2019年高考数学(文科)一轮分层演练 含解析 第3章导数及其应用 第4讲
2019年高考数学(文科)一轮分层演练:第3章导数及其应用章末总结(含答案解析)

章末总结知识点考纲展示导数概念及其几何意义,导数的运算❶了解导数概念的实际背景,理解导数的几何意义.❷能根据导数的定义求函数y=C(C为常数),y=x,y=x2,y=1x的导数.❸能利用基本初等函数的导数公式和导数的四则运算法则求简单函数的导数.导数在研究函数中的应用❶了解函数单调性和导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数一般不超过三次).❷了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数一般不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数一般不超过三次).❸会利用导数解决某些实际问题.考点考题考源导数的几何意义(2015·高考全国卷Ⅱ,T16,5分)已知曲线y=x+ln x在点(1,1)处的切线与曲线y=ax2+(a+2)x+1相切,则a=________.选修1-1 P85 A组T6 (2016·高考全国卷Ⅲ,T16,5分)已知f(x)为偶函数,当x≤0时,f(x)=e-x-1-x,则曲线y=f(x)在点(1,2)处的切线方程是____________.选修1-1 P85 A组T6 (2017·高考全国卷Ⅰ,T14,5分)曲线y=x2+1x在点(1,2)处的切线方程为____________________.选修1-1 P110 A组T1导数的应用(2016·高考全国卷Ⅲ,T21,12分)设函数f(x)=ln x-x+1.(1)讨论f(x)的单调性;(2)证明当x∈(1,+∞)时,1<x-1ln x<x;(3)设c>1,证明当x∈(0,1)时,1+(c-1)x>c x.选修1-1 P99B组(3)(4) (2017·高考全国卷Ⅲ,T21,12分)已知函数f(x)=ln x+ax2+(2a+1)x.(1)讨论f(x)的单调性;(2)当a<0时,证明f(x)≤-34a-2.(2017·高考全国卷Ⅲ,T21,12分)已知函数f(x)=x-1-a ln x.(1)若f(x)≥0,求a的值;(2)设m为整数,且对于任意正整数n,⎝⎛⎭⎫1+12⎝⎛⎭⎫1+122…·⎝⎛⎭⎫1+12n<m,求m的最小值.二、根置教材,考在变中一、选择题1.(选修1-1 P110A组T2(2)改编)曲线f(x)=e x ln x在x=1处的切线与坐标轴围成的三角形的面积为()A .eB .e2C .e 4D .2e解析:选B.f ′(x )=e xln x +e x x =e x (ln x +1x),所以f ′(1)=e ,f (1)=0,所以曲线f (x )=e x ln x 在x =1处的切线方程为y =e(x -1),令x =0,得y =-e ,令y =0,得x =1. 所以切线与坐标轴围成的三角形面积为 S =12×e ×1=e2,故选B. 2.(选修1-1 P 104 A 组T 2改编)将一边长为4的正方形铁片四角截去大小相同的四个小正方形后,做成一个无盖方盒,则方盒的最大容积为( )A .4B.12827C .6D .8解析:选B.设截去的小正方形的边长为x ,则做成的方盒体积V (x )=x (4-2x )2=4x 3-16x 2+16x (0<x <2), V ′(x )=12x 2-32x +16=4(3x 2-8x +4)=4(x -2)(3x -2),当V ′(x )=0时,x =23;V ′(x )>0时,0<x <23;V ′(x )<0时,23<x <2,所以V (x )在⎝⎛⎭⎫0,23上是增函数,在⎝⎛⎭⎫23,2上是减函数, 所以V (x )max =V ⎝⎛⎭⎫23=12827.选B.3.(选修1-1 P 99 B 组(3)改编)已知e 是自然对数的底数,若函数f (x )=e x -x +a 的图象始终在x 轴的上方,则实数a 的取值范围为( )A .[-2,2]B .(-∞,-2)∪(2,+∞)C .(-1,+∞)D .(-∞,-2]∪[2,+∞) 解析:选C.因为函数f (x )=e x -x +a 的图象始终在x 轴的上方,所以f (x )=e x -x +a 的最小值大于零.由f ′(x )=e x -1=0,得x =0,当x ∈(-∞,0)时,f ′(x )<0,f (x )单调递减;当x ∈(0,+∞)时,f ′(x )>0,f (x )单调递增.所以f (x )=e x -x +a 的最小值为f (0)=1+a ,由1+a >0,得实数a 的取值范围为(-1,+∞).4.(选修1-1 P 99 A 组T 6(2)改编)已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k ,2]上的最大值为28,则( ) A .k ≥-3 B .k >-3 C .k ≤-3 D .k <-3解析:选C.由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:x (-∞,-3)-3 (-3,1) 1 (1,+∞)f ′(x ) +0 -0 +f (x )极大值极小值又f (二、填空题5.(选修1-1 P 99 B 组(4)改编)已知f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax (a >12),当x ∈(-2,0)时,f (x )的最小值为1,则a 的值为________.解析:因为f (x )是奇函数,所以f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0,得x =1a ,又a >12,所以0<1a <2.令f ′(x )>0,得x <1a ,所以f (x )在(0,1a )上单调递增;令f ′(x )<0,得x >1a ,所以f (x )在(1a ,2)上单调递减.所以当x ∈(0,2)时,f (x )max =f (1a )=ln 1a -a ·1a =-1,所以ln 1a =0,所以a =1. 答案:1 6.(选修1-1 P 98练习(2)改编)设函数f (x )=kx 3-3x +1(x ∈R ),若对于任意x ∈[-1,1],都有f (x )≥0成立,则实数k 的值为________.解析:若x =0,则不论k 取何值,f (x )≥0都成立; 当x >0,即x ∈(0,1]时,f (x )=kx 3-3x +1≥0可化为k ≥3x 2-1x 3.设g (x )=3x 2-1x 3,则g ′(x )=3(1-2x )x 4,所以g (x )在区间⎝⎛⎦⎤0,12上单调递增, 在区间⎣⎡⎦⎤12,1上单调递减, 因此g (x )max =g ⎝⎛⎭⎫12=4,从而k ≥4; 当x <0,即x ∈[-1,0)时,f (x )=kx 3-3x +1≥0可化为k ≤3x 2-1x 3,g (x )=3x 2-1x 3在区间[-1,0)上单调递增,因此g (x )min =g (-1)=4,从而k ≤4,综上k =4. 答案:4 三、解答题 7.(选修1-1 P 99B 组(4)改编)已知函数f (x )=ln x -x .(1)判断函数f (x )的单调性;(2)函数g (x )=f (x )+x +12x -m 有两个零点x 1,x 2,且x 1<x 2.求证:x 1+x 2>1.解:(1)由题意得,函数f (x )的定义域为(0,+∞). f ′(x )=1x -1=1-x x ,由f ′(x )=1-x x >0,得0<x <1;由f ′(x )=1-x x<0,得x >1.所以函数f (x )的单调递增区间为(0,1),函数f (x )的单调递减区间为(1,+∞). (2)证明:根据题意得,g (x )=ln x +12x -m (x >0),因为x 1,x 2是函数g (x )=ln x +12x -m 的两个零点,所以ln x 1+12x 1-m =0,ln x 2+12x 2-m =0.两式相减,可得lnx 1x 2=12x 2-12x 1, 即ln x 1x 2=x 1-x 22x 2x 1,故x 1x 2=x 1-x 22lnx 1x 2.所以x 1=x 1x 2-12ln x 1x 2,x 2=1-x 2x 12ln x 1x 2.令t =x 1x 2,其中0<t <1,则x 1+x 2=t -12ln t +1-1t 2ln t =t -1t 2ln t .构造函数h (t )=t -1t -2ln t (0<t <1),则h ′(t )=(t -1)2t 2.因为0<t <1,所以h ′(t )>0恒成立,故h (t )<h (1),即t -1t -2ln t <0.又因为ln t <0,所以t -1t2ln t>1,故x 1+x 2>1.8.(选修1-1 P 99B 组(1)(3)改编)设函数f (x )=e x +a sin x +b .(1)当a =1,x ∈[0,+∞)时,f (x )≥0恒成立,求b 的范围;(2)若f (x )在x =0处的切线为x -y -1=0,求a 、b 的值.并证明当x ∈(0,+∞)时,f (x )>ln x . 解:(1)由f (x )=e x +a sin x +b , 当a =1时,得f ′(x )=e x +cos x .当x ∈[0,+∞)时,e x ≥1,cos x ∈[-1,1],且当cos x =-1时,x =2k π+π,k ∈N ,此时e x >1.所以f ′(x )=e x +cos x >0,即f (x )在[0,+∞)上单调递增,所以f (x )min =f (0)=1+b ,由f (x )≥0恒成立,得1+b ≥0,所以b ≥-1.(2)由f (x )=e x +a sin x +b 得f ′(x )=e x +a cos x ,且f (0)=1+b .由题意得f ′(0)=e 0+a =1,所以a =0. 又(0,1+b )在切线x -y -1=0上. 所以0-1-b -1=0.所以b =-2. 所以f (x )=e x -2.先证e x -2>x -1,即e x -x -1>0(x >0), 令g (x )=e x -x -1(x >0),则g ′(x )=e x -1>0, 所以g (x )在(0,+∞)上是增函数. 所以g (x )>g (0)=0,即e x -2>x -1.①再证x -1≥ln x ,即x -1-ln x ≥0(x >0),令φ(x )=x -1-ln x ,则φ′(x )=1-1x =x -1x,φ′(x )=0时,x =1,φ′(x )>0时,x >1,φ′(x )<0时,0<x <1.所以φ(x )在(0,1)上是减函数,在(1,+∞)上是增函数,所以φ(x )min =φ(1)=0.即x-1-ln x≥0,所以x-1≥ln x.②由①②得e x-2>ln x,即f(x)>ln x在(0,+∞)上成立.。
苏教版2019年高考数学(文科)一轮分层演练:第3章导数及其应用第2讲(含答案解析)

一、选择题1.函数f (x )=e x -x ,x ∈R 的单调递增区间是( ) A .(0,+∞) B .(-∞,0) C .(-∞,1) D .(1,+∞) 解析:选A.由题意知,f ′(x )=e x -1,令f ′(x )>0,解得x >0,故选A.2.若函数f (x )=kx -ln x 在区间(1,+∞)上单调递增,则k 的取值范围是( ) A .(-∞,-2] B .(-∞,-1] C .[2,+∞) D .[1,+∞)解析:选D.由于f ′(x )=k -1x ,f (x )=kx -ln x 在区间(1,+∞)上单调递增⇔f ′(x )=k -1x ≥0在(1,+∞)上恒成立.由于k ≥1x ,而0<1x<1,所以k ≥1.即k 的取值范围为[1,+∞).3.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析:选A.因为f (x )=x sin x ,所以f (-x )=(-x )sin(-x )=x sin x =f (x ). 所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又x ∈⎝⎛⎭⎫0,π2时,得 f ′(x )=sin x +x cos x >0,所以此时函数是增函数. 所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3. 所以f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A. 4.函数f (x )的定义域为R .f (-1)=2,对任意x ∈R ,f ′(x )>2,则f (x )>2x +4的解集为( ) A .(-1,1) B .(-1,+∞) C .(-∞,-1) D .(-∞,+∞)解析:选B.由f (x )>2x +4,得f (x )-2x -4>0.设F (x )=f (x )-2x -4,则F ′(x )=f ′(x )-2.因为f ′(x )>2,所以F ′(x )>0在R 上恒成立,所以F (x )在R 上单调递增,而F (-1)=f (-1)-2×(-1)-4=2+2-4=0,故不等式f (x )-2x -4>0等价于F (x )>F (-1),所以x >-1,选B.5.已知定义在R 上的函数f (x )满足f (-3)=f (5)=1,f ′(x )为f (x )的导函数,且导函数y =f ′(x )的图象如图所示,则不等式f (x )<1的解集是( )A .(-3,0)B .(-3,5)C .(0,5)D .(-∞,-3)∪(5,+∞)解析:选B.依题意得,当x >0时,f ′(x )>0,f (x )是增函数;当x <0时,f ′(x )<0,f (x )是减函数.又f (-3)=f (5)=1,因此不等式f (x )<1的解集是(-3,5).6.设函数f (x )=e x +x -2,g (x )=ln x +x 2-3.若实数a ,b 满足f (a )=0,g (b )=0,则( ) A .g (a )<0<f (b ) B .f (b )<0<g (a ) C .0<g (a )<f (b ) D .f (b )<g (a )<0 解析:选A.因为函数f (x )=e x +x -2在R 上单调递增,且f (0)=1-2<0,f (1)=e -1>0,所以f (a )=0时a ∈(0,1).又g (x )=ln x +x 2-3在(0,+∞)上单调递增,且g (1)=-2<0,所以g (a )<0.由g (2)=ln 2+1>0,g (b )=0得b ∈(1,2),又f (1)=e -1>0, 所以f (b )>0.综上可知,g (a )<0<f (b ). 二、填空题7.若函数f (x )=ax 3+3x 2-x 恰好有三个单调区间,则实数a 的取值范围是________.解析:由题意知f ′(x )=3ax 2+6x -1,由函数f (x )恰好有三个单调区间,得f ′(x )有两个不相等的零点,所以3ax 2+6x -1=0需满足a ≠0,且Δ=36+12a >0,解得a >-3,所以实数a 的取值范围是(-3,0)∪(0,+∞).答案:(-3,0)∪(0,+∞)8.(2018·张掖第一次诊断考试)若函数f (x )=x 33-a 2x 2+x +1在区间⎝⎛⎭⎫12,3上单调递减,则实数a 的取值范围是________.解析:f ′(x )=x 2-ax +1,因为函数f (x )在区间(12,3)上单调递减,所以f ′(x )≤0在区间(12,3)上恒成立,所以⎩⎪⎨⎪⎧f ′(12)≤0f ′(3)≤0,即⎩⎪⎨⎪⎧14-a 2+1≤09-3a +1≤0,解得a ≥103,所以实数a 的取值范围为[103,+∞).答案:[103,+∞)9.(2017·高考江苏卷)已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是________.解析:由f (x )=x 3-2x +e x -1e x ,得f (-x )=-x 3+2x +1e x -e x =-f (x ),所以f (x )是R 上的奇函数,又f ′(x )=3x 2-2+e x +1ex ≥3x 2-2+2e x ·1ex =3x 2≥0,当且仅当x =0时取等号,所以f (x )在其定义域内单调递增,所以不等式f (a -1)+f (2a 2)≤0⇔f (a -1)≤-f (2a 2)=f (-2a 2)⇔a -1≤-2a 2,解得-1≤a ≤12,故实数a 的取值范围是⎣⎡⎦⎤-1,12. 答案:⎣⎡⎦⎤-1,12 10.已知函数f (x )=ln x +2x ,若f (x 2+2)<f (3x ),则实数x 的取值范围是________.解析:由题可得函数定义域为(0,+∞),f ′(x )=1x +2x ln 2,所以在定义域内f ′(x )>0,函数单调递增,所以由f (x 2+2)<f (3x )得x 2+2<3x ,所以1<x <2.答案:(1,2) 三、解答题11.已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )在x =1处相切,求g (x )的表达式;(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解:(1)由已知得f ′(x )=1x ,所以f ′(1)=1=12a ,所以a =2.又因为g (1)=0=12a +b ,所以b =-1,所以g (x )=x -1.(2)因为φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.所以φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立.即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),因为x +1x∈[2,+∞),所以2m -2≤2,m ≤2.故实数m 的取值范围是(-∞,2].12.已知函数f (x )=ln x +ke x(k 为常数,e 是自然对数的底数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行.(1)求k 的值;(2)求f (x )的单调区间.解:(1)由题意得f ′(x )=1x-ln x -k e x ,又因为f ′(1)=1-ke =0,故k =1.(2)由(1)知,f ′(x )=1x-ln x -1e x ,设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0,即h (x )在(0,+∞)上是减函数.由h (1)=0知,当0<x <1时,h (x )>0,从而f ′(x )>0; 当x >1时,h (x )<0,从而f ′(x )<0.综上可知,f (x )的单调递增区间是(0,1),单调递减区间是(1,+∞).1.(2018·郑州质检)已知函数f (x )=a ln x -ax -3(a ∈R ). (1)求函数f (x )的单调区间;(2)若函数y =f (x )的图象在点(2,f (2))处的切线的倾斜角为45°,对于任意的t ∈[1,2],函数g (x )=x 3+x 2·⎣⎡⎦⎤f ′(x )+m2在区间(t ,3)上总不是单调函数,求m 的取值范围. 解:(1)函数f (x )的定义域为(0,+∞),且f ′(x )=a (1-x )x. 当a >0时,f (x )的增区间为(0,1),减区间为(1,+∞); 当a <0时,f (x )的增区间为(1,+∞),减区间为(0,1); 当a =0时,f (x )不是单调函数.(2)由(1)及题意得f ′(2)=-a2=1,即a =-2,所以f (x )=-2ln x +2x -3,f ′(x )=2x -2x. 所以g (x )=x 3+⎝⎛⎭⎫m 2+2x 2-2x ,所以g ′(x )=3x 2+(m +4)x -2.因为g (x )在区间(t ,3)上总不是单调函数,即g ′(x )=0在区间(t ,3)上有变号零点.由于g ′(0)=-2,所以⎩⎪⎨⎪⎧g ′(t )<0,g ′(3)>0.由g ′(t )<0,得3t 2+(m +4)t-2<0对任意t ∈[1,2]恒成立,由于g ′(0)<0,故只要g ′(1)<0且g ′(2)<0,即m <-5且m <-9,即m <-9;由g ′(3)>0,得m >-373.所以-373<m <-9.即实数m 的取值范围是⎝⎛⎭⎫-373,-9. 2.设函数f (x )=x 2+ax -ln x .(1)若a =1,试求函数f (x )的单调区间;(2)令g (x )=f (x )ex ,若函数g (x )在区间(0,1]上是减函数,求实数a 的取值范围.解:(1)当a =1时,f (x )=x 2+x -ln x ,定义域为(0,+∞),所以f ′(x )=2x +1-1x =2x 2+x -1x=(x +1)(2x -1)x,所以当0<x <12时,f ′(x )<0,当x >12时,f ′(x )>0,所以f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增.(2)g (x )=f (x )e x =x 2+ax -ln xe x ,定义域为(0,+∞).则g ′(x )=-x 2+(2-a )x +a -1x +ln xex, 令h (x )=-x 2+(2-a )x +a -1x +ln x ,则h ′(x )=-2x +1x 2+1x +2-a ,令m (x )=h ′(x ),x ∈(0,+∞),则m ′(x )=-2-2x 3-1x2<0,故h ′(x )在区间(0,1]上单调递减,从而对任意的x ∈(0,1],h ′(x )≥h ′(1)=2-a . ①当2-a ≥0,即a ≤2时,h ′(x )≥0,所以h (x )在(0,1]上单调递增, 所以h (x )≤h (1)=0,即g ′(x )≤0,所以g (x )在区间(0,1]上是减函数,满足题意;②当2-a <0,即a >2时,h ′(1)<0,h ′⎝⎛⎭⎫1a =-2a +a 2+2>0,0<1a<1, 所以y =h ′(x )在区间(0,1]上有唯一零点,设为x 0, 所以h (x )在(0,x 0)上单调递增,在(x 0,1]上单调递减,所以h (x 0)>h (1)=0,而h (e -a )=-e -2a +(2-a )e -a +a -e a +ln e -a <0,所以y =h (x )在区间(0,1)上唯一零点,设为x ′,即函数g ′(x )在区间(0,1)上有唯一零点, 所以g (x )在区间(0,x ′)上单调递减,在(x ′,1)上单调递增,不满足题意. 综上可知,实数a 的取值范围为(-∞,2].。
2019高考数学文一轮分层演练第3章导数及其应用 第4讲 Word版含解析

一、选择题.函数=在[,]上的最大值是( ).解析:选.易知′=,∈[,],令′>,得≤<,令′<,得≥>,所以函数=在[,]上单调递增,在(,]上单调递减,所以=在[,]上的最大值是==,故选..(·安徽模拟)已知()=),则( ).()>()>() .()>()>().()>()>() .()>()>()解析:选()的定义域是(,+∞),′()=),令′()=,得=.所以当∈(,)时,′()>,()单调递增,当∈(,+∞)时,′()<,()单调递减,故=时,()=()=,而()=)=),()=)=),所以()>()>().故选..已知函数()=+-+,若()在区间[,]上的最大值为,则实数的取值范围为( ).[-,+∞) .(-,+∞).(-∞,-) .(-∞,-]解析:选.由题意知′()=+-,令′()=,解得=或=-,所以′(),()随的变化情况如下表:.函数()=-的最小值为( )....不存在解析:选′()=-=,且>,令′()>,得>;令′()<,得<<,所以()在=处取得极小值也是最小值,且()=-=..已知()是奇函数,当∈(,)时,()=-,当∈(-,)时,()的最小值为,则的值为( )..解析:选.因为()是奇函数,所以()在(,)上的最大值为-,当∈(,)时,′()=-,令′()=,得=,又>,所以<<.令′()>,得<,所以()在上单调递增;令′()<,得>,所以()在上单调递减.所以当∈(,),()==-·=-,所以=,所以=.故选..在曲线=上,在直线=上,则的最小值为( )....解析:选.因为=与=关于直线=对称,设(,),则到直线=的距离=,令()=-,则′()=-,′()=时,=,′()>时,>,′()<时,<,所以()在(-∞,)上是减函数,在(,+∞)上是增函数,所以()=()=,所以==.所以=,选.二、填空题.函数=的最小值是.解析:因为=,所以′=+=(+).当>-时,′>;当<-时,′<,所以当=-时函数取得最小值,且=-.答案:-.函数()=+在上的最大值为.解析:因为′()=+-=,所以′()=在∈上的解为=.又=+,=,(π)=-,所以函数()=+在上的最大值为.答案:.已知函数()=-,当∈(,](为自然常数)时,函数()的最小值为,则的值为.解析:易知>,由′()=-==,得=,当∈时,′()<,()单调递减;当∈时,′()>,()单调递增,所以()在=时取得最小值=- .①当<≤时,由-=,得=,符合题意,②当>时,由-=,得=,舍去.答案:.已知常数≠,()=+.当()的最小值不小于-时,则实数的最小值为.解析:因为′()=,所以当>,∈(,+∞)时,′()>,即()在∈(,+∞)上单调递增,没有最小值;当<时,由′()>得,>-,所以()在上单调递增;由′()<得,<<-,所以()在上单调递减.所以当<时,()的最小值为=(-)+×(-).根据题意得=+×≥-,即[(-)-]≥.因为<,所以(-)-≤,解得-≤<,所以的最小值为-.答案:-三、解答题.(·沈阳监测)已知函数()= (>),为自然对数的底数.()若过点(,())的切线斜率为,求实数的值;()当>时,求证()≥;()若在区间(,)上-<恒成立,求实数的取值范围.解:()由题意得′()=,所以′()==,所以=.()证明:令()=-+()))(>),则′()=.令′()>,即>,解得>,令′()<,解得<<;所以()在(,)上单调递减,在(,+∞)上单调递增.所以()的最小值为()=,所以()≥.()由题意可知<,化简得< ,。
(江苏专版)2019版高考数学一轮复习第三章导数及其应用学案文.docx

(g(x) HO).第三章 导数及其应用第一节导数的概念及导数的运算本节主要包括2个知识点:1•导数的概念及运算; 2.导数的儿何意义.突破点(一)导数的概念及运算基础联通抓主干知识的“源”与“流”1. 瞬时速度和瞬时加速度‘ ‘ △ S △s⑴瞬时速度:对于tE [心,to+ A 刃时的平均速度v =R:,当A f-*o 时,v 趋 近于一个常数,这个常数就是t=t.的瞬时速度.-------------------------------------------------- △ V -- △ V (2)瞬时加速度:对于tE [ to, to+ A 刃时的平均加速度a =冬〒,当A r-*0时,a =冬〒趋近于一个常数,这个常数就是t=h 的瞬时加速度.2. 函数y=f (x )在/=*)处的导数A / 设函数尸心)在区|'可(臼,b )上有定义,心b ),若厶/无限趋近于0吋,比值二函数fd )在处的导数,记作尸(心).3. 函数厂(0的导函数若函数f (x )在区间(曰,方)内任意一点都可导,则代方在各点的导数也随着自变量丸 的变化而变化,因而也是自变量/的函数,该函数称为fd )的导函数,记作尸3.4. 基本初等函数的求导公式原函数a X R (日>0,且 N HI)log^(c?>0,且占1)X eIn x sin x cos X导函数a xaln a1 x\x\ aeA丄 Xcos X — sin x5.导数运算法则(1) [fd)±g3]‘ =f (方 ±呂’ 3;(2) [f (动 g(x) ]' =f (x)g(x)+f(x)g‘(力;(3) [g)]‘ =Cf C Y )(C 为常数);f Xo+ A X — f XoA T无限趋近于 个常数昇,则称f (x )在X=Ab 处可导,并称常数A 为In xI IIx — x fIn x= 2X一 • x~ln x x1 —In x= 2 ・ Xsin x ' cos x —sin xcos xcos"cos xcos x —sin x —sin /coshIICOS X(4)/ =(3VT — (2')‘ +(e)z= (3・ e”+3W)' —(2・ = 3A (ln 3)・ e'+3 e A -2v ln 2 = (ln 3+1) • (3e)J-2'ln 2.[方法技巧]导数的运算方法考点贯通 抓高考命题的“形”与“神”"一已知函数的解析式求导数[例1]求下列函数的导数:(3)y=tan x\ ⑷ y=3e x -2v +e.(3)/pin x (cos x.(2)/(1)连乘积形式:先展开化为多项式的形式,再求导.(2)分式形式:观察函数的结构特征,先化为整式函数或较为简单的分式函数,再求导.(3)对数形式:先化为和、差的形式,再求导.(4)根式形式:先化为分数指数幕的形式,再求导.(5)三角形式:先利用三角函数公式转化为和或差的形式,再求导.二导数运算的应用[例2](1) (2017 •济宁二模)已知函数f3=/(2 017+ln 方,F仏)=2 018,则Xa= ________ .(2)已知£(力=*#+2/尸(2 017) +2 0171n %,则f' (1)= .[解析](1)由题意可知尸(^) = 2 017 + ln x+x• ~=2 018 +In x.由尸(%o) =2 018, x得]n Ao=O,解得Xo=[.9 ni7(2)由题意得尸(力=才+2尸(2 017)+ ------------- ,2017所以尸(2 017)=2 017 + 2尸(2 017)+亍而■即f (2 017) =-(2 017 + 1)=-2 018.故尸(1)=1+2X (-2 018)+2 017 = -2 018.[答案]仃)1⑵-2 018[方法技巧]能力练通抓应用体验的“得”与“失”1.[考点二 1 (2018 •太仓中学月考)已知£(A) = sin x+cos “ iE fi(x)= f i(x),石3 =f 2(方,…,力(劝n-dx)且刀22),则彳£+彳£------------ _________________ •解析:fig = f i(x)=cosx—sin “ fi(x) = f 2(A r) = —sin cos x, f\3=f‘ 3(方= sin cos x, =f 4(x)=sin x+cos x.故周期为4,前四项和为0,所以原式=答案:12.[考点X](2018 •徐州期初检测)记定义在R上的函数y =f(0的导函数为f (0.如果存在刃£3,方],使得flS = F(心)。
苏教版2019年高考数学(文科)一轮分层演练:第3章导数及其应用第1讲(含答案解析)

C.6D.8
解析:选D.因为f′(x)=4ax3-bsinx+7.所以f′(-x)=4a(-x)3-bsin(-x)+7=-4ax3+bsinx+7.所以f′(x)+f′(-x)=14.又f′(2 018)=6,所以f′(-2 018)=14-6=8,故选D.
4.如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),其中g′(x)是g(x)的导函数,则g′(3)=()
一、选择题
1.已知函数f(x)= cosx,则f(π)+f′ =()
A.- B.-
C.- D.-
解析:选C.因为f′(x)=- cosx+ (-sinx),所以f(π)+f′ =- + ·(-1)=- .
2.曲线y=ex-lnx在点(1,e)处的切线方程为()
A.(1-e)x-y+1=0B.(1-e)x-y-1=0
C.(e-1)x-y+1=0D.(e-1)x-y-1=0
解析:选C.由于y′=e- ,所以y′|x=1=e-1,故曲线y=),即(e-1)x-y+1=0.
3.已知f(x)=ax4+bcosx+7x-2.若f′(2 018)=6,则f′(-2 018)=()
(2)若曲线y=f(x)存在两条垂直于y轴的切线,求a的取值范围.
解:f′(x)=3x2+2(1-a)x-a(a+2).
(1)由题意得
解得b=0,a=-3或a=1.
(2)因为曲线y=f(x)存在两条垂直于y轴的切线,
所以关于x的方程f′(x)=3x2+2(1-a)x-a(a+2)=0有两个不相等的实数根,
二、填空题
7.曲线y=lnx在与x轴交点处的切线方程为________.
高考文科数学一轮复习课件第三章利用导数探究函数零点问题

已知零点个数求参数范围(师生共研) 函数 f(x)=13x3+ax2+bx+c(a,b,c∈R)的导函数的图象如图所示:
(1)求 a,b 的值并写出 f(x)的单调区间; (2)若函数 y=f(x)有三个零点,求 c 的取值范围.
【解】 (1)因为 f(x)=13x3+ax2+bx+c, 所以 f′(x)=x2+2ax+b. 因为 f′(x)=0 的两个根为-1,2, 所以--11+×22==-b,2a, 解得 a=-12,b=-2, 由导函数的图象可知(图略),当-1<x<2 时,f′(x)<0,函数 f(x) 是减少的, 当 x<-1 或 x>2 时,f′(x)>0,函数 f(x) 是增加的, 故函数 f(x)的递增区间为(-∞,-1)和(2,+∞), 递减区间为(-1,2).
解:(1)由题意知,函数 f(x)的定义域为 R, 又 f(0)=1-a=2,得 a=-1, 所以 f(x)=ex-x+1,求导得 f′(x)=ex-1. 易知 f(x)在[-2,0]上是减少的,在(0,1]上是增加的, 所以当 x=0 时,f(x)在[-2,1]上取得最小值 2.
(2)由(1)知 f′(x)=ex+a,由于 ex>0, ①当 a>0 时,f′(x)>0,f(x)在 R 上是增函数, 当 x>1 时,f(x)=ex+a(x-1)>0; 当 x<0 时,取 x=-1a, 则 f-1a<1+a-1a-1=-a<0. 所以函数 f(x)存在零点,不满足题意.
(2)由(1)得 f(x)=13x3-12x2-2x+c, 函数 f(x)在(-∞,-1),(2,+∞)上是增函数,
在(-1,2)上是减函数,
所以函数 f(x)的极大值为 f(-1)=76+c, 极小值为 f(2)=c-130. 而函数 f(x)恰有三个零点,故必有76c-+1c3>0<00,, 解得-76<c<130. 所以使函数 f(x)恰有三个零点的实数 c 的取值范围是-76,130.
(共4套)2019年高考数学章节练习题集第3章导数及其应用.doc
第三章导数及其应用岂:第1讲变化率与导数、导数的运算.docx 岂第2讲导数的应用.docxW第3讲导数的应用.docx岂第4讲走积分的概念与微积分基本走理.d...第1讲变化率与导数、导数的运算一、选择题1.设函数f(x)是R上以5为周期的可导偶函数,则曲线y=f3在x=5处的切线的斜率为()1 1A.—-B. 0C. 丁D. 5解析因为代方是R上的可导偶函数,所以代方的图彖关于y轴对称,所以f(x)在x=0处取得极值,即尸(0)=0,又的周期为5,所以(5)=0, 即曲线y=Kx)在x=5处的切线的斜率为0,选B.答案B2.函数/U)是定义在(0, +®)上的可导函数,且满足心)>0, xf (x)+Xx)<0,则对任意正数G,b,若则必有( ).A. aj(h)<hf(a)B・hj(a)<aj(h)C. afia)<j(b)D. bfib)<J(a)解析构造函数F(x)=^(Q0), F f由条件知尸(x)<0, 函数F(x)=^在(0, + 8)上单调递减,又a>b>0,・••警即bfia)<afib)・答案B3.己知函数沧)=左+2屁+£心>0),则人2)的最小值为)・3 |A ・ 12甫 B. l2 + 8a+~ C ・ 8 + Sa+~D. 16a2 2 2解析 y (2)=8+8a+;,令 g ⑷= 8+8。
+;,则 g‘ (a) = 8—子,由 g‘(a)>0 得 vV C/> a>*,由(d)<0得0<a<^, -a=2时・几2)有最小值・夬2)的最小值为8 + 8X*+2 了=16.故选 D. 2答案D4. 已知函数£(劝的导函数为f (劝,且满足f{x)=2xf' (D+ln^r,则f (1)=()・A. —eB. —1 C ・ 1 D. e解析 由 f(x)=2xf f(l)+ln x,得 f (x)=2f (1) +-,x・・・f (1)=2尸(1)+1,则尸(1)=-1.答案B5•等比数列{列中,& = 2,日8=4,函数f{x) =*/—&) (-¥—a 2)…匕一越),则F (0)).B ・ 29C. 212D. 215函数f(x)的展开式含X 项的系数为日1 •日2 .. 日8=(31 • <a 8),=8,=212,(0) =0 •臼2 ........ a fi =212, 故选 C. C6. 已知函数f (x),『(兀)分别是二次函数几兀)和三次函数g(Q 的导函数,它们在 同一坐标系下的图象如图所示,设函数/?Cx)=A>)—gCx),贝ij ().A. h(\)</z(O)</?( — 1) B ・/z(l)</?(-l)</?(0)A. 26解析 而尸 答案C・ /2(0)</?(-l)</z(l)D. /l(O)</2(l)</2(-l)解析由图象可知f(x)=x, g1(x)=x2,则加,其中加为常数,g(x)=|x3+n,其中AI为常数,则〃(兀)=討—多?+加—兀,得A(0)</?( 1 )</?( — 1)・答案D二、填空题7.曲线y=x(3\n x+1)在点(1,1)处的切线方程为________ ・解析Vy=x(引nx+1), .\y f =31 n 兀+1+兀=31 n x+4, •\k=y, |x=i=4,・•・所求切线的方程为歹一1=4(兀一1),即y=4x-3.答案y=4x—38.若过原点作曲线y=e”的切线,则切点的坐标为_____________ ,切线的斜率为解析y f=e”,设切点的坐标为(Xo,必)则艺=站0,即—=eAb,A AO=1.因此切点的坐标为(1, e),切线的斜率为e.答案(1, e) e9.己知函数/'(x)在R上满足f{x) =2/(2 —%) —+8%—8,则曲线y=在无=1处的导数f' (1)= __________ ・解析•/ /(%) =2/(2 —%) —#+8x—8,・・・x= 1 时,/(I) =2/(1)-1+8-8,:.f(1)=1,即点(1, 1),在曲线y= f{x) ±・又 *.* f' (%) = — 2f (2 —x) — 2x~\~ 8,x=l 时,尸(1)=—2尸(D-2 + 8,・・・f (1)=2.答案210.同学们经过市场调查,得出了某种商品在2011年的价格y(单位:元)与时间2/(单位:月)的函数关系为:y=2+#^(lWrW12),则10月份该商品价格上涨的速度是 _____ 元/月.解析・・了=2+乔刁(1WW12),( f \ (右、2 =匸+莎才=空+(20_J(C (20—。
2019年高考数学文科一轮分层演练卷第4章【三角函数与解三角形】第3讲含解析
2019年高考数学文科一轮分层演练卷第4章【三角函数与解三角形】第3讲[学生用书P225(单独成册)]一、选择题1.cos 15°+sin 15°cos 15°-sin 15°的值为()A .33B .3C .-33D .-3解析:选B.原式=1+tan 15°1-tan 15°=tan 45°+tan 15°1-tan 45°tan 15°=tan(45°+15°)= 3.2.(1+tan 18°)·(1+tan 27°)的值是()A .3B .1+2C .2D .2(tan 18°+tan 27°)解析:选C.原式=1+tan 18°+tan 27°+tan 18°tan 27°=1+tan 18°tan 27°+tan 45°(1-tan 18°tan 27°)=2,故选C.3.已知sin α+cos α=13,则sin 2(π4-α)=()A .118 B.1718C .89D.29解析:选B.由sin α+cos α=13两边平方得1+sin 2α=19,解得sin 2α=-89,所以sin 2(π4-α)=1-cos (π2-2α)2=1-sin 2α2=1+892=1718.4.已知cos α-π6+sin α=435,则sin α+7π6的值是()A .-235B .235C .45D .-45解析:选D.由cos α-π6+sin α=435,可得32cos α+12sin α+sin α=435,即32sin α+32cos α=435,所以3sin α+π6=435,sin α+π6=45,所以sin α+7π6=-sin α+π6=-45.5.已知cos(π3-2x )=-78,则sin(x +π3)的值为()A .14B .78C .±14D .±78解析:选C.因为cos[π-(π3-2x )]=cos(2x +2π3)=78,所以有sin 2(x +π3)=12(1-78)=116,从而求得sin(x+π3)的值为±14,故选C.6.3cos 10°-1sin 170°=()A .4B .2C .-2D .-4解析:选D.3cos 10°-1sin 170°=3cos 10°-1sin 10°=3sin 10°-cos 10°sin 10°cos 10°=2sin (10°-30°)12sin 20°=-2sin 20°12sin 20°=-4,故选D.二、填空题7.已知cos θ=-513,θ∈π,3π2,则sin θ-π6的值为________.解析:由cos θ=-513,θ∈π,3π2得sin θ=-1-cos 2θ=-1213,故sin θ-π6=sin θcos π6-cos θsinπ6=-1213×32--513×12=5-12326.答案:5-123268.已知cos x -π6=-33,则cos x +cos x -π3=________.解析:cos x +cos x -π3=cos x +12cos x +32sin x=32cos x +32sin x =3cos x -π6=3×-33=-1.答案:-19.2cos 10°-sin 20°sin 70°的值是________.解析:原式=2cos (30°-20°)-sin 20°sin 70°=2(cos 30°cos 20°+sin 30°sin 20°)-sin 20°sin 70°=3cos 20°cos 20°= 3.答案:310.设α为锐角,若cos α+π6=45,则sin 2α+π12的值为________.解析:因为α为锐角,cos α+π6=45,所以sin α+π6=35,sin 2α+π6=2425,cos 2α+π6=725,所以sin 2α+π12=sin 2α+π6-π4=2425×22-725×22=17250.答案:17250三、解答题11.已知函数f (x )=sin x +π12,x ∈R .(1)求f -π4的值;(2)若cos θ=45,θ∈0,π2,求f 2θ-π3的值.解:(1)f -π4=sin -π4+π12=sin -π6=-12.(2)f 2θ-π3=sin 2θ-π3+π12=sin 2θ-π4=22(sin 2θ-cos 2θ).因为cos θ=45,θ∈0,π2,所以sin θ=35.所以sin 2θ=2sin θcos θ=2425,cos 2θ=cos 2θ-sin 2θ=725,所以f 2θ-π3=22(sin 2θ-cos 2θ)=22×2425-725=17250.12.已知α∈π2,π,且sin α2+cos α2=62.(1)求cos α的值;(2)若sin(α-β)=-35,β∈π2,π,求cos β的值.解:(1)因为sin α2+cos α2=62,两边同时平方,得sin α=12.又π2<α<π,所以cos α=-1-sin 2α=-32.(2)因为π2<α<π,π2<β<π,所以-π2<α-β<π2.又由sin(α-β)=-35,得cos(α-β)=45.所以cos β=cos[α-(α-β)]=cos αcos(α-β)+sin αsin(α-β)=-32×45+12×-35=-43+310.。
苏教版2019年高考数学(文科)一轮分层演练:第3章导数及其应用第3讲(含答案解析)
A.(-1,3)为函数y=f(x)的递增区间
B.(3,5)为函数y=f(x)的递减区间
C.函数y=f(x)在x=0处取得极大值
D.函数y=f(x)在x=5处取得极小值
解析:选C.由函数y=f(x)导函数的图象可知:
注意到对任意a∈R,f(0)=g(0)=1,f′(0)=g′(0)=1,故存在定直线l:y=x+1与曲线C1:y=f(x)和C2:y=g(x)都相切.
(2)设函数F(x)= e-x,则对任意x∈R,都有F(x)≤1,
因为对任意a∈R,都有F(0)=1,故x=0为F(x)的极大值点,
F′(x)=(3ax2+x+1)e-x- e-x
即ex> x2-3ax+1,故 > x+ -3a.
1.(2018·威海调研)已知函数f(x)= +ax,x>1.
(1)若f(x)在(1,+∞)上单调递减,求实数a的取值范围;
(2)若a=2,求函数f(x)的极小值.
解:(1)因为f(x)= +ax,x>1.所以f′(x)= +a.
由题意可得f′(x)≤0在(1,+∞)上恒成立,即a≤ - = - ,对x∈(1,+∞)恒成立.
当x<-1及3<x<5时,f′(x)<0,f(x)单调递减;
当-1<x<3及x>5时,f′(x)>0,f(x)单调递增.
所以f(x)的单调递减区间为(-∞,-1),(3,5);
单调递增区间为(-1,3),(5,+∞),
f(x)在x=-1,5处取得极小值,在x=3处取得极大值,
故选项C错误,故选C.
4.(2018·陕西质量检测(一))设函数f(x)=xsinx在x=x0处取得极值,则(1+x )(1+cos 2x0)的值为()
2019版高考数学一轮复习 第三章 导数及其应用 第四节 导数与函数的综合问题实用
讲练区 研透高考· 完成情况
[全析考法]
利用导数研究生活中装的年固定成本为10 万元,每生产1千件需另投入3万元.设该公司一年内共生产该
品牌服装x千件并全部销售完,每千件的销售收入为R (x)万元,
且R (x)=191x.40--3410x3x222x0><1x0≤.10,
比较函数在区间端点和f′(x)=0的点的函 第三步
数值的大小,最大(小)者为最大(小)值 第四步 回归实际问题,给出优化问题的答案
[全练题点]
1.某工厂要围建一个面积为512平方米的矩形堆料场,一边可以
利用原有的墙壁,其他三边需要砌新的墙壁,当砌新的墙壁
所用的材料最省时,堆料场的长和宽分别为
()
A.32米,16米
B.30米,15米
C.40米,20米
D.36米,18米
解析:要求材料最省,则要求新砌的墙壁总长最短,设堆料
厂的宽为x米,则长为
512 x
米,因此新墙总长为L=2x+
512 x
(x>0),则L′=2-
512 x2
,令L′=0,得x=±16.又x>0,∴x=
16.则当x=16时,L取得极小值,也是最小值,即用料最省,
B.2.4%
C.4% D.3.6%
解析:依题意知,存款量是kx2,银行应支付的利息是kx3,银
行应获得的利息是0.048kx2,所以银行的收益y=0.048kx2-
kx3,故y′=0.096kx-3kx2,令y′=0,得x=0.032或x=0(舍
去).因为k>0,所以当0<x<0.032时,y′>0;当0.032<x<0.048
x3 30
-
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题1.函数y =xe x 在[0,2]上的最大值是( )A.1e B.2e 2 C .0D.12e解析:选A.易知y ′=1-xe x ,x ∈[0,2],令y ′>0,得0≤x <1,令y ′<0,得2≥x >1,所以函数y =x e x 在[0,1]上单调递增,在(1,2]上单调递减,所以y =xex 在[0,2]上的最大值是y |x=1=1e,故选A. 2.(2018·安徽模拟)已知f (x )=ln xx ,则( )A .f (2)>f (e)>f (3)B .f (3)>f (e)>f (2)C .f (3)>f (2)>f (e)D .f (e)>f (3)>f (2)解析:选D.f (x )的定义域是(0,+∞),f ′(x )=1-ln xx 2,令f ′(x )=0,得x =e. 所以当x ∈(0,e)时,f ′(x )>0,f (x )单调递增,当x ∈(e ,+∞)时,f ′(x )<0,f (x )单调递减,故x =e 时,f (x )max =f (e)=1e ,而f (2)=ln 22=ln 86,f (3)=ln 33=ln 96,所以f (e)>f (3)>f (2).故选D.3.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k ,2]上的最大值为28,则实数k 的取值范围为( )A .[-3,+∞)B .(-3,+∞)C .(-∞,-3)D .(-∞,-3]解析:选D.由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:又f (-3)=28,f (1)=-4,f (2)=3,f (x )在区间[k ,2]上的最大值为28,所以k ≤-3.4.函数f (x )=12x 2-ln x 的最小值为( )A .12B .1C .0D .不存在解析:选A.f ′(x )=x -1x =x 2-1x,且x >0,令f ′(x )>0,得x >1;令f ′(x )<0,得0<x <1,所以f (x )在x =1处取得极小值也是最小值,且f (1)=12-ln 1=12.5.已知f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝⎛⎭⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值为( )A.14 B .13C.12D .1解析:选D.因为f (x )是奇函数,所以f (x )在(0,2)上的最大值为-1,当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0,得x =1a ,又a >12,所以0<1a <2.令f ′(x )>0,得x <1a ,所以f (x )在⎝⎛⎫0,1a 上单调递增;令f ′(x )<0,得x >1a ,所以f (x )在⎝⎛⎭⎫1a ,2上单调递减.所以当x ∈(0,2),f (x )max =f ⎝⎛⎭⎫1a =ln 1a -a ·1a =-1,所以ln 1a=0,所以a =1.故选D.6.P 在曲线y =e x 上,Q 在直线y =ln x 上,则|PQ |的最小值为( ) A .22B . 2C .2 2D .2解析:选B.因为y =e x 与y =ln x 关于直线y =x 对称,设P (x ,e x ),则P 到直线y =x 的距离d =e x -x2,令f (x )=e x -x ,则f ′(x )=e x -1, f ′(x )=0时,x =0,f ′(x )>0时,x >0,f ′(x )<0时,x <0,所以f (x )在(-∞,0)上是减函数,在(0,+∞)上是增函数, 所以f (x )min =f (0)=1,所以d min =12=22. 所以|PQ |min =2,选B.二、填空题7.函数y =x e x 的最小值是________.解析:因为y =x e x ,所以y ′=e x +x e x =(1+x )e x .当x >-1时,y ′>0;当x <-1时,y ′<0,所以当x =-1时函数取得最小值,且y min =-1e.答案:-1e8.函数f (x )=x sin x +cos x 在⎣⎡⎦⎤π6,π上的最大值为________.解析:因为f ′(x )=sin x +x cos x -sin x =x cos x ,所以f ′(x )=0在x ∈⎣⎡⎦⎤π6,π上的解为x =π2.又f ⎝⎛⎭⎫π6=π12+32,f ⎝⎛⎭⎫π2=π2,f (π)=-1,所以函数f (x )=x sin x +cos x 在⎣⎡⎦⎤π6,π上的最大值为π2. 答案:π29.已知函数f (x )=ax -ln x ,当x ∈(0,e](e 为自然常数)时,函数f (x )的最小值为3,则a 的值为________.解析:易知a >0,由f ′(x )=a -1x =ax -1x =0,得x =1a ,当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )<0,f (x )单调递减;当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )>0,f (x )单调递增,所以f (x )在x =1a 时取得最小值f ⎝⎛⎭⎫1a =1-ln 1a.①当0<1a ≤e 时,由1-ln 1a =3,得a =e 2,符合题意,②当1a >e 时,由a e -ln e =3,得a =4e,舍去.答案:e 210.已知常数a ≠0,f (x )=a ln x +2x .当f (x )的最小值不小于-a 时,则实数a 的最小值为________.解析:因为f ′(x )=a +2xx, 所以当a >0,x ∈(0,+∞)时,f ′(x )>0,即f (x )在x ∈(0,+∞)上单调递增,没有最小值; 当a <0时,由f ′(x )>0得,x >-a2,所以f (x )在⎝⎛⎭⎫-a2,+∞上单调递增;由f ′(x )<0得,0<x <-a2,所以f (x )在⎝⎛⎭⎫0,-a2上单调递减. 所以当a <0时,f (x )的最小值为f ⎝⎛⎭⎫-a 2=a ln(-a 2)+2×(-a2). 根据题意得f ⎝⎛⎭⎫-a 2=a ln ⎝⎛⎭⎫-a 2+2×⎝⎛⎭⎫-a2≥-a ,即a [ln(-a )-ln 2]≥0. 因为a <0,所以ln(-a )-ln 2≤0,解得-2≤a <0,所以a 的最小值为-2. 答案:-2三、解答题 11.(2018·沈阳监测)已知函数f (x )=a ln x (a >0),e 为自然对数的底数. (1)若过点A (2,f (2))的切线斜率为2,求实数a 的值; (2)当x >0时,求证f (x )≥a ⎝⎛⎭⎫1-1x ; (3)若在区间(1,e)上e x a-e 1ax <0恒成立,求实数a 的取值范围. 解:(1)由题意得f ′(x )=ax ,所以f ′(2)=a2=2,所以a =4.(2)证明:令g (x )=a ⎝⎛⎭⎫ln x -1+1x (x >0), 则g ′(x )=a ⎝⎛⎭⎫1x -1x 2.令g ′(x )>0,即a ⎝⎛⎭⎫1x -1x 2>0,解得x >1, 令g ′(x )<0,解得0<x <1;所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以g (x )的最小值为g (1)=0,所以f (x )≥a ⎝⎛⎭⎫1-1x . (3)由题意可知e x a<e 1ax ,化简得x -1a<ln x ,又x ∈(1,e),所以a >x -1ln x .令h (x )=x -1ln x ,则h ′(x )=ln x -1+1x(ln x )2.由(2)知,当x ∈(1,e)时,ln x -1+1x >0,所以h ′(x )>0,即h (x )在(1,e)上单调递增, 所以h (x )<h (e)=e -1. 所以a ≥e -1.故实数a 的取值范围为[e -1,+∞).12.(2018·贵阳检测)已知函数f (x )=(x -1)e x +1,x ∈[0,1]. (1)证明:f (x )≥0;(2)若a <e x -1x <b 对任意的x ∈(0,1)恒成立,求b -a 的最小值.解:(1)证明:因为f ′(x )=x e x ≥0, 即f (x )在[0,1]上单调递增, 所以f (x )≥f (0)=0,即结论成立.(2)令g (x )=e x -1x ,则g ′(x )=(x -1)e x +1x 2>0,x ∈(0,1),所以,当x ∈(0,1)时,g (x )<g (1)=e -1,要使e x -1x<b ,只需b ≥e -1.要使e x -1x >a 成立,只需e x -ax -1>0在x ∈(0,1)恒成立,令h (x )=e x -ax -1.x ∈(0,1),则h ′(x )=e x -a ,由x ∈(0,1),得e x ∈(1,e),①当a ≤1时,h ′(x )>0,此时x ∈(0,1),有h (x )>h (0)=0成立,所以a ≤1满足条件; ②当a ≥e 时,h ′(x )<0,此时x ∈(0,1),有h (x )<h (0)=0,不符合题意,舍去; ③当1<a <e 时,令h ′(x )=0,得x =ln a ,可得当x ∈(0,ln a )时,h ′(x )<0,即x ∈(0,ln a )时,h (x )<h (0)=0,不符合题意,舍去.综上,a ≤1.又b ≥e -1,所以b -a 的最小值为e -2.1.已知f (x )=ax 2(a ∈R ),g (x )=2ln x . (1)讨论函数F (x )=f (x )-g (x )的单调性;(2)若方程f (x )=g (x )在区间[2,e]上有两个不相等的解,求a 的取值范围. 解:(1)F (x )=ax 2-2ln x ,其定义域为(0,+∞),所以F ′(x )=2ax -2x =2(ax 2-1)x(x >0).①当a >0时,由ax 2-1>0,得x >1a, 由ax 2-1<0,得0<x <1a, 故当a >0时,F (x )在区间⎝⎛⎭⎫1a ,+∞上单调递增,在区间⎝⎛⎭⎫0,1a 上单调递减.②当a ≤0时,F ′(x )<0(x >0)恒成立. 故当a ≤0时,F (x )在(0,+∞)上单调递减.(2)原式等价于方程a =2ln xx2在区间[2,e]上有两个不等解.令φ(x )=2ln xx 2,由φ′(x )=2x (1-2ln x )x 4易知,φ(x )在(2,e)上为增函数,在(e ,e)上为减函数,则φ(x )max =φ(e)=1e ,而φ(e)=2e 2,φ(2)=ln 22.由φ(e)-φ(2)=2e 2-ln 22=4-e 2ln 22e 2=ln e 4-ln 2e 22e 2<ln 81-ln 272e 2<0,所以φ(e)<φ(2). 所以φ(x )min =φ(e),如图可知φ(x )=a 有两个不相等的解时,需ln 22≤a <1e.即f (x )=g (x )在[2,e]上有两个不相等的解时a 的取值范围为[ln 22,1e ).2.已知f (x )=x ln x .(1)求函数f (x )在[t ,t +2](t >0)上的最小值;(2)证明:对一切x ∈(0,+∞),都有ln x >1e x -2e x 成立.解:(1)由f (x )=x ln x ,x >0,得f ′(x )=ln x +1, 令f ′(x )=0,得x =1e.当x ∈⎝⎛⎭⎫0,1e 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫1e ,+∞时,f ′(x )>0,f (x )单调递增. ①当0<t <1e <t +2,即0<t <1e 时,f (x )min =f ⎝⎛⎭⎫1e =-1e; ②当1e ≤t <t +2,即t ≥1e时,f (x )在[t ,t +2]上单调递增,f (x )min =f (t )=t ln t .所以f (x )min=⎩⎨⎧-1e ,0<t <1et ln t ,t ≥1e.(2)证明:问题等价于证明x ln x >x e x -2e (x ∈(0,+∞)).由(1)可知f (x )=x ln x (x ∈(0,+∞))的最小值是-1e ,当且仅当x =1e 时取到.设m (x )=x e x -2e (x ∈(0,+∞)),则m ′(x )=1-xex ,由m ′(x )<0得x >1时,m (x )为减函数, 由m ′(x )>0得0<x <1时,m (x )为增函数, 易知m (x )max =m (1)=-1e ,当且仅当x =1时取到.从而对一切x ∈(0,+∞),x ln x ≥-1e ≥x e x -2e ,两个等号不同时取到,即证对一切x ∈(0,+∞)都有ln x >1e x -2e x成立.。