烧结余热能量回收驱动技术

合集下载

浅谈提高烧结余热发电量的技术创新与工艺优化

浅谈提高烧结余热发电量的技术创新与工艺优化

浅谈提高烧结余热发电量的技术创新与工艺优化随着我国能源结构的多元化发展,煤炭作为主要的能源资源仍在我国能源结构中占有重要地位。

而煤炭燃烧产生的废热余热一直以来被认为是一种资源的浪费,而利用余热进行发电则成为提高能源利用效率和减少环境污染的重要途径。

烧结余热发电是指利用烧结炉的余热进行发电,是一种节能环保技术,可以有效提高烧结炉能源的利用率,同时也可以减少大气中的二氧化碳排放,对于节能减排有着积极的意义。

在这种背景下,研发和应用烧结余热发电技术成为了当前烧结生产中的重要课题。

烧结是炼铁生产过程中的重要环节,其主要目的是将粉末状矿石和配料块料加热到一定温度,使自然发生的化学反应使颗粒之间焦结为某种粘结合物,以及焦炭和矿石颗粒之间焦化和还原反应得以发展,形成一种多孔的块状烧结矿。

在烧结过程中,往往会产生大量的余热,其中蕴含着丰富的能量。

烧结矿石有机械性强、耐高温、导电率低、热传导率低等特点,通过合理的设计和运用一些先进的设备和工艺,可以更好的收集和利用烧结机的余热,从而实现烧结余热发电,具体的技术创新和工艺优化可以从以下几个方面来做。

一、余热回收与利用技术的创新1. 烧结热能回收技术通过在烧结机排烟系统中设置余热回收装置,可以将热风炉产生的高温烟气回收,利用余热进行热水或蒸汽的生产,满足企业生产和生活的热能需求,同时也可以用于发电。

通过余热回收装置,可以将排放的废气中的热能回收利用,极大的提高能源的利用效率。

2. 蓄热式余热发电技术蓄热式余热发电技术是一种新型的余热发电技术,通过蓄热设备蓄存热能,再利用蓄热设备释放热能,驱动发电机组发电。

这种技术不仅可以提高余热的利用效率,还可以实现对燃料的有效利用,降低企业的能源消耗。

3. 余热发电系统的优化设计在余热发电系统的设计中,应当从热源的选择、传热系统、蓄热设备、发电机组等方面进行综合优化设计,确保整个系统的稳定高效运行。

还需要根据工艺流程的特点,合理确定余热发电系统的工作参数,以最大化地提高系统的能量转换效率。

烧结机余热发电技术的详解

烧结机余热发电技术的详解

烧结机余热发电技术一.概述余热发电是利用强制循环余热锅炉回收废气余热,生产中压饱和蒸汽,配套饱和蒸汽汽轮机组,发电机组抽汽供热,实现供热、电联产,最大限度提高余热蒸汽利用效率。

而对于烧结机余热发电来说是通过钢厂烧结机所产生的冶炼烟气余热强制循环余热锅炉回收利用,生产中压饱和蒸汽,配套饱和蒸汽轮机组,抽取供热发电。

通过对烧结机烟气的回收利用,一方面减少了对大气环境的污染(主要是二氧化碳,一氧化碳),另一方面,从某种程度上也节约了生产成本。

其所产生的蒸汽可进行对外供热,电联产,节省了企业的生产成本,也迎合当今社会节能减排的主题。

二.工艺原理1.烟气循环:烧结机所产生的烟气分为高低烟温段,共同进入余热锅炉烟道口,并且通过高功率循环风机强制其烟气循环,加热其中低压汽包,产生蒸汽。

当高低段烟道阀门打开时,烟气就进入锅炉烟道口,同时1#,2#烟囱也随之关闭,旁路烟关闭,补冷风口根据烟气温度自行调节其开度。

1#和2#环冷机的出口电动阀打开,循环风机的风流将进入环冷机内,代替环冷风机的风流,使得烧结工序能正常运行。

在此工序中循环风机是主体,因此循环风机的效率直接影响到烧结和锅炉蒸汽产生的效率,进一步影响发电效率。

2.中压水循环:中压锅筒给水是来自汽机房凝结水经过低压除氧器处理后,由中压给水泵打入中压锅筒。

中压给水调节中最为重要的是给水三冲量调节,其调节方式是通过汽包水位,给水流量,主蒸汽流量。

给水三冲量调节中,给水流量的准确度直接影响到调节的准确和稳定度。

因此要进行三冲量的调节,给水流量和蒸汽流量以及水位的校验非常重要。

当主蒸汽温度达到一定值(主要由进入汽机的蒸汽温度决定)时,需要打开减温水调节阀来冷却中压减温汽,降低蒸汽温度,符合进入汽机蒸汽温度的要求。

3.低压水循环:低压汽包给水是来自汽机房凝结水经过除氧器处理后进入低压汽包。

对于低压汽包给水调节可以进行两冲量或单冲量调节,其具体调节方式可以根据现场情况而定。

烧结余热回收技术及生产对策-

烧结余热回收技术及生产对策-

・12・炼铁技术通讯2006年第7期烧结余热回收技术及生产对策李玉红赵国顺(唐钢炼铁厂摘要:介绍了唐钢烧结余热设备情况,余热回收蒸汽的利用情况,如何处理余热、混合料水分、烧结机三者之间的相互关系,从而保证生产的稳定,产量质量的提高。

关键词:烧结余热利用蒸汽预热混合料1前言烧结过程中的能源消耗占钢铁企业总能耗的10%左右,在可供利用的余热中仅环冷机废气及烧结烟气的显热约占烧结全部热支出的30%以上,如不加以利用,则会造成较大的能源浪费,充分回收利用这些烧结余热,是烧结节能的重要途径及发展趋势。

烧结生产中,从煤气点火开始,烧结机上的混合料中的焦粉在抽风的作用下开始燃烧,放出热量。

焦粉周围的物料形成熔融液相而互相粘结在一起形成烧结矿。

随着空气不断通过料层进入烟道,烧结矿中碳燃烧的部分热量亦被带入烟道,烟道中的废气温度大约在60~450℃。

2回收环冷余热生产蒸汽环冷机冷却废气第一段温度在300~500℃,温度较高,我厂环冷机废气用作余热锅炉热源,主要使用第一段冷却废气,废气温度一般在300~500℃,采用开路循环流程,即送入废气经余热锅炉热交换后再排放。

采用余热锅炉回收冷却废气,热效率高。

我厂的265m2烧结机,采用一台280m2的环冷机冷却烧结矿,安装了一台余热锅炉,设计进气温度350℃,风量214000m3/h、回收热量139MJ/t烧结矿,余热锅炉产生蒸汽约16t/h。

3余热锅炉的设备情况我厂采用的翅片管式蒸汽发生系统是为冶金烧结厂专门回收冷却机废气余热而设计的。

该系统由蒸发器、水预热器、过热器、汽包及各种连接管路组成。

其中,蒸发器受热面均采用高频焊接翅片管,达到强化传热的目的,因而整套装置传热效率高,工作安全稳定,寿命长,设备结构紧凑。

利用余热所产生蒸汽加热混合料,提高料温,从而达到提高烧结矿产量质量的目的;另外用做烧结区域冬季取暖的热源,从而达到节约燃料降低取暖费用的目的。

翅片管式蒸汽发生器是使热空气通过管壁传导,将热量直接传送给饱和水进行换热,因而传热效果好。

烧结厂余热利用技术简介

烧结厂余热利用技术简介

烧结厂余热利用技术简介1. 引言烧结是一种将粉煤灰、石灰石或其它成分相似的原料通过加热使之部分熔化,然后回结固化成块状的冶金过程。

这个过程产生的高温烟气和废热在烧结厂通常都被排放到大气中。

然而,随着对能源资源的需求和环境保护意识的增强,如何有效利用烧结厂的余热已成为研究和开发的重点。

本文将简要介绍几种常见的烧结厂余热利用技术,并分析其优点和局限性。

2. 烧结厂余热利用技术2.1 热交换器技术热交换器技术是一种常见的烧结厂余热利用技术。

热交换器可以将高温烟气中的热能传递给废水、蒸汽或其他介质,以实现能量的回收和利用。

热交换器通常包括换热管道和换热器设备。

热交换器技术的优点在于可以提供连续的热能供应,并减少对外部能源的需求。

然而,此技术的局限性在于热交换器设备的成本较高,维护困难,并且对脏污、腐蚀性介质敏感。

2.2 ORC技术ORC技术(有机朗肯循环)是一种将烧结厂余热转化为电力的技术。

ORC系统通过将高温烟气中的热能转移到有机工质中,然后通过有机工质的蒸汽驱动涡轮发电机产生电力。

与传统蒸汽发电系统相比,ORC技术可以在较低的温度下工作,提高了热能转化的效率。

此外,ORC技术还可以通过调整有机工质的选用来适应不同温度下的余热利用。

然而,该技术需要较高的初投资成本,并且对有机工质的选择和运行维护要求较高。

2.3 废热蒸汽利用技术废热蒸汽利用技术是一种将烧结厂余热转化为蒸汽以供其他生产过程使用的技术。

在烧结厂中,产生的高温烟气可以通过余热锅炉将废热转化为蒸汽,然后再将蒸汽输送到其他工序中进行能量回收。

废热蒸汽利用技术可以减少对外部能源的需求,并提高能源利用效率。

然而,该技术的缺点在于需要较大的设备投资,且对蒸汽管道的要求较高。

3. 总结烧结厂余热利用技术是一种重要的能源回收利用手段,可以减少环境污染,降低能源消耗,提高能源利用效率。

本文介绍了几种常见的烧结厂余热利用技术,并分析了它们的优点和局限性。

无论是热交换器技术、ORC技术还是废热蒸汽利用技术,都需要根据具体的烧结厂情况和需求来选择和应用。

烧结工艺余热回收利用技术研究

烧结工艺余热回收利用技术研究

.48·有色冶金节能口环保与综合利用却,主抽烟道的废气温度逐渐升高。

烧结工艺烧结结机2008年11月21日运行工况)。

过程及废气温度如图1、图2(图2为安钢400m2烧图2烧结主抽烟道废气温度图1烧结工艺简图根据生产运行工况的不同,烟道中的各节风箱的温度也有变化,16。

一22。

风箱的温度变化范围可达到100℃,主抽风箱内的负压为一8一一17kPa,废气温度为120~160℃。

在这部分废气中,就目前的技术而言可回收利用余热资源为主抽风箱末尾18。

~22。

几节风箱的废气,废气温度范围为300—500℃,余热烟气量约为25万m3/h。

针对此部分余热资源的回收,有两种方式可以借鉴:一是采用热管技术,将热管换热器置于烧结主抽尾部烟道区域,由于受到技术和空间的限制,此技术对烧结主抽尾部烟气的热量利用不彻底,同时高密度布置热管阻力大,会减少主抽风量,进而影响烧结工艺的生产;二是设置余热锅炉,将烧结主抽尾部烟气引出来,通过余热锅炉换热后再送回主抽烟道,此技术可确保烧结主抽尾部烟道压力及风量,不影响烧结生产过程,同时相对于热管技术而言,此技术对烧结主抽尾部烟气的余热资源利用更彻底。

考虑到烧结主抽烟气中含硫,为确保余热锅炉、主抽烟道及后续除尘设施的安全运行,根据某公司当前的生产工艺运行要求,若余热锅炉的排烟温度太低,将使主抽烟道温度降低达不到后续生产要求,余热锅炉的排烟温度选取应不低于180℃,并将此废气排入主抽烟道内,以提高主抽烟道内烟气温度,确保其高于算露点温度以上。

烧结主抽尾部烟道余热回收原理见图3。

图3烧结主抽尾部烟道余热回收1.2烧结环冷机部分余热回收当前我国冷却烧结矿的设备有环冷机和带冷机两种,在运行的原理上两者基本一致,区别只是环形运行和直线运行。

以安钢烧结环冷机为例生产工艺如图4。

烧结矿料从烧结机下到环冷机台车上,烧结矿料的温度可达到500~800℃,经鼓风机逐步冷却至120℃以下,再经传送带送往高炉。

烧结主排烟气减排与余热高效回收技术

烧结主排烟气减排与余热高效回收技术
摘 要 详 细阐述 了世界上主要应用的烧结 主排烟气 减排与余 热高效 回收的工业化方案 及效 烧结主排烟气 减排 余热 回收
果 ,并对 国内烧结主排烟气减排与余热 高效 回收提 出了建议 。 关键词
Te h l g e f e s i n r d to nd f ce twa t e tr c v r c no o is o miso e uc i n a e i in seh a e o e y
得 了 良好 的效果 。
烧结 主排烟气 和冷却 机废 气都 属 于中 、低 温
热 源 。 烧 结 主 排 烟 气 平 均 温 度 一 般 不 超 过 l0 ,其 中机 尾风 箱 排 出 的 烟气 温 度 为 30~ 5℃ 0
收 稿 日期 : 1 —0 2 2 1 4— 7 0 毛艳丽( 98一 ) 工程师 ;10 9 辽宁省鞍山市 16 , 14 0
19 94年此技术 于荷兰 克鲁斯 艾 默伊登 厂 的 3 l号
( 3 m )烧 结机 首 次应 用 ,之后 推 广 到 该 厂 的 12 2
高 ,冷强度 稍降低 ,平 均粒 度 约 1m 7 m,烧 结 机 焦粉 消耗 从 6 k/ 降 低 到 4 k/。艾 默 伊 登 厂 0 gt 8 gt
o i t r wa t a fsn e s e g s
Ma a l Z agD n l Q uig o ni hn o gi uY l Y n
( nte T cn lg e t ) A s l eh o yC ne e o r
A s at T ema rn uta sltn n e pl a o sl r msi d co dei bt c h j ds i o i s dt i api t nr usf i o r ut na f・ r oi rl uo a h r ci e t o e sn e i n l

烧结环冷余热回收拖动烧结主抽风机技术

烧结环冷余热回收拖动烧结主抽风机技术

烧结环冷余热回收拖动烧结主抽风机技术近年来,随着钢铁冶炼行业先进节能技术不断涌现,烧结、环冷机余热回收水平有很大幅度提高。

本文对我公司总包的一个烧结环冷余热回收拖动烧结主抽风机项目的创新技术进行介绍。

标签:烧结余热利用;余热锅炉;拖动;烧结主抽风机一、项目概况河北某铸业有限公司现有一条114㎡和一条120㎡烧结生产线,配套环冷机冷却面积均为140㎡。

为了充分利用烧结环冷余热资源,最大限度的降低综合能耗,该公司决定建设烧结环冷余热利用项目。

二、建设内容和范围(1)环冷余热蒸汽锅炉系统;(2)烧结余热蒸汽锅炉系统;(2)一套6.0MW 拖动汽轮机系统,包括:汽轮机系统、变速离合器;(3)一套烧结主抽风机系统设计(含电机);(4)烟风管道、环冷机风罩密封改造系统;(5)配套除盐水系统范围内的水箱和除盐水泵;(6)配套的循环水系统;(7)配套给排水系统,包括:工业水、生活水、消防水以及雨排水等设计;(8)自动控制系统,包括:余热锅炉、汽轮机组及循环水站系统控制,控制部分采用分散控制系统;(9)电气系统,包括:动力控制、过电压保护、照明网络等系统。

三、烧结环冷余热回收系统本工程热力系统的设计遵守“温度對口、梯级利用”的原则。

余热回收部分:在烧结线旁分别设置烧结余热锅炉和环冷余热锅炉。

烧结锅炉烟气来自烧结机大烟道温度较高的几个风箱,进入烧结锅炉换热产生饱和蒸汽,送入环冷锅炉进行过热。

环冷机一、二段部分高、中温热风汇合后进入环冷锅炉换热,产生1.15MPa、310℃的过热蒸汽和0.28MPa、170℃的补汽。

动力部分:为烧结线主抽风机配置一套烧结主抽风机拖动系统,选用1台6.0MW带补汽式纯凝汽轮机,利用余热回收部分产生的高、低压过热蒸汽推动汽轮机,通过变速离合器与同步电机联合拖动烧结主抽风机。

1、设计规模两台环冷余热蒸汽锅炉和两台烧结余热蒸汽锅炉,共产生1.15MPa、310℃蒸汽33.6t/h;产生0.28MPa、170℃的低压蒸汽6t/h;一套6.0MW工业汽轮机拖动系统。

科技成果——烧结过程余热资源高效回收与利用技术

科技成果——烧结过程余热资源高效回收与利用技术

科技成果——烧结过程余热资源高效回收与利用技术所属行业钢铁技术开发单位东北大学、鞍山钢铁集团公司适用范围钢铁企业成果简介高效回收与利用烧结过程余热资源是降低烧结工序能耗的主要措施之一。

通过调节冷却机的冷却风量和料层厚度、降低烧结和冷却系统漏风率等措施实现烧结矿产品显热和烧结烟气显热的高效回收,然后将回收得到的余热梯级利用于:将温度较高的余热用于动力回收,即将温度较高的冷却废气(与热烧结矿进行热量交换后的冷却空气)和烧结烟气通入余热锅炉,再将余热锅炉产生的蒸汽通入汽机发电机组发电;将温度居中或较低的余热直接热回收,即将温度居中或较低的冷却废气和烧结烟气用于点火助燃、热风烧结和烧结混合料干燥等直接热回收。

关键技术(1)烧结矿“取热”技术;(2)烧结烟气显热利用技术;(3)烧结系统漏风控制技术;(4)冷却系统漏风控制技术;(5)余热锅炉国产化装备。

主要技术指标1、冷却废气60-70万m3/h;340℃-400℃60-70万m3/h;250℃-340℃2、烧结烟气用于热回收部分20万m3/h;260℃;SO2400mg/m3以下;O216%以上3、吨矿发电量15-20kWh技术水平1、该技术被列入“十一五”国家高技术研究发展计划(863计划),并获得目标导向类项目资助(承担单位:东北大学和鞍山钢铁集团公司);2、该技术被列入2008年国家发改委科技重大专项(承担单位:鞍山钢铁集团公司和东北大学);3、获得国家发明专利1项(2010年11月接到授权通知),申报国家发明专利1项;4、该技术被列入国家重点节能技术推广目录(第一批)。

典型案例该技术在国家863计划和国家发改委科技重大专项资助下,目前得以在鞍钢某360m2大型烧结机上逐步实施。

以该技术为核心的工程项目投资约为13000-15000万元(包括动力回收与直接热回收,不包括烧结-环冷系统本身)。

项目计划明年中期完成。

项目实施后,其技术指标处于国内领先水平,预计:吨矿发电量15-20kWh,年发电0.4-0.7亿kWh;降低烧结工序能耗3-5kgce,年节约1.2-1.9万tce;减排颗粒物20%,降低脱硫负荷30%-40%。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、技术名称:烧结余热能量回收驱动技术
二、适用范围:冶金行业余压余热能量回收
三、与该节能技术相关生产环节的能耗现状:
冶金流程的烧结工序能耗约占吨钢能耗的10%以上,冷却机排出的废气带走的热量,其热能大约为烧结矿烧成系统热耗量的35%,烧结工序能耗约占冶金总能耗的12%,是仅次于炼铁的第二大耗能工序。

在钢铁企业烧结流程中,烧结主抽风机容量占到总装机容量的30%~50%。

由于烧结生产中部分附属设备运转率低,且选择的电机容量偏大,主抽风机耗电量占到50%~70%。

同时,我国烧结工序余热利用率还不足30%,与发达国家相比差距非常大,每吨烧结矿的平均能耗要高20kgce。

四、技术内容:
1、技术原理
将烧结余热能量回收发电技术与电动机拖动的烧结主抽风机驱动系统集成配置,使得烧结余热汽轮机、烧结主抽风机以及同步电动机同轴串联布置,形成烧结余热与烧结主抽风机能量回收三机组(SHRT)。

1.技术原理
烧结余热能量回收驱动技术(SHRT)在原有的电机驱动的烧结主抽风机和烧结余热能量回收发电系统技术的基础上,将两种系统集成配置,形成烧结余热回收汽轮机与电动机同轴驱动烧结主抽风机的新型联合能量回收机组。

取消了发电机及发配电系统,合并自控系统、润滑油系统、调节油系统等,可避免能量转换的损失环节,增加能量回收,确保装置在各种工况下都不会影响到烧结生产线的正常运行,并且能最大限度回收利用烧结烟气余热的能量。

当整套机组正常运行时,烧结工艺各种工况对烧结主抽风机风量的需求主要通过烧结主抽风机的调节门来实现,不论任何情况,烧结主抽风机组都是一套独立的系统,可以完全满足烧结工艺正常运行的各种工况。

2.关键技术
(1)烧结余热产生的废热通过余热锅炉产生蒸汽,再通过汽轮机转换为机械能,直接作用在轴系上,与电动机同轴驱动烧结主抽风机,提高能源利用效率;
(2)机组采用大型变速离合器,能够使烧结汽轮机与机组实现在线啮合、在线脱开。

主要关键技术包括三机联合机组软件设计及组态、轴系稳定性计算等。

3.工艺流程
一般烧结厂烧结烟气平均温度≤150℃,机尾温度达300~400℃。

烧结机尾风箱及冷却机密闭段的烟气除尘后,加热余热锅炉以回收低品位余热,产生过热蒸汽推动汽轮机做功,汽轮机通过变速离合器与双出轴驱动的烧结主抽风机连接,烧结主抽风机的另一侧与同步电动机连接。

机组中余热汽轮机及同步电动同轴驱动烧结主抽风机做功,降低电机电流从而达到节能的目的。

该技术系统的工艺流程见图1。

图1SHRT技术系统工艺流程图
五、主要技术指标
(1)烧结环冷系统:220m2;
(2)配套余热回收汽轮机:5000kW;
(3)烧结主抽风机:SJ22000;
(4)电机:8000kW,余能利用效率提高5%。

六、技术应用情况
该技术已获得2项目实用新型专利。

自2010年开展研究以来,到目前已成功完成机组系统技术及关键技术的研究,先后完成江苏镔鑫、山西通才、联鑫钢铁等6个项目的技术设计,以及山西通才SHRT机组、盐城市联鑫SHRT机组的现场调试及投运,节能效果显著。

七、典型用户及投资效益:
典型用户:山西通才工贸有限公司、盐城市联鑫钢铁有限公司
典型案例1
案例名称:山西通才工贸有限公司项目
建设规模:328m2冶金烧结等低品位热能回收及烧结主抽风机,回收功率5000kW。

主要建设内容:SHRT机组、汽轮机、变速离合器、烧结主抽风机、同步电动机、润滑调节油站、余热回收系统、土建、厂房、工艺管道等。

项目投资额5000万元,建设期1.5年。

机组投运后,电动机电流可从380A降至200A,回收余热能量为3200kW。

当蒸汽正常后,可回收余热能量5400kW,年节能量达13824tcce,年碳减排量36495tCO
,投资回收期约1年。

2
典型案例2
案例名称:盐城市联鑫钢铁有限公司项目
建设规模:220m2冶金烧结等低品位热能回收及烧结主抽风机,回收功率4350kW。

主要建设内容:SHRT机组、汽轮机、变速离合器、烧结主抽风机、同步电动机、润滑调节油站、余热回收系统、土建、厂房、工艺管道等。

项目投资额5000万元,项目建设期1.5年。

机组投运后,SHRT将烧结余热能量回收直接作用在轴系上,驱动烧结主抽风机运行,降低电动机功率约62%,年节约标准煤
,投资回收期约1年。

10240吨,年碳减排量27033tCO
2
八、推广前景和节能潜力:
预计到2015年,该技术可在钢铁行业推广到20/%,形成的年节能能力约40。

万tce,年碳减排能力105万tCO
2。

相关文档
最新文档