生物化学第十四章 基因表达调控
生物化学第十四章物质代谢调节

难点:
酶的诱导和阻遏的调节机制
第一节 物质代谢的调节类型特点
一. 神经系统的调节作用
在中区神经的控制下,通过神经递质对效应器发生 直接影响;或者改变某些激素的分泌,再通过各种激 素的相互协调,对整个代谢进行综合调 节。
特点:
短而快 具整体性 直接调 节代谢的作用 多数通过激素发挥作用
二. 激素水平的调节
第五节细胞水平的诱导与阻遏调节机制
一、构成酶与适应酶
根据酶的合成对环境影响的反应不同:
1.构成酶/组成酶
2.适应酶 诱导酶 阻遏酶
二、酶合成的诱导机制---乳糖操纵子
(一)阻遏蛋白的负调控
1. 关闭(无乳糖)
调节基因 操纵 启动子 基因 lacZ lacY
lacA
mRNA
蛋白质 阻遏蛋白 (有活性) Z: -半乳糖苷酶 Y: -半乳糖苷透过酶
通过改变生物体细胞代谢物的浓度,也可以改变某些 酶的活性或含量从而影响代谢反应的速度。
具组织特异性和效应特异性 缓慢而持久 特点: 局部性调 节部分代谢 由神经系统控制分泌
三. 细胞水平的调节
通过代谢物的浓度的改变,来调 节某些酶促反应的速度。 又称酶水平的调节 酶的活性 特点: 酶的数量
细胞水平的调节类型:
3.沉寂子(silencer)
最早在酵母中发现,以后在T淋巴细胞的T抗原受体基因的 转录和重排中证实沉寂子的作用的存在。 作用特点: 负调控顺式元件 可不受序列方向的影响 距离发挥作用 并可对异源基因的表达起作用
如: UAS(upstream acticity sequence) CAATbox(-70~-80) GC BOX(-80~-110)
(放大效应)
激素与受体结合 激活腺苷酸环化酶
基因表达调控中的信号通路

基因表达调控中的信号通路每个生物体都由无数个细胞组成,而每个细胞内部又有无数个基因,这些基因掌控着细胞内发生的各种生物化学反应和分子互作。
基因转录和翻译的过程中,需要很多调节机制帮助维持基因表达的稳定和变化。
在这个过程中,信号通路就发挥着重要作用。
信号通路是指一组相互连接的分子,它们在细胞内传递信息,调节细胞的生理功能。
信号通路是非常复杂的,通常包括信号分子、受体、信号传导分子、效应器等多个部分。
在基因表达调控中,信号通路可以通过多种方式介导表达的调节,包括调节转录因子的活性、影响DNA的甲基化和组蛋白修饰状态等等。
一个典型的信号通路可以描述成以下几个步骤:第一步是外部信号的识别和递送,这个过程通常会涉及到一种或多种受体。
当受体受到信号刺激后,会引发一系列的反应,从而产生信号分子。
第二步是信号分子的传递和转导,信号分子凭借着其结构和化学性质,会与一系列信号传导分子进行互动。
这个过程通常会涉及到多个转导级别,而且这些级别可能会有不同的控制点,以调节信号的传递和转导。
最后一步是信号的终点反应,也是信号通路介导的基因表达调控的最终效应。
在基因表达调控中,信号通路可以通过多种方式作用于转录因子。
转录因子是一类可以结合到DNA上,调节基因表达的蛋白质分子。
信号通路可以直接活化或抑制转录因子的活性,从而对基因表达产生影响。
在这个过程中,不同的信号通路可能会介导不同的转录因子,这使得基因表达调节更加复杂和灵活。
DNA的甲基化和组蛋白修饰是基因表达调控中另外一个重要的调节机制。
甲基化是指将一个甲基基团添加到DNA的胞嘧啶环的过程。
组蛋白修饰是指通过添加化学基团到组蛋白侧链的方式来调节基因表达。
信号通路可以通过影响DNA的甲基化和组蛋白修饰状态间接地调节基因表达。
比如,信号通路可能影响组蛋白乙酰化修饰,从而对基因的表达产生影响。
另外,信号通路还可以介导转录因子的活性状态,从而影响DNA甲基化和组蛋白修饰状态。
总而言之,信号通路在基因表达调控中发挥着重要作用。
遗传学15第十四章基因表达的调控

赖
S
DNA
GTA CAT
mRNA密码子
GUA
氨基酸
缬
基因的微细结构
互补作用与互补测验(顺反测验)
假定有两个独立起源的隐性突变如a1与a2,它们具有类似的表型,如何判断它们是属于同一个基因的突变,还是分别属于两个基因的突变?即如何测知它们是等位基因?
需要建立一个双突变杂合二倍体,测定这两个突变间有无互补作用
PART 01
点击此处添加正文,文字是您思想的提炼。
基因的微细结构与性质
位置效应 遗传的最小结构单位 遗传的最小功能单位
(一)、位置效应
位置效应及意义: 基因在染色体上位置不同,对性状表现的作用(程度)也可能不同 染色体并非基因的简单容纳器,基因在染色体上的位置也对其功能具有重要影响 “念珠理论”的第一点(基因与染色体的关系)得到了发展 “念珠理论”的另一个内容是基因的结构不可分性(最小遗传结构单位)。不可分性最早遇到的挫折也是来自对果蝇的研究
根据基因的原初功能可以将基因分为:
(二)、基因的功能类型
根据基因的原初功能可以将基因分为: 1. 编码蛋白质的基因,即有翻译产物的基因 如结构蛋白、酶等结构基因和产生调节蛋白的调节基因 2. 没有翻译产物,不产生蛋白质的基因 转录产物RNA不翻译,如编码tRNA、rRNA 3. 不转录的DNA区段 如启动基因、操纵基因。启动基因是转录时RNA多聚酶与DNA结合的部位。操纵基因是阻遏蛋白、激活蛋白与DNA结合的部位
基因是遗传学中最基本的概念,然而基因的概念不是一成不变的,请概括地叙述对基因认识的演变过程,以及目前对基因本质的看法.
1866年,孟德尔在他的豌豆杂交试验中首次提出了遗传性状是由遗传因子控制.
普通遗传学第十四章 基因表达的调控

第一节 原核生物的基因调控
一、转录水平的调控
→原核生物基因表达的调控主要发生在 转录水平。
→当需要某一特定基因产物时,合成这 种mRNA。当不需要这种产物时, mRNA转录受到抑制。
1、乳糖操纵元模型
大肠杆菌的乳糖降解代谢途径: Monod等发现,当大肠杆菌生长在含有乳 糖的培养基上时,乳糖代谢酶浓度急剧增 加;当培养基中没有乳糖时,乳糖代谢酶 基因不表达,乳糖代谢酶合成停止。 为此,Jacob和Monod(1961)提出了乳糖 操纵元模型,用来阐述乳糖代谢中基因表 达的调控机制
转录效率更高
→在有葡萄糖存在时,不能形成cAmp, 也就没有操纵元的正调控因子cAmp-CAP 复合物,因此基因不表达。
乳糖操纵元的正调控
2、色氨酸操纵元
大肠杆菌色氨酸操纵元是合成代谢途径中 基因调控的典型例子。
◆trp操纵元由5个结构基因trpE、trpD、trpC、
trpB和trpA组成一个多顺反子的基因簇。 5′端是启动子、操纵子、前导顺序(trpL)和 衰减子(attenuator)。
❖ 负调控:存在细胞中的阻遏物阻止转录过程的 调控。
❖ 正调控:调节蛋白和DNA以及RNA聚合酶相 互作用来帮助起始。诱导物通常与另一蛋白质结 合形成一种激活子复合物,与基因启动子DNA序 列结合,激活基因起始转录。
原核生物中基因表达以负调控为主, 真核生物中 则主要是正调控机制。
图 14-1 正调控和负调控
2、反义RNA调控
反义RNA可与目的基因的5’UTR( untranslated region )互补配对,配对的区域 通常也包括启动子的SD序列,使mRNA不能与 核糖体有效结合,从而阻止蛋白质的合成。
反义RNA基因已被导入真核细胞,控制真核生 物基因表达。例如,将乙烯形成酶基因的反义 RNA导入蕃茄,大大延长了蕃茄常温贮藏期。
生物化学中的基因表达调控

生物化学中的基因表达调控生物体内的基因表达调控是一项关键的生物化学过程,它决定了基因的表达水平和基因产物的功能。
这个调控系统以多种复杂的方式调节基因的表达,以适应细胞内和细胞外环境的变化。
本文将介绍基因表达调控的机制和其在生物化学中的重要性。
一、基因表达调控的概述基因表达调控是指细胞如何决定在何时、何地和何种程度上表达特定基因的过程。
这种调控是细胞内复杂网络的结果,涉及到DNA序列、蛋白质因子和其他细胞组分的相互作用。
二、转录调控在基因表达的第一步中,DNA序列被转录成RNA,这一过程称为转录。
转录调控是一种主要的基因表达调控机制,通过控制转录的起始和终止来调节基因的表达水平。
这种调控包括DNA序列中的启动子区域和转录因子的相互作用。
三、转录后调控转录后调控是指在转录结束后,通过调节RNA的处理、稳定性和翻译效率来调控基因表达。
这种调控包括RNA修饰、剪接和降解等过程。
转录后调控对于基因调控的精确性和适应性具有重要作用。
四、表观遗传调控表观遗传调控是指通过改变染色质结构和DNA甲基化状态来调控基因表达。
这种调控是长期稳定的,可以由环境因素和遗传变异所影响。
表观遗传调控在细胞分化、发育和疾病发生中起着重要的作用。
五、信号传导调控细胞内外的信号分子可以通过信号传导通路直接或间接地调节基因的表达。
这种调控机制可以迅速地响应环境变化,调节基因表达以满足细胞的需要。
信号传导调控在细胞生命活动中起着非常关键的作用。
六、miRNA调控miRNA是一类小分子RNA,通过与靶基因的mRNA结合来抑制其翻译或降解,从而调节基因表达。
miRNA调控是一种重要的基因表达调控机制,参与细胞增殖、分化和生理病理过程。
七、基因表达调控的重要性基因表达调控在生物化学中具有重要的意义。
它使细胞能够对环境变化做出适应性反应,并在细胞生命周期的不同阶段保持基因表达的稳定性和精确性。
基因表达调控的异常可能导致疾病的发生和发展。
总结:基因表达调控在生物化学中是一个复杂而重要的过程。
生物化学 5-基因表达调控

个基因或一些功能相近的基因表达(生物体内基因表达)的开启、
关闭和表达强度的直接调节。
它是生物在长期进化过程中逐渐形成的精确而灵敏的生存 能力和应变能力,是生物赖以生存的根本之一。
二、基因表达的方式
(一)组成性表达(constitutive gene expression)
指不大受环境变动而变化的一类基因表达。其中某些基因表 达产物是细胞或生物体整个生命过程中都持续需要而必不可少的, 这类基因可称为管家基因(housekeeping gene),这些基因中不少
性。
• 当有葡萄糖存在时, cAMP浓度较低, cAMP与CAP 结合受阻,lac操纵子表达下降。
(4)协调调节
Lac阻遏蛋白负性调节与cAMP正性调节两种机制协调合作 • 无乳糖,无诱导物时,转录作用被I表达的阻遏蛋白所阻断。 • 有诱导物时,诱导物与阻遏蛋白结合,使其变构,从操纵基
因上解离出来。
调节基因
β -半乳糖苷酶
2、阻遏蛋白 的负性调节
没有乳糖存在时,lac操纵子处于阻
遏状态。I序列表达的lac阻遏蛋白与
O序列结合,阻碍RNA聚合酶与P序 列结合,抑制转录启动。
有乳糖存在时,lac 操纵子可被诱导。
别乳糖作为诱导剂分子结合阻遏 蛋白,使蛋白构象变化,导致阻 遏蛋白与O序列解离,发生转录
基因产物特异识别、结 合其它基因的调节序列, 调节其它基因的开启或
关闭称为反式调节
基因产物特异识别、 结合自身基因的调 节序列,调节自身 基因的开启或关闭 称为顺式调节
DNA
a
A A
反式调节
b
mRNA
蛋白质A
C
c
DNA
mRNA
顺式调节
生物化学》ppt课件14

(一)病毒癌基因(virus oncogene,v-onc)
1. 病毒癌基因是存在于病毒基因组中的癌基因,它 不编码病毒的结构成分,对病毒复制也没有作用, 但可以使细胞持续增殖。
2.病毒基因组结构
长末端 重复序列
正常的病毒基因
癌基因
LTR gag
pol
env src LTR
调节和 产生病毒 产生逆转录 产生病毒 产生酪氨酸 启动转录 核心蛋白 酶和整合酶 外膜蛋白 激酶
白 因 子 , 决 定 三 种 RNA(mRNA 、 tRNA 及 rRNA)转录的类别。
2.特异转录因子(special transcription factors) 为个别基因转录所必需,决定该基因的时
间、空间特异性表达。
转录激活因子
分为
转录抑制因子
(三)反式作用因子的结构
TF
DNA结合域 酸性激活域
(三) 癌基因的分类与功能
根据表达产物在细胞中的定位和功能分为:
1.蛋白激酶类 2.信息传递蛋白类 3.生长因子类 4.核内转录因子类
跨膜生长因子受体 膜结合的酪氨酸蛋白激酶 可溶性酪氨酸蛋白激酶 胞浆丝氨酸/苏氨酸蛋白激酶 非蛋白激酶受体
二、抑癌基因
(一)什么是抑癌基因?
抑癌基因又称肿瘤抑制基因(tumor suppressor gene)或抗癌基因(anti-oncogene),是指存在于正常细 胞内的一大类可抑制细胞生长并具有潜在抑癌作用的 基因。
第一节 基因表达调控的 概念和原理
(Concept and principle: Regulation of Gene Expression)
一、基因表达调控的概念
(一)基因表达(gene expression) 是指基因经过
《原核生物基因表达调控》练习题及答案

《原核生物基因表达调控》练习题及答案一、名词解释1.基因表达调控答案:所有生物的信息,都是以基因的形式储存在细胞内的DNA(或RNA)分子中,随着个体的发育,DNA分子能有序地将其所承载的遗传信息,通过密码子-反密码子系统,转变成蛋白质或功能RNA分子,执行各种生理生物化学功能。
这个从DNA到蛋白质或功能RNA的过程被称之为基因表达,对这个过程的调节称之为基因表达调控。
2.组成性基因表达答案:是指在个体发育的任一阶段都能在大多数细胞中持续进行的基因表达。
其基因表达产物通常是对生命过程必须的或必不可少的,一般只受启动序列或启动子与RNA聚合酶相互作用的影响,且较少受环境因素的影响及其他机制调节,也称为基本的基因表达。
3.管家基因答案:某些基因产物对生命全过程都是必须的获必不可少的。
这类基因在一个生物个体的几乎所有细胞中均表达,被称为管家基因。
4.诱导表达答案:是指在特定环境因素刺激下,基因被激活,从而使基因的表达产物增加。
5.阻遏表达答案:是指在特定环境因素刺激下,基因被抑制,从而使基因的表达产物减少。
6.反式作用因子答案:又称为分子间作用因子,指一些与基因表达调控有关的蛋白质因子。
它们由某一基因表达后通过与特异的顺式作用元件相互作用,反式激活另一基因的转录。
7.操纵子答案:是指原核生物中由一个或多个相关基因以及转录翻译调控元件组成的基因表达单元。
8.SD序列答案:存在于原核生物起始密码子AUG上游7~12个核苷酸处的一种4~7个核苷酸的保守片段,它与16S rRNA 3’端反向互补,所以可将mRNA的AUG起始密码子置于核糖体的适当位置以便起始翻译作用。
根据首次识别其功能意义的科学家命名。
9.阻遏蛋白答案:是一类在转录水平对基因表达产生负控作用的蛋白质,在一定条件下与DNA结合,一般具有诱导和阻遏两种类型。
在诱导类型中,信号分子(诱导物)使阻遏蛋白从DNA释放下来;在阻遏类型中,信号分子使阻遏蛋白结合DNA,不管是哪一种情况,只要阻遏蛋白与DNA结合,基因的转录均将被抑制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
原核基因转录的调节
Regulation of Prokaryotic Gene Transcription
一、乳糖操纵子调节机制
(一)乳糖操纵子(lac operon)的结构
调控区
结构基因
DNA
P OZ YA
操纵序列 启动序列 CAP结合位点
Z: β-半乳糖苷酶 Y: 透性酶 A:乙酰基转移酶
(二)阻遏蛋白的负性调节
阻遏基因
DNA
I
pPol O Z Y A
mRNA 阻遏蛋白
没有乳糖存在时
DNA
这种调节作用称为反式作用。
还有蛋白质因子可特异识别、结合自 身基因的调节序列,调节自身基因的表达, 称顺式作用。
DNA
mRNA 蛋白质A
C
a
A c
顺式调节
C
反式调节
A
B
DNA mRNA 蛋白质C
2. DNA - 蛋白质 的相互作用 蛋白质-蛋白质
指的是反式作用因子与顺式作用元件之 间的特异识别及结合。通常是非共价结合, 被识别的DNA结合位点通常呈对称、或不完 全对称结构。
DNA B
转录起始点
A
编码序列
不同真核生物的顺式作用元件中也会发现 一些共有序列 ,如TATA盒、CAAT盒等,这 些共有序列是RNA聚合酶或特异转录因子的 结合位点。
2) 真核基因的调节蛋白
反式作用因子(trans-acting factor)
由某一基因表达产生的蛋白质因子, 通过与另一基因的特异的顺式作用元件相 互作用,调节其表达。
A
tRNATyr TTTACA N16 TATGAT N7
A
lac
TTTACA N17 TATGTT N6
A
recA TTGATA N16 TATAAT N7
A
Ara BAD CTGACG N16 TACTGT N6
A
TTGACA
TATAAT 共有序列
共有序列(consensus sequence) 决定启动 序列的转录活性大小。
四、基因表达调控的生物学意义
(一)适应环境、维持生长和增殖 (二)维持个体发育与分化
五、基因表达调控的基本原理
(一)基因表达的多级调控
基因 激活
转录起始 转录后加工 mRNA降解
蛋白质翻译 翻译后加工修饰 蛋白质降解等
(二)基因转录激活调节
基因表达的调节与基因的结构、性 质,生物个体或细胞所处的内、外环境, 以及细胞内所存在的转录调节蛋白有关。
(一)时间特异性
按功能需要,某一特定基因的表达严格按 特定的时间顺序发生,称之为基因表达的时间 特异性(temporal specificity)。
多细胞生物基因表达的时间特异性又称阶 段特异性(stage specificity)。
目录
(二)空间特异性
在个体生长全过程,某种基因产物在个体 按不同组织空间顺序出现,称之为基因表达的 空间特异性(spatial specificity)。
绝大多数调节蛋白质结合DNA前,需通 过蛋白质-蛋白质相互作用,形成二聚体 (dimer)或多聚体(polymer)。
3. RNA聚合酶
⑴ 原核启动序列/真核启动子与RNA聚合酶 活性
RNA聚合酶与其的亲和力,影响转录。
⑵ 调节蛋白与RNA聚合酶活性
一些特异调节蛋白在适当环境信号刺激下表 达,然后通过DNA-蛋白质、蛋白质-蛋白质相互 作用影响RNA聚合酶活性。
基因表达伴随时间顺序所表现出的这种分 布差异,实际上是由细胞在器官的分布决定的, 所以空间特异性又称细胞或组织特异性(cell or tissue specificity)。
目录
三、基因表达的方式
按对刺激的反应性,基因表达的方式分为:
(一)组成性表达
某些基因在一个个体的几乎所有细胞中持 续表达。通常该基因被称为管家基因 (housekeeping gene)。
可诱导基因在特定环境中表达增强的过程, 称为诱导(induction)。
如果基因对环境信号应答是被抑制,这种 基因是可阻遏基因。可阻遏基因表达产物水平 降低的过程称为阻遏(repression)。
在一定机制控制下,功能上相关的一组基因, 无论其为何种表达方式,均需协调一致、共同表 达,即为协调表达(coordinate expression),这种 调节称为协调调节(coordinate regulation)。
1. 特异DNA序列和调节蛋白质
原核生物
—— 操纵子(operon)
启动序列 (promoter)
编码序列
其他调节序列
蛋白质因子
操纵序列 (operator)
特异DNA序列
1) 启动序列
-35区
trp
TTGACA
是RNA聚合酶结合并启动转录 的特异DNA序列。
-10区
RNA转录起始
N17 TTAACT N7
3) 其他调节序列、调节蛋白
例如: 激活蛋白(activator)可结合启动序列邻近 的DNA序列,促进RNA聚合酶与启动序列的 结合,增强RNA聚合酶活性。
有些基因在没有激活蛋白存在时,RNA 聚合酶很少或完全不能结合启动序列。
真核生物
1) 顺式作用元件(cis-acting element) ——可影响自身基因表达活性的DNA序列。
无论表达水平高低,管家基因较少受环境 因素影响,而是在个体各个生长阶段的大多数 或几乎全部组织中持续表达,或变化很小。区 别于其他基因,这类基因表达被视为组成性基 因表达(constitutive gene expression)。
(二)诱导和阻遏表达
在特定环境信号刺激下,相应的基因被激 活,基因表达产物增加,这种基因称为可诱导 基因。
第十四章 基因表达调控
(Regulation of Gene Expression)
目录
一、基因表达的概念
* 基因组(genome)
一个细胞或病毒所携带的全部遗传信息或 整套基因。
* 基因表达(gene expression)
基因经过转录、翻译,产生具有特异生物学 功能的蛋白质分子的过程。
目录
二、基因表达的特异性
某些特异因子(蛋白质)决定RNA聚合 酶对一个或一套启动序列的特异性识别和结 合能力。
2 操纵序列 ——阻遏蛋白Fra bibliotekrepressor)的结合位点。
当操纵序列结合有阻遏蛋白时,会阻碍 RNA 聚 合 酶 与 启 动 序 列 的 结 合 , 或 是 RNA 聚 合酶不能沿DNA向前移动 ,阻碍转录。
启动po序l 列 操阻纵遏序蛋白列 编码序列