第三章空间数据处理介绍
地理信息系统概论-第三章

2024/7/17
22
高斯-克吕格投影的特点:
① 中央经线上没有任何变形,满足中央经线投影后保持长度 不变的条件;
② 除中央经线上的长度比为1外,其他任何点上长度比均大 于1;
③ 在同一条纬线上,离中央经线越远,变形越大,最大值位 于投影带的边缘;
④ 在同一条经线上,纬度越低,变形越大,变形最大值位于 赤道上。
局部比例尺: 由于投影中必定存在某种变形,地图仅能在某些点或线上保 持比例尺,其余位置的比例尺都与主比例尺不相同,即大于 或小于主比例尺。这个比例尺被称为局部比例尺。
一般地图上注明的比例尺是主比例尺,而对用于测量长度的
地图要采用一定的方式设法表示出该图的局部比例尺。这就
是在大区域小比例尺地图(小于1:1 000 000)上常见的图解
地形图上公里网横坐标前2位就是带号, 例如:1∶5万地形图上的坐标为(18576000, 293300),其中18即为带号。
2024/7/17
24
当地中央经线经度的计算
六度带中央经线经度的计算: 当地中央经线经度=6°×当地带号-3°, 例如:地形图上的横坐标为18576000,其所处的六度带的中 央经线经度为:6°×18-3°=105°。
2、建立地图投影的目的: 采用某种数学法则,使空间信息在地球表面上的位置和地 图平面位置一一对应起来,以满足地图制图的要求。
2024/7/17
9
理解地图投影如何改变空间属性的一种简便方法:
观察光穿过地球投射到表面(称为投影曲面)上。 想像一下,地球表面是透明的,其上绘有经纬网。用一 张纸包裹地球。位于地心处的光会将经纬网投影到一张纸上 。现在,可以展开这张纸并将其铺平。纸张上的经纬网形状 与地球上的形状不同。 地图投影使经纬网发生了变形。
GIS空间数据处理与分析

栅格单元(i,j)四角点坐标的计算:
X(i1,i2)=(j-1)*DX和J*DX Y(i1,i2)=(i-1)*DY和i*DY I,j:栅格单元行列值; DX,DY:栅格单元边长
⑴:识别内边界,并将内边界端点坐标置零. 判别方法: 判断与栅格单元某条边相邻的另一栅 格单元的值,若值小于零,则该边为内边界. 内边界端点坐标置零: 边界起点和终点坐标置零.
分区数据的方法就称为空间数据的内插。
第五节 空间数据的内插方法
1、点的内插:研究具有连续变化特征现象 的数值内插方法。
步骤: 数据取样;数据处内插;数据记录
第五节 空间数据的内插方法
2、区域的内插
研究根据一组分区的已知数据来推求
同一地区另一组分区未知数据的内插方法。
区域内插方法:
2.1 叠合法:认为源和目标区的数据是均匀 分布的,首先确定两者面积的交集,然后 计算出目标区各个分区的内插值。
1、遥感与GIS数据的融合:
遥感技术的优势 融合必要性 GIS技术的优势 遥感图像与图形的融合 融合方法: 遥感数据与DEM的融合 遥感数据与地图扫描图像的融合第三节 多源 Nhomakorabea间数据的融合
2、不同格式数据的融合
不同格式数据的融合方法主要有:
2.1基于转换器的数据融合:
一种软件的数据格式输出为交换格式,然后用于另
P3
P
0
x
判断点是否在多边形内,从该点向左引水平扫描线,计算此 线段与区域边界相交的次数,若为奇数,该点在多边形内;若为 偶数,在多边形外。利用此原理,直接做一系列水平扫描线,求 出扫描线和区域边界的交点,对每个扫描线交点按X值的大小进 行排序,其两相邻坐标点之间的射线在区域内。
第二节
【GIS】地理信息系统复习资料

第一章绪论1、信息的特点1)信息的客观性2)信息的适用性3)信息的传输性4)信息的共享性2、数据处理:即对数据进行收集、筛选、排序、归并、转换、存储、检索、计算,以及分析、模拟和预测等操作。
3、地理信息的特点:1)空间分布性2)具有多维结构的特征3)时序特征十分明显4、地理数据:是与地理环境要素有关的物质的数量、质量、分布特征、相互联系和变化规律的数字、文字、图像和图形等的总称。
5、地理信息系统:它是在计算机硬、软件系统支持下,对整个或部分地球表层(包括大气层)空间中的有关地理分布数据进行采集、储存、管理、运算、分析、显示和描述的技术系统。
6、简述GIS的构成。
它的的基本功能有哪些?硬件系统、软件系统、空间数据库、应用模型、用户基本功:数据采集与编辑、数据存储与管理、数据处理与变换、空间分析和统计、产品制作与显示、二次开发和编辑。
第二章地理信息系统的数据结构1、矢量表示法:采用一个没有大小的点(坐标)来表达基本点元素。
2、栅格表示法:采用一个有固定大小的点(面元)来表达基本点元素。
3、空间数据的基本特征。
1)属性特征:描述空间对象的特性,即是什么。
如对象的类别、等级、名称、数量等。
2)空间特征:描述空间对象的地理位置以及相互关系,又称几何特征和拓扑特征,前者用经纬度、坐标表示,后者用拓扑关系表示,如交通学院与电力学院相邻等。
3)时间特征:描述空间对象随时间的变化。
4、拓扑关系的类型1)拓扑邻接:相同拓扑元素之间的关系。
2)拓扑关联:不同拓扑元素之间的关系。
3)拓扑包含:同类但不同级元素之间的关系。
5、空间数据拓扑关系意义1)根据拓扑关系,不需要利用坐标或距离,可以确定一种地理实体相对于另一种地理实体的空间位置关系。
2)有利于空间要素的查询。
3)可以利用拓扑关系数据作为工具,重建地理实体。
6、建立如下图所示的拓扑关系的全显式表达。
(方向自己给定)弧段与结点关系表多边形与弧段关系表结点与弧段关系表弧段与多边形7、栅格数据单元值的确定方法有哪些?①中心点法:②面积占优法:③重要性法:④百分比法:8、如何确定合理的网格尺寸?为了逼近原始数据精度,除了采用这几种取值方法外,还可以采用缩小单个栅格单元的面积,增加栅格单元总数的方法。
第三章 空间数据的表达方法

(一)特点: 1.用离散的点或线描述地理现象及特征 2.用拓扑关系描述矢量数据之间关系
3.面向目标的操作
4.数据结构复杂且难以同遥感数据结合
5.难于处理位置关系
空间对象(实体)的地图表达
点:位置:(x,y) 属性:符号 线:位置:(x1,y1),(x2,y2),…,(xn,yn) 1 1 2 2),„,(xn n 属性:符号—形状、颜色、尺寸
7 7 7 7ຫໍສະໝຸດ 7 7 7 77 7 7 7
7 7 7 7
7 7 7 7
7 7 7 7
空间单元人为划定成 大小相等的正方形网 格,有着统一的定位 参照系。每个空间 单元只记录其属性值, 而不记录它的坐标值。
2
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 2 1 4 4 4 4 4 4 4
2
2 1 4 4 4 4 4 4 4 4
2
1 4 4 4 4 4 4 4 4 4
1
1 4 4 4 4 4 4 4 4 4
1
7 1 4 4 4 4 4 4 4 4
7
7 7 1 4 4 4 4 4 4 4
7
7 7 7 1 4 4 4 4 4 4
7
7 7 7 7 1 4 4 4 4 4
地理信息系统为什么要研究数据模型
现实世界真实模型
空间数据处理
空间数据查询
空间数据分析
空间数据模型 空间数据复原 空间数据结构
数据库:空间数据物 理结构
空间信息 3.2 空间数据模型 3.3 空间数据结构 3.4 地貌的表达——数字化地形模型
p03第三章 空间数据模型-第六-八节1

第六节、 ArcGIS介绍
1. 厂家:ARCGIS是美国环境系统研究所(Environmental System Research Institute, Co.,简称ESRI)于20世纪80年 代初推出的一个通用GIS软件 。
2. 运行平台:uninx-NT(96年)(2000)-pc
Ar析
2、ArcCatalog
• 空间数据管理:
– ESRI coverage、 shape file
– CADData – 遥感图像 – 栅格 – TINS – Geodatabase – 属性表格
• 察看空间数据、源 数据等
3、ArcToolbox
• 超过140个工具,用 于进行geoprocessing 处理;
六、ARCGIS的开发环境
在Windows环境下以可编程控件(OCX)的形式为用户提 供在其应用中增加制图和GIS功能的可能性(MapObjects);
在ArcView和MapObjects中提供Internet网上的GIS和制图 功能;
ArcObject和ArcEngineer面向组件的开发技术。 Arcsever开发工具
三、ArcGIS Workstation 的功能模块(1)
1. ARC是ARCGIS Workstartion的其他功能模块的运行环境;
① ARC主要完成对工作空间和数据单元的操作和管理; ② 进行空间数据操作; ③ 建立拓扑关系,进行数据格式和投影转换; ④ 进行某些基于矢量的空间分析。
2. INFO是一个完整的关系型数据库管理系统,用于完成对属 性数据库的管理和维护;
第三章 空间数据模型
空间数据模型是GIS的基础;
空间数据模型:指利用特定的数据结构来表达空间对 象的空间位置、空间关系和属性信息;是对空间对象 的数据描述。
第三章-空间数据的处理

二值化
细化
跟踪
分 类 图 扫描 二值化
遥感影象图 栅格分类图 原始线划图
边界 提取 预 处 理
二值化 细化
编 辑
矢 量 跟 踪
数 据 压 缩
拓 扑 化
基于再生栅格数据的矢量化方法
首先对栅格数据按行扫描,找出位于各类型边界的栅格 单元,并将边界内部具有相同值或同质的栅格单元以一 种显著不同的符号进行充值,产生只记录类型边界栅格 值得文件; 其次建立对类型边界栅格单元的追踪算法,寻找同质区 的闭合曲线,同时计算其坐标,并整理成有序(按顺时 针或逆时针方向)的坐标数组; 最后处理相邻类型的公共边界,将按区域单元建立的数 据结构转换为按线段链建立的数据结构,以便实现任意 区域或类型数据的提取、综合、分析和制图输出。
数值变换:根据两种投影在变换区内的若干同名数字化点,
采用插值法,或有限差分法,或最小二乘法,或有限元法, 或待定系数法,从而实现由一种投影的坐标到另一种投影坐 标的变换。
例如,采用二元三次多项式进行变换:
通过选择10个以上的两种投影之间的共同点, 并组成最小二乘法的条件式,进行解算系数。
第二节 空间数据结构的转换
不同格式的融合
数据存储格式和结构不同。 方式: 基于转换器的数据融合 基于数据标准的数据融合 基于公共接口的数据融合 基于直接访问的数据融合
MapInfo向Arcinfo转换
MapInfo中的地图可以有两种格式:Tab格式(表格式)、Mif格式(交换 格式)。 ArcInfo中的地图也支持多种格式:Shape格式、Coverage、E00(交换格 式).... 由Tab->Shape:使用MapInfo工具中的通用转换器 由Tab->E00:使用MapInfo工具中的ArcLink 由Tab->Coverage:先转换成Shape,然后在ArcInfo中用Shapearc;或则 先转成E00,在Import 由Mif->Shape:使用MapInfo工具中的通用转换器;或则使用ArcToolbox 直接转换 由Mif->E00:在MapInfo中导入成Tab,然后使用MapInfo工具中的 ArcLink 由Mif->Coverage:先用ArcToolbox转换成Shape,然后在ArcInfo中用 Shape arc
地理信息系统原理第三章 空间数据模型与数据结构3.2

第1行第N列亮度值 波段n 波段1 第2行第1列亮度值 波段n
BSQ结构
BIP结构
BIL结构
星蓝海学习网13
以行为记录单位按行存储 地理数据。属性明显,位 置隐含。 缺点:存在大量冗余,精 度提高有限制。
星蓝海学习网14
0 0 0 0 0 4 4 4 记录1 0 0 0 0 0 4 4 4
星蓝海学习网
• 优点:
• 栅格加密时,数据量不会明显 增加,压缩效率高,最大限度 保留原始栅格结构,
• 编码解码运算简单,且易于检 索、叠加、合并等操作,得到 广泛应用。
• 缺点:
• 不适合于类型连续变化或类型 区域分散的数据。
星蓝海学习网
(2)压缩栅格数据结构
块码(二维游程编码)(行,列,半径,属性值)
弧段ID a b c d e
起始点 5 7 1 13 7
终结点 1 1 13 7 5
… … … 左多边形 Q A Q D D
右多边形 A B B B A
f
13
5
Qห้องสมุดไป่ตู้
D
点号 1 2
…… 25
坐标 (x1,y1) (x2,y2)
…… (x25,y25)
g
25
弧段ID
点号
a
5,4,3,2,1
b
7,8,1
c
1,9,10,11,12,13
• 采用方形区域作为记录单元,每个记录单元包括相邻的若干栅格,数据结构由初始位置(行、 列号)和半径,再加上记录单元代码组成。特点:
• 一个多边形所包含的正方形越大,多边形的边界越简单,块状编码的效率就越好。
• 块状编码对大而简单的多边形更为有效,而对那些碎部较多的复杂多边形效果并不好。
第三章空间数据的组织与结构(二)

24 25 8 6
3 4
5
多边形原始数据
多边形 A B
数据项
(x1,y1),(x2,y2),(x3,y3),(x4,y4),(x5,y5),(x6,y6),(x7,y7),(x8,y8),(x9,y 9),(x1,y1) (x1,y1), (x9,y9), (x8,y8), (x17,y17), (x16,y16), (x15,y15),(x14,y14) ,(x13,y13), (x12,y12), (x11,y11),(x10,y10),(x1,y1)
栅格数据结构是一种影像数据结构,适用于遥 感图像的处理。它与制图物体的空间分布特征 有着简单、直观而严格的对应关系,对于制图 物体空间位置的可探性强,并为应用机器视觉 提供了可能性,对于探测物体之间的位置关系, 栅格数据最为便捷。 多边形数据结构的计算方法中常常采用栅格选 择方案,而且在许多情况下,栅格方案还更有 效。例如,多边形周长、面积、总和、平均值 的计算、从一点出发的半径等在栅格数据结构 中都减化为简单的计数操作。
c
d e f g h i j
16
19 15 15 1 8 16 31
8
5 19 16 15 1 19 31
E
O O D O A D B
B
E D B B B E C
弧段文件
弧段坐标文件
结点号 1 2
坐标 (x1,y1)
连接弧段 a,g
…… …… …… ……
结点文件
…… …… …… ……
……
22 23
24 25 8 6
3 4
5
B
C
D
EaΒιβλιοθήκη bcfg
h j
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
式中:n为控制点个数; x、y为控制点的数字化坐标; X、Y为控制点的理论坐标。
第 3 章 空间数据处理
由上述法方程,通过消元法,可求得仿射变换 的待定参数a0、a1、a2和b0、b1、b2。
仿射变换是GIS数据处理中使用最多的一种几 何纠正方法。它的主要特性为:同时考虑到x和y方 向上的变形,因此纠正后的坐标数据在不同方向上 的长度比将发生变化。其他方法还有相似变换和二 次变换等。 经过仿射变换的空间数据,其精度可用点位中 误差表示,即: [ △x 2 + △y 2 ] Mp = + n 式中:△x = X理论值–X计算值;△y = Y理论值–Y计算值 n为数字化已知控制点的个数。
第 3 章 空间数据处理
旋转
将点(x, y)旋转角 x=A.cos, y=A.sin x*=A.cos(+ ) =A.(cos.cos -sin.sin) =x.cos -y.sin y*=A.sin( + ) =A(sin.cos +cos.sin) =x.sin +y.cos 矩阵为: [x*, y*]=[x, y]. cos sin - sin cos
括结构转换、类型替换等,以实现空间数据在结构、
格式和类型上的统一,多源和异构数据的连接与融合。
数据提取指对数据进行某种条件的取舍,包括类型提
取、窗口提取、空间内插等,以适应不同用户对数据 的特定要求。
第 3 章 空间数据处理
空间数据的处理是GIS的重要功能之一。 空间数据的处理主要取决于原始数据的特 点和用户的具体要求,一般包括数据变换、 数据重构、数据提取等内容。 空间数据处理是指GIS对空间数据本身所提 供的操作手段,它不涉及内容的分析。
第 3 章 空间数据处理
平移 x*=x+dx y*=y+dy 其中,dx、dy分别为x, y 方向平移量 相应的向量形式为: [x*, y*]=[x, y]+[dx, dy]
第 3 章 空间数据处理
设x,y为数字化仪坐标, Y X、Y为理论坐标,m1、m2为地 y 图横向和纵向的长度变化比例, 两坐标系夹角为α ,数字化仪 原点O’相对于理论坐标系原 a0 α 点平移了a0、b0,则根据图形 O’ 变换原理,得出坐标变换公式: b0
第 3 章 空间数据处理
扭曲
x*=x.Sx y*=y.Sy
其中:Sx,Sy分别为x, y方向 的缩放比例系数,矩阵为: [x*, y*]=[x, y].
第 3 章 空间数据处理
比例缩放
x*=x.Sx y*=y.Sy
其中:Sx,Sy分别为x, y方向 的缩放比例系数,矩阵为:
Sx [x*, y*]=[x, y]. 0 0 Sy
第 3 章 空间数据处理
空间数据的处理是GIS的重要功能之一。 空间数据的处理主要取决于原始数据的 特点和用户的具体要求,一般包括数据 变换、数据重构、数据提取等内容。
数据变换指数据从一种数学状态到另一种数学状态的
变换,包括几何纠正和地图投影转换等,以实现空间
数据的几何配准。
数据重构指数据从一种格式到另一种格式的转换,包
a0n + a1∑x + a2∑y = ∑X a0∑x + a1∑x2 + a2∑xy = ∑xX a0∑y + a1∑xy+ a2∑y2= ∑yX b0n + b1∑x + b2∑y = ∑Y b0∑x + b1∑x2 + b2∑xy = ∑xY b0∑y + b1∑xy+ b2∑y2= ∑yY
和
一、几何纠正 二、地图投影及其转换
第 3 章 空间数据处理
一、几何纠正
几何纠正是为了实现对数字化数据的坐标系
转换和图纸变形误差的改正。常见的GIS软件 一般都具有仿射变换、相似变换和二次变换等 几何纠正功能。 仿射变换可以对坐标数据在x和y方向进行不 同比例的缩放,同时进行扭曲、旋转和平移。
第 3 章 空间数据处理
第1节 第2节 第3节 第4节 第5节 第6节 空间数据的变换 空间数据结构的转换 多元空间数据的融合 空间数据的压缩与重分类 空间数据的内插方法 空间拓扑关系的编辑
第 3 章 空间数据处理
第1节 空间数据的变换
空间数据的变换即空间数据坐标系的变换,其 实质是两个平面点之间的一一对应的关系,包 括几何纠正和投影转换,它们是空间数据处理 的基本内容之一。
X = a0 +(m1cosα)x + (m2sinα)y Y = b0–(m1sinα)x + (m2cosα)y
第 3ቤተ መጻሕፍቲ ባይዱ章 空间数据处理
设Qx、Qy表示转换坐标于理论坐标之差, 则有: Qx = X – (a0 + a1x + a2y)
Qy = Y – (b0 + b1x + b2y)
按照[Qx2] = min和[Qy2] = min的条件, 可得到两组法方程:
第 3 章 空间数据处理
二、地图投影及其转换
(一)地图投影的基本原理
(二)地图投影的类型
(三)地理信息系统常用的地图投影 (四)地图投影转换
第 3 章 空间数据处理
地图投影:投影实质
第 3 章 空间数据处理
地图投影:投影实质
建立地球椭球面上经纬线网和平面上相应经 纬线网的数学基础,也就是建立地球椭球面上 的点的地理坐标(λ,φ)与平面上对应点的平 面坐标(x,y)之间的函数关系:
X = a0 +(m1cosα)x + (m2sinα)y Y = b0–(m1sinα)x + (m2cosα)y
x
O
坐标变换原理
X
第 3 章 空间数据处理
第 3 章 空间数据处理
式中,设 a1 = m1cosα , b1 = -m1sinα a2 = m2sinα , b2 = m2cosα 则上式可以简化为: X = a0 + a1 x + a2 y Y = b0 – b1x + b2 y 上式中含有6个参数a0、a1、a2、b0、b1、b2, 要实现仿射变换,需要知道不在同一直线上的3对控 制点的数字化坐标及其理论值,才能求得上述6个待 定参数。但在实际应用中,通常利用4个以上的点来 进行几何纠正。下面按最小二乘法原理求解待定参 数(首先回顾最小二乘法)