正弦函数和余弦函数的图像练习题

合集下载

正弦函数与余弦函数的图象练习题

正弦函数与余弦函数的图象练习题

专项训练:正弦函数与余弦函数的图象一、单选题1.同时具有性质:①最小正周期是;②图象关于直线对称;③在上是增函数的一个函数是 ( )A .B .C .D .2.定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为( ). A .B .C .D .3.函数的部分图象如图,则、可以取的一组值是( )A .B .C .D .4.函数,是A . 最小正周期为的奇函数B . 最小正周期为的偶函数C . 最小正周期为的奇函数 D . 最小正周期为的偶函数5.函数f (x )=4x -3tan x 在,22ππ⎛⎫- ⎪⎝⎭上的图象大致为( )A .B .C .D .6.如图是函数()(),(0)2f x cos x ππϕϕ<<=+的部分图象,则f (3x 0)=( )A .12 B . -12 C .3. 37.已知f (x )=sin(ωx +φ)(ω>0,|φ|〈2π)的最小正周期为π,若其图象向左平移π3个单位长度后关于y 轴对称,则( )A . ω=2,φ=π3B . ω=2,φ=π6C . ω=4,φ=π6D . ω=2,ω=-π68.函数y =sin2x +cos2x 最小正周期为A .B .C . πD . 2π9.函数f (x )=sin(ωx +φ) 0,2πωϕ⎛⎫>< ⎪⎝⎭的部分图象如图所示,若x 1,x 2∈,63ππ⎛⎫- ⎪⎝⎭,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .12B . 22C .32D . 1 10.下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上为减函数的是( )A . sin 2y x π⎛⎫=+ ⎪⎝⎭B . cos 2y x π⎛⎫=+ ⎪⎝⎭ C . cos 22y x π⎛⎫=+ ⎪⎝⎭ D . sin 22y x π⎛⎫=+ ⎪⎝⎭11.函数y =-sin x ,x ∈π3,22π⎡⎤-⎢⎥⎣⎦的简图是( )A .B .C .D .12.函数f (x )=sin π23x ⎛⎫+ ⎪⎝⎭的图象的对称轴方程可以为 ( )A . x=π12B . x=5π12 C . x=π3 D . x=π613.已知函数的部分图象如图所示,则函数的解析式为 ( )A .B .C .D .14.函数()22sin sin 44f x x x ππ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭是( )。

5.4.1正弦函数余弦函数的图象(五大题型)(原卷版)

5.4.1正弦函数余弦函数的图象(五大题型)(原卷版)

5.4.1 正弦函数、余弦函数的图象【题型归纳目录】题型一:五点作图法作正弦函数、余弦函数的简图题型二:含绝对值的三角函数题型三:解三角不等式问题题型四:与三角函数有关的零点问题题型五:识图问题【知识点梳理】知识点一:正弦函数图象的画法1、描点法:按照列表、描点、连线三步法作出正弦函数图象的方法.2、几何法利用三角函数线作出正弦函数在[0,2]π内的图象,再通过平移得到sin y x =的图象.3、五点法先描出正弦曲线的波峰、波谷和三个平衡位置这五个点,再利用光滑曲线把这五点连接起来,就得到正弦曲线在一个周期内的图象.在确定正弦函数sin y x =在[0,2]π上的图象形状时,起关键作用的五个点是3(0,0),(,1),(,0),(,1),(2,0)22ππππ- 知识点诠释:(1)熟记正弦函数图象起关键作用的五点.(2)若x R ∈,可先作出正弦函数在[0,2]π上的图象,然后通过左、右平移可得到sin y x =的图象. 知识点二:正弦曲线(1)定义:正弦函数sin ()y x x R =∈的图象叫做正弦曲线.(2)图象知识点诠释:(1)由正弦曲线可以研究正弦函数的性质.(2)运用数形结合的思想研究与正弦函数有关的问题,如[]0,2x π∈,方程lg sin x x =根的个数. 知识点三:用三角函数图象解三角不等式的方法1、作出相应正弦函数或余弦函数在[]0,2π上的图象;2、写出适合不等式在区间[]0,2π上的解集;3、根据公式一写出不等式的解集.【典型例题】题型一:五点作图法作正弦函数、余弦函数的简图例1.画出下列函数在区间[]0,2π上的图象:(1)2sin y x =+;(2)sin 2y x =-;(3)3sin y x =.例2.已知函数()ππ2sin 36f x x ⎛⎫=+ ⎪⎝⎭,用“五点作图法”在给定坐标系中画出函数()f x 在[]0,6上的图像. 例3.已知函数()π2sin 24f x x ⎛⎫=- ⎪⎝⎭,x ∈R .在用“五点法”作函数()f x 的图象时,列表如下:完成上述表格,并在坐标系中画出函数()y f x =在区间[]0,π上的图象;变式1.用“五点法”画出下列函数的简图:(1)1sin y x =+,[]0,2πx ∈;(2)2cos y x =,[]0,2x π∈.变式2.已知函数()2cos 3f x x =-+.完成下面表格,并用“五点法”作函数()f x 在[0]2π,上的简图:变式3.已知函数2cos 1f x x =-.(1)完成下列表格,并用五点法在下面直角坐标系中画出()f x 在[]0,2π上的简图;.【方法技巧与总结】1、五点作图法:作正弦曲线、余弦曲线要理解几何法作图,掌握五点法作图.“五点”即sin y x =或cos y x =的图象在[]0,2π内的最高点、最低点和与x 轴的交点.2、图象变换:平移变换、对称变换、翻折变换.题型二:含绝对值的三角函数例4.当[]2π,2πx ∈-时,作出下列函数的图象,把这些图象与sin y x =的图象进行比较,你能发现图象变换的什么规律? (1)sin y x =; (2)sin y x =.例5.画出函数11sin sin 22y x x =+的简图. 例6.作出函数2sin sin y x x =+,[],x ππ∈-的大致图像.变式4.作函数3sin 2y x π⎛⎫=+ ⎪⎝⎭的图象. 【方法技巧与总结】分类讨论解决绝对值问题题型三:解三角不等式问题例7.不等式1sin ,2x <-[0,2]x π的解集是( ) A .711,66ππ() B .45,33ππ⎡⎤⎢⎥⎣⎦ C .57,66ππ() D .25,33ππ() 例8.不等式12cos 0x +>的解集为( )A .(2,2)()33k k k Z ππππ-++∈ B .22(2,2)()33k k k Z ππππ-++∈ C .(2,2)()66k k k Z ππππ-++∈ D .2(2,2)()63k k k Z ππππ++∈ 【方法技巧与总结】用三角函数的图象解sin x a >(或cos x a >)的方法(1)作出直线y a =,作出sin y x =(或cos y x =)的图象.(2)确定sin x a =(或cos x a =)的x 值.(3)确定sin x a >(或cos x a >)的解集.题型四:与三角函数有关的零点问题例9.函数()sin f x x =,()cos g x x =的图象在区间[]2π,π-的交点个数为( )A .3B .4C .5D .6例10.函数sin 2|sin |,[0,2π]y x x x =+∈的图象与直线12y =的交点共有 个. 例11.若函数()4sin 2,[0,]6f x x x ππ⎛⎫=-+∈ ⎪⎝⎭的图象与直线y m =恰有两个不同交点,则m 的取值范围是 .变式5.已知函数[]cos 2cos ,0,2y x x x π=+∈与函数y k =的图象有四个交点,则k ∈ .变式6.已知函数()12sin f x x =-.(1)用“五点法”做出函数()f x 在[]0,2x π∈上的简图;(2)若方程()f x a =在25,36x ππ⎡⎤∈-⎢⎥⎣⎦上有两个实根,求a 的取值范围. 变式7.方程sin 32m x π⎛⎫+= ⎪⎝⎭在[0,]π上有两实根,求实数m 的取值范围及两个实根之和. 变式8.方程1cos 2a x -=在,3x π⎡⎤∈-π⎢⎥⎣⎦上有两个不同的实数根,求实数a 的取值范围. 【方法技巧与总结】方程的根(或函数零点)问题:三角函数的图象是研究函数的重要工具,通过图象可较简便的解决问题,这正是数形结合思想方法的应用.题型五:识图问题例12.函数()()sin e e x x f x -=+的图象大致为( ) A . B .C .D .例13.如图为函数()f x 的大致图象,其解析式可能为( )A .()()11cos f x x x x =++-B .()()11sin f x x x x =-++-C .()()11cos 2f x x x x =++--D .()()()11e e x x f x x x -=++-- 例14.函数()1sin e x x xf x -=的图象大致为( )A .B .C .D .变式9.函数()e e 3πsin 232x x f x x -+⎛⎫=⋅- ⎪⎝⎭在4,4⎡⎤-⎣⎦上的图象大致是( ) A . B .C .D .变式10.我国著名数学家华罗庚先生曾说:“数缺形时少直观,形缺数时难入微,数形结合百般好,隔离分家万事休.”在数学学习和研究中,常用函数的图象来研究函数性质,也常用函数解析式来琢磨函数的图象特征,函数cos ()2sin ||x x f x x =+的部分图象大致为( ) A . B .C .D .变式11.函数π()412sin 2x x f x x -⎛⎫=-⋅⋅+ ⎪⎝⎭的大致图象为( )A .B .C .D .变式12.函数()33cos 22x xf x x --=⋅的部分图象大致为( )A .B .C .D .【方法技巧与总结】利用排除法,从定义域、奇偶性、代数三个方面进行排除.【过关测试】一、单选题1.用“五点法”作y =2sin x 的图象时,首先描出的五个点的横坐标是( )A .π30,,π,π,2π22B .ππ30,,,π,π424C .0,π,2π,3π,4πD .πππ3π0,,,,63222.如图所示,函数cos tan y x x =(3π02x <≤且π2x ≠)的图像是( ). A . B .C .D .3.方程sin x x =的实数解的个数为( )A .1B .3C .5D .74.方程sin lg x x =,[]2π,2πx ∈-实根的个数为( )A .6B .5C .4D .35.华罗庚说:“数缺形时少直观,形少数时难入微,数形结合百般好,隔离分家万事休.”所以研究函数时往往要作图,那么函数()sin cos2f x x x =+的部分图像可能是( )A .B .C .D .6 )A .sin10cos10︒+︒B .sin10cos10︒-︒C .cos10sin10︒-︒D .sin10cos10-︒-︒7.已知函数π()2sin 26f x x ⎛⎫=+ ⎪⎝⎭,对于任意的)a ⎡∈⎣,方程()()0f x a x m =<≤恰有一个实数根,则m 的取值范围为( ).A .7π3π,124⎛⎤ ⎥⎝⎦B .π5π,26⎡⎫⎪⎢⎣⎭C .π5π,26⎛⎤ ⎥⎝⎦D .7π3π,124⎡⎫⎪⎢⎣⎭8.函数11y x =-的图像与函数()2sin π24y x x =-≤≤的图像所有交点的横坐标之和等于( ) A .8 B .10 C .12 D .14二、多选题9.(多选)函数]sin 1,[0,2πy x x -∈=与y a =有一个交点,则a 的值为( ) A .1-B .0C .1D .2- 10.若函数()14sin f x x t =+-在区间π,2π6⎛⎫ ⎪⎝⎭上有2个零点,则t 的可能取值为( ) A .2- B .0 C .3 D .411.函数cos y x =,π4π,33x ⎛⎫∈ ⎪⎝⎭的图像与直线y t =(t 为常数,R t ∈)的交点可能有( ) A .0个 B .1个 C .2个 D .3个 12.(多选)若函数()2cos f x x =,[]0,2x π∈的图象和直线y =2围成一个封闭的平面图形,则( )A .当3,22x ππ⎛⎫∈ ⎪⎝⎭时,()0f x < B .()01f = C .302f π⎛⎫= ⎪⎝⎭ D .所围图形的面积为2π三、填空题13.若函数πsin 3y x ⎛⎫=+ ⎪⎝⎭的图像在[0,]m 上恰好有一个点的纵坐标为1,则实数m 的值可以是 . 14.函数22cos sin y x x =+的最小值是 .15.如果方程sin x a =在π,π6x ⎡⎤∈⎢⎥⎣⎦上有两个不同的解,则实数a 的取值范围是 . 16.若()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭在区间()0,m 上有且只有一个零点,则实数m 的取值范围是 ; 四、解答题17.函数()sin 2sin f x x x =+,用五点作图法画出函数()f x 在[]0,2π上的图象;(先列表,再画图)18.用“五点法”在给定的坐标系中,画出函数()π2sin 26f x x ⎛⎫=+ ⎪⎝⎭在[]0,π上的大致图像. 19.已知函数()2sin 33f x x π⎛⎫=- ⎪⎝⎭. (1)请用五点作图法画出函数()f x 在20,3π⎡⎤⎢⎥⎣⎦上的图象;(先列表,后画图)(2)设()()23,0,3m F x f x x π⎡⎤=-∈⎢⎥⎣⎦,当0m >时,试讨论函数()F x 零点情况. 20.在同一平面直角坐标系内画出正弦函数sin y x =和余弦函数cos y x =在区间[]0,2π上的图象,并回答下列问题.(1)写出满足sin cos x x =的x 的值;(2)写出满足sin cos x x >的x 的取值范围;(3)写出满足sin cos x x <的x 的取值范围;(4)当x ∈R 时,分别写出满足sin cos x x =,sin cos x x >,sin cos x x <的x 值的集合.214x k π⎛⎫+= ⎪⎝⎭在0x π≤≤上有两个实数根12,x x ,求实数k 的取值范围,并求12x x +的值. 22.已知函数()[]1πsin 2,0,π26f x x x ⎛⎫=+∈ ⎪⎝⎭(1)填写下表,并用“五点法”画出()f x 的图象.(2)若函数()f x 满足不等式()34f x ≤,求x 的范围.。

高埂中学“正弦函数和余弦函数的图像和性质”练习题

高埂中学“正弦函数和余弦函数的图像和性质”练习题

正弦函数、余弦函数的图像和性质1.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )2方程sin x =x10的根的个数是( )A .7B .8C .9D .10 3下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 4. 设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数5. 定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( )A .-12B.12 C .-32D.32 6. 下列函数中,周期为2π的是( ) A .y =sin x2B .y =sin 2xC .y =⎪⎪⎪⎪sin x 2 D .y =|sin 2x | 7. 函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 8下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2 )B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)9.函数y = sin ⎪⎭⎫⎝⎛-x 2 4π的单调增区间是( )A.⎥⎦⎤⎢⎣⎡+-8π3π 8π3πk k ,,k ∈Z B.⎥⎦⎤⎢⎣⎡++8π5π 8ππk k ,,k ∈ZC.⎥⎦⎤⎢⎣⎡+-83ππ 8ππk k ,,k ∈ZD.⎥⎦⎤⎢⎣⎡++87ππ 83ππk k ,,k ∈Z 10已知函数f (x )对于任意实数x 满足条件f (x +2)=-1f (x )(f (x )≠0).若f (1)=-5,f (f (5))的值.A 15 B —15 C 5 D —511. 函数f (x )=sin ⎝⎛⎭⎫2πx +π4的最小正周期是________. 12 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 013)=________.13 函数y =2cos x +1的定义域是___________14 关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R ),有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos(2x -π6);②函数 y = f (x )是以2π为最小正周期的周期函数;③函数 y = f (x )的图象关于点⎪⎭⎫⎝⎛-0 6π,对称;④函数 y = f (x )的图象关于直线x = - π6对称. 其中正确的是 .15函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.16(1)设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值.(2)求函数y =12log cos -32x π⎛⎫⎪⎝⎭的单调增区间.17.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎡⎦⎤52π,3π时f (x )的解析式.答案1.D 2.B 3.B 4.D 5.D 6.1 7.±3 8.(1)奇函数 (2)偶函数 (3)奇函数 9.C 10. 3 11.解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到, 则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0. ∵f (-x )=ln(-sin x +1+sin 2x ) =ln(1+sin 2x -sin x ) =ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2x )=-f (x ), ∴f (x )为奇函数. 12.解 x ∈⎣⎡⎦⎤52π,3π时, 3π-x ∈⎣⎡⎦⎤0,π2, ∵x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x ) =1-sin x .又∵f (x )是以π为周期的偶函数, ∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤52π,3π. 13.(1)证明 ∵f (x +2)=-1f (x ), ∴f (x +4)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )是周期函数,4就是它的一个周期. (2)解 ∵4是f (x )的一个周期. ∴f (5)=f (1)=-5, ∴f (f (5))=f (-5)=f (-1) =-1f (-1+2)=-1f (1)=15.。

正弦、余弦函数的图像和性质的练习题

正弦、余弦函数的图像和性质的练习题

一题多变
2
新余市第六中学 高中数学 必修④
三、解答题
解: 令 sin x t , 则 1 t 1 7 2 则有函数 f (t ) t t (1 t 1) 4 画出函数f (t )的图像,如图所示
7 12、求函数 f ( x) sin x sin 2 x( x R)的值域 4
2
2
1
令 cos x t , 则有-1 t 1
2
则有f (t ) 1 t 3t (1 t 1)
2
-1
1
O
1
2
x
画出函数f (t )的图像,如图所示
通过观察发现
2
3
新余市第六中学 高中数学 必修④
一题多变
三、解答题
判断函数f ( x) sin 2 x 3 cos x( x R)的奇偶性,并求其值域 。
解得
a0
a的取值范围为 a0
一题多变 m 1 m3 已知 - x , cos x , 则m的取值范围是 __________ 。 6 3 m 1
新余市第六中学 高中数学 必修④
二、填空题
。 [0, ] 2 11 、不等式sin x 0在x [0,2 ]上的解集为__________ ____
y
2 1
通过观察发现
-1
1
O
1
2
x
1 b b 当x 1时, f (1) min 当x 时, f ( ) max 2 4 2a 2a 7 1 2 函数 f (t ) t t (1 t 1)的值域为 [ ,2] 4 4 7 1 函数 f ( x) sin 2 x sin x ( x R)的值域为 [ ,2] 4 4

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图象[学习目标]1•了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. -=知识梳理自主学习知识点一正弦曲线正弦函数y = sin x(x€ R)的图象叫正弦曲线.利用几何法作正弦函数y= sin x, x€ [0,2 n]图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0, £ n,扌,…,2n等角的正弦线.6 3 2③找横坐标:把x轴上从0到2 n (2 6.28一段分成12等份.④平移:把角x的正弦线向右平移,使它的起点与x轴上的点x重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y= sin x, x€ [0,2 n]的图象.在精度要求不太高时,y= sin x, x € [0,2 诃以通过找出(0,0),(寸,1), ( n 0) , (# —1),(2 n 0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考在所给的坐标系中如何画出y= sin x, x€ [0,2 7的图象?如何得到y= sin x, x€ R的图象?只要将函数y= sin x, x€ [0,2 n的图象向左、向右平行移动(每次2n个单位长度),就可以得到正弦函数y= sin x, x€ R的图象.知识点二余弦曲线余弦函数y= cos x(x€ R)的图象叫余弦曲线.n n 根据诱导公式sin x+ 2 = cos x, x€ R.只需把正弦函数y= sin x, x€ R的图象向左平移-个单位长度即可得到余弦函数图象(如图).n 3要画出y = cos x, x€ [0,2従的图象,可以通过描出(0,1),勺,0,(n - 1), 0 , (2 n 1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y= cos x, x€ [0,2的图象.思考在下面所给的坐标系中如何画出y= cos x, x€ [0,2品的图象?答案题型探究重点突破题型一五点法”作图的应用例1利用五点法”作出函数y= 1-sin x(0 * 2曲)简图. 解(1)取值列表:⑵描点连线,如图所示:跟踪训练1作函数y = sin x , x € [0,2 n 与函数y =— 1 + sin x , x € [0,2冗的简图,并研究它 们之间的关系. 解按五个关键点列表:x 0 n2 n3 n ~22 n sin x1 0—1 0—1 + sin x—1 0—1 —2—1利用正弦函数的性质描点作图:x € [0,2 的图象.题型二利用正弦、余弦函数图象求定义域 例2 求函数f(x)= lg sin x +寸16 — x 2的定义域. sin x>0,解由题意得,x 满足不等式组216 — x 2 >0,—4 w x W 4,即作出y = sin x 的图象,如图所示.sin x>0,y =— 1 + sin x , 由图象可以发现,把结合图象可得定义域:x€ [ —4,—nU (0, n)跟踪训练2 求函数f(x)= lg cos x+ 25-x2的定义域.cos x>0解由题意得,x满足不等式组25—"0,cos x>0即—5W迄5,作出y= C0S x的图象,如图所示.结合图象可得定义域:x € —5,—3 nU题型三利用正弦、余弦函数图象判断零点个数例3在同一坐标系中,作函数y= sin x和y= lg x的图象,根据图象判断出方程sin x = lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y= sin x, x€ [0,2冗的图象,再依次向左、右连续平移2 n个单位,得到y= sin x的图象.描出点(1,0), (10,1)并用光滑曲线连接得到y= lg x的图象,如图所示.由图象可知方程sin x= lg x的解有3个.跟踪训练3方程x2—cos x = 0的实数解的个数是___________答案2解析作函数y= cos x与y= x2的图象,如图所示,由图象,可知原方程有两个实数解.思韻方法数形结合思想在三角函数中的应用例4函数f(x) = sin x+ 2|sin x|, x€ [0,2冗的图象与直线y= k有且仅有两个不同的交点,求k 的取值范围.3sin x, x € [0 , n,解f(x)= sin x+ 2|sin x|=—sin x, x€ n 2 n ].图象如图,F当堂检测自查自纠1.函数y= sin x (x€ R)图象的一条对称轴是()A. x轴B. y轴C.直线y= x D .直线x = 22.用五点法画y= sin x, x€ [0,2的图象时,下列哪个点不是关键点()1 A.(6,2)% 八B.(2, 1)C. ( , 0)D. (2 , 0)3.函数y= sin x, x€ [0,21 亠的图象与直线y= —2的交点为A(X1, y1), B(x2, y2),贝U X1 + x24. 利用五点法”画出函数y= 2-sin x, x€ [0,2的简图.5. 已知O w x< 2 n^试探索sin x与cos x的大小关系.若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据图可得k的取值范围是(1,3).A'课时精练、选择题n 3 n1函数y= —sin x, x€ —2, y 的简图是()2. 在同一平面直角坐标系内,函数y= sin x, x€ [0,2 与y= sin x, x€ [2 n 4 n的图象()A .重合B .形状相同,位置不同C.关于y轴对称sin x= 10的根的个数是3.方程4.D .形状不同,位置不同B. 8C. 9D. 10函数A'3 n n5.如图所示,函数y= cos x阳n x|(0且x③的图象是()D6. 若函数y= 2cos x(0< x< 2 n的图象和直线y= 2围成一个封闭的平面图形,则这个封闭图形的面积是()A . 4B . 8C . 2 nD . 4 n二、填空题7. __________________________________________________ 函数y= ” . log^sin x的定义域是_________________________________________________________ .&函数y= _ 2cos x+ 1的定义域是 ___________ .___ 19. 函数f(x) = >,'sin 或为 ---------------- .10. _______________________________________________________________ 设0<x< 2 n,且|cos x—sin x|= sin x—cos x,贝U x 的取值范围为 ______________________ .三、解答题111. 用“五点法”画出函数y = 2 + sin x, x€ [0,2 n的简图.12. 根据y= cos x的图象解不等式:-于三cos x< 2, x€ [0,2 n]13. 分别作出下列函数的图象.(1) y= |sin x|, x€ R;(2) y= sin|x|, x€ R.当堂检测答案1答案 D 2. 答案 A 3. 答案 3n 解析如图所示, _ 3 nx i + X 2= 2 = 3 n. 4.解(1)取值列表如下:x 0 n2 n3n~22 n sin x 0 1 0 —i 0 y = 2— sin x21232⑵描点连线,图象如图所示:由图象可知 ①当x =m 或x = 5n时,sin x = cos x ;44③当 O W x <n或5n<x< 2 n时,sin x <cos x. 课时精炼答案一、选择题 1•答案 D 2.答案 B5 •解用“五点法”作出sin x>cos x ;解析根据正弦曲线的作法可知函数y= sin x, x€ [0,2 n与y= sin x, x€ [2 n 4n的图象只是位置不同,形状相同.3. 答案Ax解析在同一坐标系内画出y= 10和y= sin x的图象如图所示:¥=血JT根据图象可知方程有7个根.4. 答案D解析由题意得n 32cos x, 0或2 n 炸2,c 冗30, 2<x<2 n.显然只有D合适.5. 答案C解析当冗当2<x< n时,y= cos x • |tan| =—sin x;当n<<3n寸,y= cos x |tax|= sin x,故其图象为C.6. 答案D解析作出函数y = 2cos x, x€ [0,2 n]图象,函数y = 2cos x,x€ [0,2 n的图象与直线y = 2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC的面积,又••• OA= 2, OC= 2n,S阴影部分=S矩形OABC = 2 X 2 n= 4 n.、填空题7. 答案{x|2k n<<2k n+ n k€ Z}1解析由log2sin x> 0知0<sin x< 1,由正弦函数图象知2kn«2k n+n k€乙… 2 2& 答案2k n—3冗,2k n+ k€ Z1 2 2解析2cos x+ 1> 0 , cos x>—2,结合图象知x€ 2k n— " n, 2k n+" n , k€ Z.9.答案(一4,— nU [0 , n]sin x > 0, 2kx < 2k n+ n,解析2?16— x 2>0 — 4<x<4? — 4<x W — n 或 0 < x W n. 解析 由题意知sin x — cos x >0, 即卩cos x W sin x ,在同一坐标系画出 y = sin x , x € [0,2 n 与三、解答题11•解(1)取值列表如下:x 0 n2 n3 2n 2 n sin x 0 1 0 —1 0 1 ,. 1 3 1 1 1 -+ sin x222222⑵描点、连线,如图所示.12.解 函数y = cos x , x € [0,2 n 的图象如图所示: 根据图象可得不等式的解集为n, ,5 n 7 n, , 5 n{x|—W x < 或一W x < }3 6 63,.10.答案n 5 n 4,~4y = cos x , x € [0,2n 观察图象知x € 4, 5 n~4 .n 的图象,sin x 2k x< 2k n+n, 13.解(1)y= |sin x|=—sin x 2k n+n<W 2k n+ 2 n(k€ Z).其图象如图所示,sin x x>0 ,(2)y= sin |x| =—sin x x<0 .其图象如图所示,。

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。

高中数学:正弦函数、余弦函数的图象练习

高中数学:正弦函数、余弦函数的图象练习

高中数学:正弦函数、余弦函数的图象练习(25分钟60分)一、选择题(每小题5分,共25分)1.函数y=-sinx,x∈的简图是( )【解析】选D.y=-sinx,x∈的图象与y=sinx,x∈的图象关于x轴对称.【延伸探究】本题中y=-sinx改为y=-cosx,其他条件不变,则结果如何?【解析】选C.y=-cosx与y=cosx的图象关于x轴对称.2.用五点法作函数y=2sinx-1的图象时,首先应指出的五点的横坐标可以是( ) A.0,,π,,2π B.0,,,,πC.0,π,2π,3π,4πD.0,,,,【解析】选A.由五点法作图知:五点的横坐标可以是0,,π,,2π.【延伸探究】本题函数改为“y=cos2x”,则此时五点的横坐标又是什么?【解析】2x依次取0,,π,,2π,所以x依次取0,,,,π.3.函数y=cosx(x∈R)的图象向左平移个单位后,得到y=g(x)的图象,则y=g(x)的解析式为( )A.sinxB.-sinxC.cosxD.-cosx【解析】选B.画出正余弦函数图象对比知y=g(x)的解析式为g(x)=-sinx.4.(2015·鹤岗高一检测)已知cosx=-且x∈[0,2π],则角x等于( )A.或B.或C.或D.或【解析】选A.由cos=,结合图象可知x=π-或π+,即x=或.5.(·黄冈高一检测)函数y=1+sinx,x∈(0,2π)的图象与直线y=的交点有( )A.1个B.2个C.3个D.0个【解析】选B.作出函数y=1+sinx,x∈(0,2π)的图象和直线y=,由图可知交点有2个.二、填空题(每小题5分,共15分)6.已知函数f(x)=3+2cosx的图象经过点,则b=________.【解析】b=f=3+2cos=4.答案:47.方程x2-cosx=0的实数解的个数是________.【解析】作函数y=cosx与y=x2的图象,如图所示,由图象,可知原方程有2个实数解.答案:28.不等式sinx<-,x∈[0,2π]的解集为________.【解析】作出y=sinx,x∈[0,2π]的图象和直线y=-,由图象可知,sinx<-,x∈[0,2π]的解集为.答案:三、解答题(每小题10分,共20分)9.利用“五点法”作出下列函数的简图:(1)y=1-sinx(0≤x≤2π).(2)y=-2cosx+3(0≤x≤2π)【解析】利用“五点法”作图(1)列表:x 0 π2πsinx 0 1 0 -1 01-sinx 1 0 1 2 1描点作图,如图所示.(2)列表:x 0 π2π-2cosx -2 0 2 0 -2-2cosx+3 1 3 5 3 1描点、连线得出函数y=-2cosx+3(0≤x≤2π)的图象:10.判断方程-cosx=0的根的个数.【解析】设f(x)=,g(x)=cosx,在同一直角坐标系中画出f(x)与g(x)的图象,如图:由图可知,f(x)与g(x)的图象有3个交点,故方程-cosx=0有3个根.【延伸探究】将本题方程改为“sinx=”,试判断此方程根的个数.【解析】如图所示,当x≥4π时,≥>1≥sinx;当x=π时,sinx=sinπ=1,=,1>,从而x>0时,有3个交点,由对称性知x<0时,有3个交点,加上x=0时的交点为原点,共有7个交点.即方程有7个根.(20分钟40分)一、选择题(每小题5分,共10分)1.(·葫芦岛高一检测)函数f(x)=2sin的部分图象是( )【解析】选C.当x≥时,f(x)=2sin=2sin=-2cosx,当x<时,f(x)=2sin=2sin=2cosx.综上分析知,选C.2.如图所示,函数y=cosx·(0≤x<且x≠)的图象是( )【解析】选C.y=结合选项知,C正确.二、填空题(每小题5分,共10分)3.(·佳木斯高一检测)函数y=的定义域是________.【解析】由sinx≥0解得2kπ≤x≤2kπ+π,k∈Z,所以函数y=的定义域是[2kπ,2kπ+π],k ∈Z.答案:[2kπ,2kπ+π],k∈Z4.已知函数y=2sinx的图象与直线y=2围成一个封闭的平面图形,那么此封闭图形的面积________.【解析】如图所示,y=2sinx,x∈的图象与直线y=2围成的封闭平面图形面积相当于由x=,x=π,y=0,y=2围成的矩形面积,即S=×2=4π.答案:4π【延伸探究】将本例函数改为y=2cosx,x∈[0,2π],其他条件不变,结果又如何?【解析】作出函数y=2cosx,x∈[0,2π]的图象,函数y=2cosx,x∈[0,2π]的图象与直线y=2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC的面积,又因为|OA|=2,|OC|=2π,所以S平面图形=S矩形OABC=2×2π=4π.【补偿训练】(·淮南高一检测)如果直线y=m与函数y=sinx,x∈[0,2π)有且只有一个交点,则m=________;如果直线y=m与函数y=sinx,x∈[0,2π)有且只有两个交点,则m∈__________.【解题指南】画出y=sinx,x∈[0,2π)的图象,y=m是平行于x轴的一条直线,数形结合根据交点的个数判定m的范围.【解析】由y=sinx,x∈[0,2π)的图象知,m=±1时,y=m与其有一个交点;当m∈(-1,1)时,有且只有两个交点.答案:±1 (-1,1)三、解答题(每小题10分,共20分)5.用“五点法”作出函数y=1-cosx的简图.【解析】(1)列表x 0 π2πcosx 1 0 -1 0 11-cosx 1 1(2)描点,连线可得函数在[0,2π]上的图象,将函数图象向左,向右平移(每次2π个单位长度),就可以得到函数y=1-cosx的图象,如图所示.6.方程sinx=在x∈上有两个实数根,求a的取值范围.【解题指南】作出y=sinx,x∈的图象和直线y=,观察图象,由的取值范围,求a的取值范围.【解析】在同一直角坐标系中作出y=sinx,x∈的图象,y=的图象,由图象可知,当≤<1,即-1<a≤1-时,y=sinx,x∈的图象与y=的图象有两个交点,即方程sinx=在x∈上有两个实根.。

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图像(附答案)海黄和紫檀哪个更有价值怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网北京十里河古玩市场,美不胜收的各类手串让记者美不胜收。

“黄花梨和紫檀是数一数二的好料,市场认可度又高,所以我们这里专注做这两种木料的手串。

”端木轩的尚女士向记者引见说。

海黄紫檀领风骚手串是源于串珠与手镯的串饰品,今天曾经演化为集装饰、把玩、鉴赏于一体的特征珍藏品。

怕上当受骗,我们教你如何鉴别小叶紫檀的真伪!点击访问:木缘鸿官网“目前珍藏、把玩木质手串的人越来越多,特别是海黄和印度小叶檀最受藏家追捧,有人把黄花梨材质的手串叫做腕中黄金。

”纵观海南黄花梨近十年的价钱行情,不难置信尚女士所言非虚。

一位从事黄花梨买卖多年的店主夏先生通知记者,在他的记忆中,2000年左右黄花梨上等老料的价钱仅为60元/公斤,2002年大量收购时,价格也仅为2万元/吨左右,而往常,普通价钱坚持在7000-8000元/公斤,好点的1公斤料就能过万。

“你看这10年间海南黄花梨价钱涨了百余倍,都说水涨船高,这海黄手串的价钱自然也是一路飙升。

”“这串最低卖8000元,能够说是我们这里海黄、小叶檀里的一级品了,普通这种带鬼脸的海黄就是这个价位。

”檀梨总汇的李女士说着取出手串让记者感受一下,托盘里一串直径2.5mm的海南黄花梨手串熠熠生辉,亦真亦幻的自然纹路令人入迷。

当问到这里最贵的海黄手串的价钱时,李女士和记者打起了“太极”,几经追问才通知记者,“有10万左右的,普通不拿出来”。

同海南黄花梨并排摆放的是印度小叶檀手串,价位从一串三四百元到几千元不等。

李女士引见说,目前市场上印度小叶檀原料售价在1700元/公斤左右,带金星的老料售价更高,固然印度小叶檀手串的整体售价不如海黄手串高,但近年来有的也翻了数十倍,随着老料越来越少,未来印度小叶檀的升值空间很大。

“和海黄手串比起来,印度小叶檀的价钱相对低一些,普通买家能消费得起。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档