正弦函数和余弦函数的图像练习题
正弦函数与余弦函数的图象练习题

专项训练:正弦函数与余弦函数的图象一、单选题1.同时具有性质:①最小正周期是;②图象关于直线对称;③在上是增函数的一个函数是 ( )A .B .C .D .2.定义在上的函数既是偶函数又是周期函数,若的最小正周期是,且当时,,则的值为( ). A .B .C .D .3.函数的部分图象如图,则、可以取的一组值是( )A .B .C .D .4.函数,是A . 最小正周期为的奇函数B . 最小正周期为的偶函数C . 最小正周期为的奇函数 D . 最小正周期为的偶函数5.函数f (x )=4x -3tan x 在,22ππ⎛⎫- ⎪⎝⎭上的图象大致为( )A .B .C .D .6.如图是函数()(),(0)2f x cos x ππϕϕ<<=+的部分图象,则f (3x 0)=( )A .12 B . -12 C .3. 37.已知f (x )=sin(ωx +φ)(ω>0,|φ|〈2π)的最小正周期为π,若其图象向左平移π3个单位长度后关于y 轴对称,则( )A . ω=2,φ=π3B . ω=2,φ=π6C . ω=4,φ=π6D . ω=2,ω=-π68.函数y =sin2x +cos2x 最小正周期为A .B .C . πD . 2π9.函数f (x )=sin(ωx +φ) 0,2πωϕ⎛⎫>< ⎪⎝⎭的部分图象如图所示,若x 1,x 2∈,63ππ⎛⎫- ⎪⎝⎭,且f (x 1)=f (x 2),则f (x 1+x 2)=( )A .12B . 22C .32D . 1 10.下列函数中,周期为π,且在,42ππ⎡⎤⎢⎥⎣⎦上为减函数的是( )A . sin 2y x π⎛⎫=+ ⎪⎝⎭B . cos 2y x π⎛⎫=+ ⎪⎝⎭ C . cos 22y x π⎛⎫=+ ⎪⎝⎭ D . sin 22y x π⎛⎫=+ ⎪⎝⎭11.函数y =-sin x ,x ∈π3,22π⎡⎤-⎢⎥⎣⎦的简图是( )A .B .C .D .12.函数f (x )=sin π23x ⎛⎫+ ⎪⎝⎭的图象的对称轴方程可以为 ( )A . x=π12B . x=5π12 C . x=π3 D . x=π613.已知函数的部分图象如图所示,则函数的解析式为 ( )A .B .C .D .14.函数()22sin sin 44f x x x ππ⎛⎫⎛⎫=+-- ⎪ ⎪⎝⎭⎝⎭是( )。
三角函数(正弦函数与余弦函数)图像的变换及三角函数解析式的求法

三⾓函数(正弦函数与余弦函数)图像的变换及三⾓函数解析式的求法1、(安徽卷⽂8)函数sin(2)3y x π=+图像的对称轴⽅程可能是()A .6x π=-B .12x π=-C .6x π=D .12x π=2、(⼴东卷⽂5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是() A 、最⼩正周期为π的奇函数 B 、最⼩正周期为2π的奇函数 C 、最⼩正周期为π的偶函数 D 、最⼩正周期为2π的偶函数 3、(全国Ⅰ卷⽂6)2(sin cos )1y x x =--是() A .最⼩正周期为2π的偶函数B .最⼩正周期为2π的奇函数C .最⼩正周期为π的偶函数D .最⼩正周期为π的奇函数4、(湖南卷理6)函数2()sin cos f x x x x =在区间,42ππ??上的最⼤值是( )A.1C. 325、(天津卷⽂6)把函数sin ()y x x =∈R 的图象上所有的点向左平⾏移动3π个单位长度,再把所得图象上所有点的横坐标缩短到原来的12倍(纵坐标不变),得到的图象所表⽰的函数是()=-∈ R ,B .sin 26x y x π??=+∈ R ,C .sin 23y x x π?=+∈ ??R ,D .sin 23y x x 2π?=+∈ ??R ,6、(全国Ⅰ卷⽂9)为得到函数πcos 3y x ?=+ 的图象,只需将函数sin y x =的图像()A .向左平移π6个长度单位B .向右平移π6个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位7、(全国Ⅰ卷理8)为得到函数πcos 23y x ?=+ 的图像,只需将函数sin 2y x =的图像()A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位1.(安徽卷⽂8)函数sin(2)3=+图像的对称轴⽅程可能是()A .6x π=-B .12x π=-C .6x π=D .12x π=解:sin(2)3y x π=+的对称轴⽅程为232x k πππ+=+,即212k x ππ=+,0,12k x π== 2.(⼴东卷⽂5)已知函数2()(1cos2)sin ,f x x x x R =+∈,则()f x 是() A 、最⼩正周期为π的奇函数 B 、最⼩正周期为2π的奇函数 C 、最⼩正周期为π的偶函数 D 、最⼩正周期为2π的偶函数【解析】222211cos 4()(1cos 2)sin 2cos sin sin 224xf x x x x x x -=+===,选D.9.(全国Ⅰ卷⽂6)2(sin cos )1y x x =--是() A .最⼩正周期为2π的偶函数B .最⼩正周期为2π的奇函数C .最⼩正周期为π的偶函数D .最⼩正周期为π的奇函数sinx cosx,2sinxcosx 2y=1sin 2x 1=sin 2x T D2ππ±解析:本题主要考查了三⾓函数的化简,主要应⽤了与的关系,同时还考查了⼆倍⾓公式和函数的奇偶性和利⽤公式法求周期。
高埂中学“正弦函数和余弦函数的图像和性质”练习题

正弦函数、余弦函数的图像和性质1.函数y =-sin x ,x ∈⎣⎡⎦⎤-π2,3π2的简图是( )2方程sin x =x10的根的个数是( )A .7B .8C .9D .10 3下列关系式中正确的是( )A .sin 11°<cos 10°<sin 168°B .sin 168°<sin 11°<cos 10°C .sin 11°<sin 168°<cos 10°D .sin 168°<cos 10°<sin 11° 4. 设函数f (x )=sin ⎝⎛⎭⎫2x -π2,x ∈R ,则f (x )是( )A .最小正周期为π的奇函数B .最小正周期为π的偶函数C .最小正周期为π2的奇函数D .最小正周期为π2的偶函数5. 定义在R 上的函数f (x )既是奇函数又是周期函数,若f (x )的最小正周期为π,且当x ∈⎣⎡⎭⎫-π2,0时,f (x )=sin x ,则f ⎝⎛⎭⎫-5π3的值为( )A .-12B.12 C .-32D.32 6. 下列函数中,周期为2π的是( ) A .y =sin x2B .y =sin 2xC .y =⎪⎪⎪⎪sin x 2 D .y =|sin 2x | 7. 函数y =|sin x |的一个单调增区间是( )A.⎝⎛⎭⎫-π4,π4B.⎝⎛⎭⎫π4,3π4C.⎝⎛⎭⎫π,3π2 D.⎝⎛⎭⎫3π2,2π 8下列函数中,周期为π,且在⎣⎡⎦⎤π4,π2上为减函数的是( )A .y =sin(2x +π2 )B .y =cos(2x +π2)C .y =sin(x +π2)D .y =cos(x +π2)9.函数y = sin ⎪⎭⎫⎝⎛-x 2 4π的单调增区间是( )A.⎥⎦⎤⎢⎣⎡+-8π3π 8π3πk k ,,k ∈Z B.⎥⎦⎤⎢⎣⎡++8π5π 8ππk k ,,k ∈ZC.⎥⎦⎤⎢⎣⎡+-83ππ 8ππk k ,,k ∈ZD.⎥⎦⎤⎢⎣⎡++87ππ 83ππk k ,,k ∈Z 10已知函数f (x )对于任意实数x 满足条件f (x +2)=-1f (x )(f (x )≠0).若f (1)=-5,f (f (5))的值.A 15 B —15 C 5 D —511. 函数f (x )=sin ⎝⎛⎭⎫2πx +π4的最小正周期是________. 12 设函数f (x )=sin π3x ,则f (1)+f (2)+f (3)+…+f (2 013)=________.13 函数y =2cos x +1的定义域是___________14 关于函数f (x )=4sin ⎪⎭⎫ ⎝⎛+3π2x (x ∈R ),有下列命题:①函数 y = f (x )的表达式可改写为y = 4cos(2x -π6);②函数 y = f (x )是以2π为最小正周期的周期函数;③函数 y = f (x )的图象关于点⎪⎭⎫⎝⎛-0 6π,对称;④函数 y = f (x )的图象关于直线x = - π6对称. 其中正确的是 .15函数y =2sin(2x +π3)(-π6≤x ≤π6)的值域是________.16(1)设|x |≤π4,求函数f (x )=cos 2x +sin x 的最小值.(2)求函数y =12log cos -32x π⎛⎫⎪⎝⎭的单调增区间.17.已知f (x )是以π为周期的偶函数,且x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x ,求当x ∈⎣⎡⎦⎤52π,3π时f (x )的解析式.答案1.D 2.B 3.B 4.D 5.D 6.1 7.±3 8.(1)奇函数 (2)偶函数 (3)奇函数 9.C 10. 3 11.解 ∵sin x +1+sin 2x ≥sin x +1≥0,若两处等号同时取到, 则sin x =0且sin x =-1矛盾, ∴对x ∈R 都有sin x +1+sin 2x >0. ∵f (-x )=ln(-sin x +1+sin 2x ) =ln(1+sin 2x -sin x ) =ln(1+sin 2x +sin x )-1=-ln(sin x +1+sin 2x )=-f (x ), ∴f (x )为奇函数. 12.解 x ∈⎣⎡⎦⎤52π,3π时, 3π-x ∈⎣⎡⎦⎤0,π2, ∵x ∈⎣⎡⎦⎤0,π2时,f (x )=1-sin x , ∴f (3π-x )=1-sin(3π-x ) =1-sin x .又∵f (x )是以π为周期的偶函数, ∴f (3π-x )=f (-x )=f (x ),∴f (x )的解析式为f (x )=1-sin x ,x ∈⎣⎡⎦⎤52π,3π. 13.(1)证明 ∵f (x +2)=-1f (x ), ∴f (x +4)=-1f (x +2)=-1-1f (x )=f (x ),∴f (x )是周期函数,4就是它的一个周期. (2)解 ∵4是f (x )的一个周期. ∴f (5)=f (1)=-5, ∴f (f (5))=f (-5)=f (-1) =-1f (-1+2)=-1f (1)=15.。
正弦余弦函数基础测试题

正弦余弦函数基础测试题一. 单选题1 .如果函数y = 3sin (x+ 20 +彳)的图象关于直线X =兀对称,那么岡取最小值时(P 的值为()A.-πB.——c. π~πD ・——63 362.函数y = 2cos f 1Tr)< 34丿—√2的最小正周期是()A. 2πB.-C. 6πD ・3π33∙已知函数厂屈in 出+ p 是奇函数,则0的值可以是()A. OB. ------C.—4 2(2 >4.函数/(x) = 2Sin 羊-于的周期为()—4龙 A •龙 B. —C. 3/r35.已知函数/(X) = -SillX(XWR),下列结论错误的是()A ・函数/(兀)的最小正周期是2;T B. 函数/(x )在区间]θ,彳]上是减函数 C. 函数/(X )的图像关于直线T 对称乙D.函数/(兀)为偶函数6.下列关于函数y=4sinx,灼[0,2龙]的单调性的叙述,正确的是() A. 在[0,龙]上单调递增,在[π,2π]上单调递减■ ■B.在上单调递增,在 牛2兀上单调递减乙 厶D.在壬,斗上单调递增,在上单调递减上单调递减C∙在。
冷D ・πD ・12函数/(x) = cosp + fj 的最小正周期是(二、填空题Jr 1 113. 若函数/(Λ-) = sin(^Λ---)(6υ>0)的最小正周期为L 则/(-)= _________________________O 5 3 Z \14. 已知函数/(X) = Sin 2x-f ,若对任意实数X 都有/(X 1)≤∕(X )≤∕(Λ2),则∖ b 丿 IA-I -X 2∣的最小值为 ________________ .15. 已知/(X) = √cosx +1,若/(") = 10,则f{-a)= _______________________ . 6 不等式CoSXV0, x ∈[0, 2刃的解集为 _____________ .三. 解答题7. A. B. πC. 2πD. 4π8. 若函数y = cos ωx +\ π12> (Q>0)的最小正周期为2,则0=( A. B ・2C ・πD. 2π9. 已知x ∈[0,Λ∙],贝IJ 满足COSX>-1的X 的取值范用是()A.B.KM T -10. D.设函数/(x) = 2cos(2x + 0)为偶函数,则0不可能取值为(A. C.一兀D. 2π11.函数y = 3cos 2x-I 的一个对称中心是X 丿A.(t∙θ)B. C.3π CT'0D.12. 函数/(x) = Sin(X+ <9)在[0"]上为增函数,则&的值可以是(A. 0D.3πTC.17•用五点法作出下列函数在[0,2刃上的图像,并说明它们与y = sinx, X ∈[0,2Λ∙]的图像的关系.(1) y =-sinx ; (2) y = sinx-l.18. 已知函数/(x) = 3sin(2x-¾.(1)用“五点法”作出函数y = ∕d)在一个周期闭区间上的图象(请先列表,再描点, 图中每个小矩形的宽度为2):12(2)请根据图象写出函数畑在[石方上的单调区间及在区间上的值域*(1)化简/(«):(2)若—彳VaV 彳,且f(a)<-t 求&的取值范围.19. Sin \π— -a 2丿・ tan (∕r + α)-COS (∕r -α) 2-14 sin1 2 ) + cos(∕r -α) + cos(2∕r -α)y已知/(α) =20. 函数f(x) = 4cos(<υx+0)9>0,τr<0vθ)的图象与>'轴的交点为(θ,2√J), 且当|/ (西)一 /(吃)| = 8时,卜1 一的最小值为2;T ■(1) 求血和0的值;(2) 求y(x)在区间[0,2龙]上的值域21. 求使下列函数取得最大值和最小值时的X 的值,并求岀函数的最大值和最小值. y = -sin 2x+√3sinr+f(1)求函数/(兀)图像的对称中心以及函数的单调递减区间; ,y= cos 2%-sinx\乙)(2)若0W (O M ), f参考答案1. A【分析】根据三角函数的对称性可得π + 2φ + - = - + kπ理得φ = - + -_龙,结合|列取最小6 2 6 2值时,即可得出。
正弦、余弦函数的图像和性质的练习题

一题多变
2
新余市第六中学 高中数学 必修④
三、解答题
解: 令 sin x t , 则 1 t 1 7 2 则有函数 f (t ) t t (1 t 1) 4 画出函数f (t )的图像,如图所示
7 12、求函数 f ( x) sin x sin 2 x( x R)的值域 4
2
2
1
令 cos x t , 则有-1 t 1
2
则有f (t ) 1 t 3t (1 t 1)
2
-1
1
O
1
2
x
画出函数f (t )的图像,如图所示
通过观察发现
2
3
新余市第六中学 高中数学 必修④
一题多变
三、解答题
判断函数f ( x) sin 2 x 3 cos x( x R)的奇偶性,并求其值域 。
解得
a0
a的取值范围为 a0
一题多变 m 1 m3 已知 - x , cos x , 则m的取值范围是 __________ 。 6 3 m 1
新余市第六中学 高中数学 必修④
二、填空题
。 [0, ] 2 11 、不等式sin x 0在x [0,2 ]上的解集为__________ ____
y
2 1
通过观察发现
-1
1
O
1
2
x
1 b b 当x 1时, f (1) min 当x 时, f ( ) max 2 4 2a 2a 7 1 2 函数 f (t ) t t (1 t 1)的值域为 [ ,2] 4 4 7 1 函数 f ( x) sin 2 x sin x ( x R)的值域为 [ ,2] 4 4
正弦函数、余弦函数的图像(附答案)

正弦函数、余弦函数的图象[学习目标]1•了解利用单位圆中的正弦线画正弦曲线的方法.2.掌握“五点法”画正弦曲线和余弦曲线的步骤和方法,能用“五点法”作出简单的正弦、余弦曲线.3.理解正弦曲线与余弦曲线之间的联系. -=知识梳理自主学习知识点一正弦曲线正弦函数y = sin x(x€ R)的图象叫正弦曲线.利用几何法作正弦函数y= sin x, x€ [0,2 n]图象的过程如下:①作直角坐标系,并在直角坐标系y轴的左侧画单位圆,如图所示.②把单位圆分成12等份(等份越多,画出的图象越精确).过单位圆上的各分点作x轴的垂线,可以得到对应于0, £ n,扌,…,2n等角的正弦线.6 3 2③找横坐标:把x轴上从0到2 n (2 6.28一段分成12等份.④平移:把角x的正弦线向右平移,使它的起点与x轴上的点x重合.⑤连线:用光滑的曲线将这些正弦线的终点依次从左到右连接起来,即得y= sin x, x€ [0,2 n]的图象.在精度要求不太高时,y= sin x, x € [0,2 诃以通过找出(0,0),(寸,1), ( n 0) , (# —1),(2 n 0)五个关键点,再用光滑曲线将它们连接起来,就可得正弦函数的简图.思考在所给的坐标系中如何画出y= sin x, x€ [0,2 7的图象?如何得到y= sin x, x€ R的图象?只要将函数y= sin x, x€ [0,2 n的图象向左、向右平行移动(每次2n个单位长度),就可以得到正弦函数y= sin x, x€ R的图象.知识点二余弦曲线余弦函数y= cos x(x€ R)的图象叫余弦曲线.n n 根据诱导公式sin x+ 2 = cos x, x€ R.只需把正弦函数y= sin x, x€ R的图象向左平移-个单位长度即可得到余弦函数图象(如图).n 3要画出y = cos x, x€ [0,2従的图象,可以通过描出(0,1),勺,0,(n - 1), 0 , (2 n 1)五个关键点,再用光滑曲线将它们连接起来,就可以得到余弦函数y= cos x, x€ [0,2的图象.思考在下面所给的坐标系中如何画出y= cos x, x€ [0,2品的图象?答案题型探究重点突破题型一五点法”作图的应用例1利用五点法”作出函数y= 1-sin x(0 * 2曲)简图. 解(1)取值列表:⑵描点连线,如图所示:跟踪训练1作函数y = sin x , x € [0,2 n 与函数y =— 1 + sin x , x € [0,2冗的简图,并研究它 们之间的关系. 解按五个关键点列表:x 0 n2 n3 n ~22 n sin x1 0—1 0—1 + sin x—1 0—1 —2—1利用正弦函数的性质描点作图:x € [0,2 的图象.题型二利用正弦、余弦函数图象求定义域 例2 求函数f(x)= lg sin x +寸16 — x 2的定义域. sin x>0,解由题意得,x 满足不等式组216 — x 2 >0,—4 w x W 4,即作出y = sin x 的图象,如图所示.sin x>0,y =— 1 + sin x , 由图象可以发现,把结合图象可得定义域:x€ [ —4,—nU (0, n)跟踪训练2 求函数f(x)= lg cos x+ 25-x2的定义域.cos x>0解由题意得,x满足不等式组25—"0,cos x>0即—5W迄5,作出y= C0S x的图象,如图所示.结合图象可得定义域:x € —5,—3 nU题型三利用正弦、余弦函数图象判断零点个数例3在同一坐标系中,作函数y= sin x和y= lg x的图象,根据图象判断出方程sin x = lg x 的解的个数.解建立坐标系xOy,先用五点法画出函数y= sin x, x€ [0,2冗的图象,再依次向左、右连续平移2 n个单位,得到y= sin x的图象.描出点(1,0), (10,1)并用光滑曲线连接得到y= lg x的图象,如图所示.由图象可知方程sin x= lg x的解有3个.跟踪训练3方程x2—cos x = 0的实数解的个数是___________答案2解析作函数y= cos x与y= x2的图象,如图所示,由图象,可知原方程有两个实数解.思韻方法数形结合思想在三角函数中的应用例4函数f(x) = sin x+ 2|sin x|, x€ [0,2冗的图象与直线y= k有且仅有两个不同的交点,求k 的取值范围.3sin x, x € [0 , n,解f(x)= sin x+ 2|sin x|=—sin x, x€ n 2 n ].图象如图,F当堂检测自查自纠1.函数y= sin x (x€ R)图象的一条对称轴是()A. x轴B. y轴C.直线y= x D .直线x = 22.用五点法画y= sin x, x€ [0,2的图象时,下列哪个点不是关键点()1 A.(6,2)% 八B.(2, 1)C. ( , 0)D. (2 , 0)3.函数y= sin x, x€ [0,21 亠的图象与直线y= —2的交点为A(X1, y1), B(x2, y2),贝U X1 + x24. 利用五点法”画出函数y= 2-sin x, x€ [0,2的简图.5. 已知O w x< 2 n^试探索sin x与cos x的大小关系.若使f(x)的图象与直线y=k有且仅有两个不同的交点,根据图可得k的取值范围是(1,3).A'课时精练、选择题n 3 n1函数y= —sin x, x€ —2, y 的简图是()2. 在同一平面直角坐标系内,函数y= sin x, x€ [0,2 与y= sin x, x€ [2 n 4 n的图象()A .重合B .形状相同,位置不同C.关于y轴对称sin x= 10的根的个数是3.方程4.D .形状不同,位置不同B. 8C. 9D. 10函数A'3 n n5.如图所示,函数y= cos x阳n x|(0且x③的图象是()D6. 若函数y= 2cos x(0< x< 2 n的图象和直线y= 2围成一个封闭的平面图形,则这个封闭图形的面积是()A . 4B . 8C . 2 nD . 4 n二、填空题7. __________________________________________________ 函数y= ” . log^sin x的定义域是_________________________________________________________ .&函数y= _ 2cos x+ 1的定义域是 ___________ .___ 19. 函数f(x) = >,'sin 或为 ---------------- .10. _______________________________________________________________ 设0<x< 2 n,且|cos x—sin x|= sin x—cos x,贝U x 的取值范围为 ______________________ .三、解答题111. 用“五点法”画出函数y = 2 + sin x, x€ [0,2 n的简图.12. 根据y= cos x的图象解不等式:-于三cos x< 2, x€ [0,2 n]13. 分别作出下列函数的图象.(1) y= |sin x|, x€ R;(2) y= sin|x|, x€ R.当堂检测答案1答案 D 2. 答案 A 3. 答案 3n 解析如图所示, _ 3 nx i + X 2= 2 = 3 n. 4.解(1)取值列表如下:x 0 n2 n3n~22 n sin x 0 1 0 —i 0 y = 2— sin x21232⑵描点连线,图象如图所示:由图象可知 ①当x =m 或x = 5n时,sin x = cos x ;44③当 O W x <n或5n<x< 2 n时,sin x <cos x. 课时精炼答案一、选择题 1•答案 D 2.答案 B5 •解用“五点法”作出sin x>cos x ;解析根据正弦曲线的作法可知函数y= sin x, x€ [0,2 n与y= sin x, x€ [2 n 4n的图象只是位置不同,形状相同.3. 答案Ax解析在同一坐标系内画出y= 10和y= sin x的图象如图所示:¥=血JT根据图象可知方程有7个根.4. 答案D解析由题意得n 32cos x, 0或2 n 炸2,c 冗30, 2<x<2 n.显然只有D合适.5. 答案C解析当冗当2<x< n时,y= cos x • |tan| =—sin x;当n<<3n寸,y= cos x |tax|= sin x,故其图象为C.6. 答案D解析作出函数y = 2cos x, x€ [0,2 n]图象,函数y = 2cos x,x€ [0,2 n的图象与直线y = 2围成的平面图形为如图所示的阴影部分. 利用图象的对称性可知该阴影部分的面积等于矩形OABC的面积,又••• OA= 2, OC= 2n,S阴影部分=S矩形OABC = 2 X 2 n= 4 n.、填空题7. 答案{x|2k n<<2k n+ n k€ Z}1解析由log2sin x> 0知0<sin x< 1,由正弦函数图象知2kn«2k n+n k€乙… 2 2& 答案2k n—3冗,2k n+ k€ Z1 2 2解析2cos x+ 1> 0 , cos x>—2,结合图象知x€ 2k n— " n, 2k n+" n , k€ Z.9.答案(一4,— nU [0 , n]sin x > 0, 2kx < 2k n+ n,解析2?16— x 2>0 — 4<x<4? — 4<x W — n 或 0 < x W n. 解析 由题意知sin x — cos x >0, 即卩cos x W sin x ,在同一坐标系画出 y = sin x , x € [0,2 n 与三、解答题11•解(1)取值列表如下:x 0 n2 n3 2n 2 n sin x 0 1 0 —1 0 1 ,. 1 3 1 1 1 -+ sin x222222⑵描点、连线,如图所示.12.解 函数y = cos x , x € [0,2 n 的图象如图所示: 根据图象可得不等式的解集为n, ,5 n 7 n, , 5 n{x|—W x < 或一W x < }3 6 63,.10.答案n 5 n 4,~4y = cos x , x € [0,2n 观察图象知x € 4, 5 n~4 .n 的图象,sin x 2k x< 2k n+n, 13.解(1)y= |sin x|=—sin x 2k n+n<W 2k n+ 2 n(k€ Z).其图象如图所示,sin x x>0 ,(2)y= sin |x| =—sin x x<0 .其图象如图所示,。
1.4.1正弦函数、余弦函数的图象知识点归纳与练习(含详细答案)

第一章 三角函数 §1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象课时目标 1.了解正弦函数、余弦函数的图象.2.会用“五点法”画出正弦函数、余弦函数的图象.1.正弦曲线、余弦曲线2.“五点法”画图画正弦函数y =sin x ,x ∈[0,2π]的图象,五个关键点是_________________________; 画余弦函数y =cos x ,x ∈[0,2π]的图象,五个关键点是__________________________. 3.正、余弦曲线的联系依据诱导公式cos x =sin ⎝⎛⎭⎫x +π2,要得到y =cos x 的图象,只需把y =sin x 的图象向________平移π2个单位长度即可.知识点归纳:1.正、余弦曲线在研究正、余弦函数的性质中有着非常重要的应用,是运用数形结合思想解决三角函数问题的基础.2.五点法是画三角函数图象的基本方法,要熟练掌握,与五点法作图有关的问题是高考常考知识点之一.一、选择题1.函数y =sin x (x ∈R )图象的一条对称轴是( ) A .x 轴 B .y 轴C .直线y =xD .直线x =π22.函数y =cos x (x ∈R )的图象向右平移π2个单位后,得到函数y =g (x )的图象,则g (x )的解析式为( )A .-sin xB .sin xC .-cos xD .cos x3.函数y =-sin x ,x ∈[-π2,3π2]的简图是( )4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( ) A.⎝⎛⎭⎫π4,3π4 B.⎝⎛⎦⎤π4,π2∪⎝⎛⎦⎤5π4,3π2 C.⎝⎛⎭⎫π4,π2 D.⎝⎛⎭⎫5π4,7π4 5.若函数y =2cos x (0≤x ≤2π)的图象和直线y =2围成一个封闭的平面图形,则这个封闭图形的面积是( )A .4B .8C .2πD .4π 6.方程sin x =lg x 的解的个数是( )A .1B .2C .3D .4 题 号 1 2 3 4 5 6 答 案 7.函数y =sin x ,x ∈R 的图象向右平移π2个单位后所得图象对应的函数解析式是__________.8.函数y =2cos x +1的定义域是________________. 9.方程x 2-cos x =0的实数解的个数是________.10.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________. 三、解答题11.利用“五点法”作出下列函数的简图: (1)y =1-sin x (0≤x ≤2π); (2)y =-1-cos x (0≤x ≤2π).12.分别作出下列函数的图象.(1)y=|sin x|,x∈R;(2)y=sin|x|,x∈R.能力提升13.求函数f(x)=lg sin x+16-x2的定义域.14.函数f(x)=sin x+2|sin x|,x∈[0,2π]的图象与直线y=k有且仅有两个不同的交点,求k 的取值范围.§1.4 三角函数的图象与性质 1.4.1 正弦函数、余弦函数的图象答案知识梳理2.(0,0),⎝⎛⎭⎫π2,1,(π,0),⎝⎛⎭⎫32π,-1,(2π,0) (0,1),⎝⎛⎭⎫π2,0,(π,-1),⎝⎛⎭⎫32π,0,(2π,1) 3.左 作业设计1.D 2.B 3.D 4.A [∵sin x >|cos x |,∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图象,观察图象易得x ∈⎝⎛⎭⎫π4,34π.] 5.D [作出函数y =2cos x ,x ∈[0,2π]的图象,函数y =2cos x ,x ∈[0,2π]的图象与直线y =2围成的平面图形,如图所示的阴影部分.利用图象的对称性可知该平面图形的面积等于矩形OABC 的面积,又∵|OA |=2,|OC |=2π, ∴S 平面图形=S 矩形OABC =2×2π=4π.]6.C [用五点法画出函数y =sin x ,x ∈[0,2π]的图象,再依次向左、右连续平移2π个单位,得到y =sin x 的图象.描出点⎝⎛⎭⎫110,-1,(1,0),(10,1)并用光滑曲线连接得到y =lg x 的图象,如图所示.由图象可知方程sin x =lg x 的解有3个.]7.y =-cos x解析 y =sin x 2π−−−−−−→向右平移个单位y =sin ⎝⎛⎭⎫x -π2 ∵sin ⎝⎛⎭⎫x -π2=-sin ⎝⎛⎭⎫π2-x =-cos x ,∴y =-cos x . 8.⎣⎡⎦⎤2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12,结合图象知x ∈⎣⎡⎦⎤2k π-23π,2k π+2π3,k ∈Z . 9.2解析 作函数y =cos x 与y =x 2的图象,如图所示, 由图象,可知原方程有两个实数解.10.⎣⎡⎦⎤π4,5π4解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与 y =cos x ,x ∈[0,2π]的图象,如图所示:观察图象知x ∈[π4,54π].11.解 利用“五点法”作图 (1)列表:X 0 π2 π 3π2 2π sin x 0 1 0 -1 0 1-sin x1121描点作图,如图所示.(2)列表:X0 π2 π 3π2 2π cos x 1 0 -1 0 1 -1-cos x-2-1-1-2描点作图,如图所示.12.解 (1)y =|sin x |=⎩⎪⎨⎪⎧sin x (2k π≤x ≤2k π+π)-sin x (2k π+π<x ≤2k π+2π) (k ∈Z ).其图象如图所示,(2)y =sin|x |=⎩⎪⎨⎪⎧sin x (x ≥0)-sin x (x <0),其图象如图所示,13.解 由题意,x 满足不等式组⎩⎪⎨⎪⎧ sin x >016-x 2≥0,即⎩⎪⎨⎪⎧-4≤x ≤4sin x >0,作出y =sin x 的图象,如图所示.结合图象可得:x ∈[-4,-π)∪(0,π).14.解 f (x )=sin x +2|sin x |=⎩⎪⎨⎪⎧3sin x x ∈[0,π],-sin x x ∈(π,2π].图象如图,若使f (x )的图象与直线y =k 有且仅有两个不同的交点,根据上图可得k 的取值范围是(1,3).。
三角函数的图像和变换以及经典习题和答案

3.4函数sin()y A x ωϕ=+的图象与变换【知识网络】1.函数sin()y A x ωϕ=+的实际意义;2.函数sin()y A x ωϕ=+图象的变换(平移平换与伸缩变换) 【典型例题】 [例1](1)函数3sin()226x y π=+的振幅是 ;周期是 ;频率是 ;相位是 ;初相是 .(1)32; 14π;26x π+;6π (2)函数2sin(2)3y x π=-的对称中心是 ;对称轴方程是;单调增区间是 . (2)(,0),26k k Z ππ+∈;5,212k x k Z ππ=+∈; ()5,1212k k k z ππππ⎡⎤-++∈⎢⎥⎣⎦(3) 将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象如图所示,则平移后的图象所对应函数的解析式是( )A .sin()6y x π=+ B .sin()6y x π=- C .sin(2)3y x π=+D .sin(2)3y x π=- (3)C 提示:将函数sin (0)y x ωω=>的图象按向量,06a π⎛⎫=- ⎪⎝⎭平移,平移后的图象所对应的解析式为sin ()6y x πω=+,由图象知,73()1262πππω+=,所以2ω=. (4) 为了得到函数R x x y ∈+=),63sin(2π的图像,只需把函数R x x y ∈=,sin 2的图像上所有的点 ( )(A )向左平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变) (B )向右平移6π个单位长度,再把所得各点的横坐标缩短到原来的31倍(纵坐标不变)(C )向左平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变)(D )向右平移6π个单位长度,再把所得各点的横坐标伸长到原来的3倍(纵坐标不变) (4)C 先将R x x y ∈=,sin 2的图象向左平移6π个单位长度,得到函数2sin(),6y x x R π=+∈的图象,再把所得图象上各点的横坐标伸长到原来的3倍(纵坐标不变)得到函数R x x y ∈+=),63sin(2π的图像(5)将函数x x f y sin )(= 的图象向右平移4π个单位后再作关于x 轴对称的曲线,得到函数x y 2sin 21-=的图象,则)(x f 的表达式是 ( )(A )x cos (B )x cos 2 (C )x sin (D )x sin 2 (5)B 提示: 212sin cos 2y x x =-=的图象关于x 轴对称的曲线是cos 2y x =-,向左平移4π得cos 2()sin 24y x x π=-+=2sin cos x x =[例2]已知函数2()2cos 2,(01)f x x x ωωω=+<<其中,若直线3x π=为其一条对称轴。