案】(1)a =2;(2)[2,3].【解析】(1)∵f (x )=(x -a )2+5-a 2(a >1), ∴f (x )在[1,a ]上是减函数. 又定义域和值域均为[1,a ]. ∴22125,(1)()1251,a a f a f a a a -+==⎧⎧⎨⎨=-+=⎩⎩即解得a =2. (2)∵f (x )在区间(-∞,2]上是减函数, ∴a ≥2.又x =a ∈[1,a +1],且(a +1)-a ≤a -1, ∴f (x )max =f (1)=6-2a ,f (x )min =f (a )=5-a 2. ∵对任意的x 1,x 2∈[1,a +1],总有|f (x 1)-f (x 2)|≤4, ∴f (x )max -f (x )min ≤4,得-1≤a ≤3. 又a ≥2,∴2≤a ≤3.故实数a 的取值范围是[2,3]. 题型四 函数图象的综合考查1.函数的图象大致是( )【答案】D4lg ||||x x y x=【解析】 从奇偶性可排除B ,且易知当x >1时,原函数大于0,排除A ,当x >0时,对函数3lg y x x =求导单调性可排除C.故选D.2.函数f (x )=ln ⎝⎛⎭⎫x -1x 的图象是( )【答案】B.【解析】自变量x 满足2110x x x x--=>,当x >0时,可得x >1,当x <0时,可得-1<x <0,即函数f (x )的定义域是(-1,0)∪(1,+∞),据此排除选项A 、D ;函数y =1x x -单调递增,故函数f (x )=ln(1x x-)在(-1,0),(1,+∞)上单调递增,故选B. 3.函数y =22x x e -在[-2,2]的图象大致为( )【答案】D.【解析】利用导数研究函数y =22xx e -在[0,2]上的图象,利用排除法求解.∵f (x )=22xx e -|,x ∈[-2,2]是偶函数, 又f (2)=8-e 2∈(0,1),故排除A ,B.设g (x )=22xx e -,则g ′(x )=4x -e x .又g ′(0)<0,g ′(2)>0,∴g (x )在(0,2)内至少存在一个极值点,∴f (x )=22xx e -在(0,2)内至少存在一个极值点,排除C.故选D. 题型五 复合函数的简单性质 1.已知函数()2log 1a xf x x-=+为奇函数,则实数a 的值为 . 【答案】1.【解析】由奇函数得:()()22+log =log 11a x a x f x f x x x -=---+-,,1=1a x x x a x--++,21a =,因为1a ≠-,所以1.a =2.若函数f (x )=log a (x 2-ax +5)(a >0,且a ≠1)满足对任意的x 1,x 2,当x 1<x 2≤a2时,f (x 2)-f (x 1)<0,则实数a的取值范围为________. 【答案】(1,25).【解析】 当x 1<x 2≤a 2时,f (x 2)-f (x 1)<0,即函数在区间(-∞,a 2]上为减函数,设g (x )=x 2-ax +5,则1()02a a g >⎧⎪⎨>⎪⎩,解得1<a <2 5.3.函数1421x x y +=++的值域为( )A .(0,+∞)B .(1,+∞)C .[1,+∞)D .(-∞,+∞)【答案】B【解析】令2x =t ,则函数1421x x y +=++可化为y =t 2+2t +1=(t +1)2(t >0).∵函数y =(t +1)2在(0,+∞)上递增,∴y >1. ∴所求值域为(1,+∞).故选B. 题型六 函数性质综合1.设方程21411log 0log 024x xx x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭与的根分别为x 1,x 2,则( )A .0<x 1x 2<1B .x 1x 2=1C .1<x 1x 2<2D .x 1x 2≥2【答案】A.【解析】方程21411log 0log 024x x x x ⎛⎫⎛⎫-=-= ⎪ ⎪⎝⎭⎝⎭与的根分别为x 1,x 2,所以1211log 2xx ⎛⎫= ⎪⎝⎭,21241log 4x x ⎛⎫= ⎪⎝⎭,可得x 2=12,令f (x )=21log 2xx ⎛⎫- ⎪⎝⎭,则f (2)f (1)<0,所以1<x 1<2,所以12<x 1x 2<1,即0<x 1x 2<1.故选A.11 2.若函数6,2,()(01)3log ,2a x x f x a a x x -+≤⎧=>≠⎨+>⎩且的值域是[4,+∞),求实数a 的取值范围. 【答案】(]1,2 【解析】当x ≤2时,f (x )=-x +6,f (x )在(-∞,2]上为减函数,∴f (x )∈[4,+∞).当x >2时,若a ∈(0,1),则f (x )=3+log a x 在(2,+∞)上为减函数,f (x )∈(-∞,3+log a 2),显然不满足题意,∴a >1,此时f (x )在(2,+∞)上为增函数,f (x )∈(3+log a 2,+∞),由题意可知(3+log a 2,+∞)⊆[4,+∞),则3+log a 2≥4,即log a 2≥1,∴1<a ≤2.3.已知定义域为R 的函数12()2x x b f x a+-+=+是奇函数. (1)求a ,b 的值;(2)若对任意的t ∈R ,不等式f (t 2-2t )+f (2t 2-k )<0恒成立,求k 的取值范围.【答案】(1)a =2,b =1;(2)1,3⎛⎫-∞- ⎪⎝⎭. 【解析】(1)因为f (x )是R 上的奇函数,所以f (0)=0,即-1+b 2+a=0,解得b =1. 从而有121()2x x f x a +-+=+.又由f (1)=-f (-1)知-2+14+a =--12+11+a ,解得a =2. (2)由(1)知f (x )=-2x +12x +1+2=-12+12x +1, 由上式易知f (x )在R 上为减函数,又因为f (x )是奇函数,从而不等式f (t 2-2t )+f (2t 2-k )<0等价于f (t 2-2t )<-f (2t 2-k )=f (-2t 2+k ).因为f (x )是R 上的减函数,由上式推得t 2-2t >-2t 2+k .即对一切t ∈R 有3t 2-2t -k >0,从而Δ=4+12k <0,解得k <-13.。

相关文档
最新文档