小学四年级上册数学相遇问题
数学教案相遇问题

数学教案相遇问题数学教案相遇问题「篇一」教学内容:教科书P14~P15例10、练一练P16第4~7题教学目标:1.使学生在解决实际问题的过程中,进一步理解并掌握形如ax+bx=c的方程的解法。
结合具体事例,经历自主尝试列方程解决稍复杂的相遇问题的过程。
2.能根据相遇问题中的等量关系列方程并解答,感受解题方法的多样化。
3.体验用方程解决问题的优越性,获得自主解决问题的积极情感和学好数学的信心。
教学重点:正确地寻找数量之间的相等关系教学难点:掌握列方程解具有两积之和(或差)的数量关系的应用题的解法。
教学过程:一、复习导入1.在相遇问题中有哪些等量关系?甲速相遇时间+乙速相遇时间=路程(甲速+乙速)相遇时间=路程2.一辆客车和一辆货车从两地出发,相向而行,经过3小时相遇。
客车的速度是95千米/时,货车的速度是85千米/时。
两地相距多少千米?第一种解法:用两车的速度和相遇时间:(95+85)3第二种解法:把两车相遇时各自走的路程加起来:953+853师:画出线段图,并板书出两种解法3.揭示课题:如果我们把复习准备中的第2题改成已知两地之间的路程、相遇时间及其中一辆车的速度,求另一辆车的速度,要求用方程解,又该怎样解答呢?这节课我们就来学习列方程解相遇问题的应用题。
(板书课题)二、教学新课1.出示P14例10一辆客车和一辆货车从相距540千米的两地出发,相向而行,经过3小时相遇。
客车的速度是95千米/时,货车的速度是多少?(1)指名读题,找出已知所求,引导学生根据复习题的线段图画出线段图。
(2)根据线段图学生找出数量间的相等关系甲速相遇时间+乙速相遇时间=路程(甲速+乙速)相遇时间=路程(1)列方程设未知数列方程并解答。
启发学生用不同方法列方程。
解:设货车的速度是为x千米/时。
953+3x=540 (95+x)3=540285+3x=1463 95+x=54033x=540-285 95+x=1803x= 255 x=180-95x=2553 x=85x=85答:货车的速度是为85千米/时。
四年级上册《相遇问题》教学设计

四年级上册《相遇问题》教学设计四班级上册《相遇问题》教学设计(精选4篇)四班级上册《相遇问题》教学设计篇1【教材分析】本节课是青岛版学校数学四班级上册第六单元《快捷的物流运输—解决问题》信息窗中其次个红点问题,即构建相遇问题的数学模型,并借此解决生活中的实际问题。
由于相遇问题牵扯到两个物体的运动状况,其中的数量关系比较简单,同学理解起来有肯定困难,因此同学要首先理解和把握速度、时间和路程三者的关系,然后在此基础上,创设他们感爱好的、贴近生活的情境,在一步步解决问题的过程中构建数学模型,积累数学活动阅历。
【教学目标】1、在详细情境中,御用模拟演示和画线段图等方法理解速度、时间和路程的数量关系,初步构建相遇问题的数学模型。
2、在解决问题的过程中,经受“发觉问题----提出问题----分析问题----解决问题”的过程,积累数学活动阅历。
3、在合作沟通中体验学习的乐趣,培育学习数学的乐观情感。
【重点】用画线段图的策略分析“相遇问题”的数量关系,构建其数学模型。
【难点】理解“相遇问题”的基本特征,构建数学模型“速度和×时间=总路程”和“路程1+路程2=总路程”。
【教具】多媒体课件,两个能在一条线上自由活动的小人。
【教学过程】一、情境导入,复习旧知谈话:同学们,你们知道刘老师家住哪儿吗?静静告知你们吧,刘老师家离着人民公园特别近,究竟有多近呢?你们来看。
ppt出示:刘老师从家动身步行去人民公园,每分钟走60米,5分钟后到达。
依据这个信息,你能提出什么问题吗?ppt出示:刘老师家距离人民公园有多远?你会解决吗?ppt:60×5=300(米)这60表示什么?5呢?300呢?通过这个小例题,我们总结出速度、时间和路程三者间的关系是:速度×时间=路程(课件出示)。
今日我们就在这个关系式的基础上来讨论点新问题,好不好?二、合作探究,构建数学模型1、初步感知相遇问题ppt出示例题:小明和李老师同时从家动身相对而行,小明步行每分钟走60米,李老师骑自行车,每分钟骑行140米,5分钟后他俩在人民公园相遇。
小学数学相遇问题100道

小学数学相遇问题100道1. 两辆汽车从相距300公里的两个城市同时出发,相向而行。
一辆车的速度是60公里/小时,另一辆车的速度是70公里/小时。
请问它们需要多少小时才能相遇?2. 甲乙两人分别从A、B两地同时出发,相向而行。
甲每分钟走60米,乙每分钟走75米。
A、B两地相距900米,请问它们多少分钟后相遇?3. 两列火车从相距450公里的两个城市同时出发,相向而行。
一列火车的速度是80公里/小时,另一列火车的速度是110公里/小时。
请问它们需要多少小时才能相遇?4. 小明和小华在环形跑道上跑步,跑道长400米。
小明每秒跑3米,小华每秒跑5米。
他们从同一地点出发,同向而行。
请问多少秒后他们会再次相遇?5. 两辆汽车从相距240公里的两个城市同时出发,相向而行。
一辆车的速度是40公里/小时,另一辆车的速度是80公里/小时。
请问它们相遇时离出发地有多远?6. 甲从A地出发,乙从B地出发,两地相距1200米。
甲每分钟走80米,乙每分钟走70米。
他们同时出发,相向而行。
请问他们相遇时走了多少分钟?7. 两辆汽车从相距500公里的两个城市同时出发,相向而行。
一辆车的速度是65公里/小时,另一辆车的速度是75公里/小时。
请问它们相遇时各自行驶了多少公里?8. 小王和小李从两个相距1000米的村庄同时出发,相向而行。
小王每分钟走60米,小李每分钟走70米。
请问他们需要多少分钟才能相遇?9. 两列火车从相距600公里的两个城市同时出发,相向而行。
一列火车的速度是90公里/小时,另一列火车的速度是80公里/小时。
请问它们相遇时距离中点有多少公里?以下是继续从序号10开始的50道相遇问题:10. 甲、乙两车分别从A、B两地同时出发,相向而行。
甲车速度是60km/h,乙车速度是40km/h,两车相距100km。
问多少小时后两车相遇?11. 小王和小李同时从同一地点出发,沿着相反的方向行走。
小王每分钟走60m,小李每分钟走70m。
《人教版四年级小学数学相遇问题100道》

《人教版四年级小学数学相遇问题100道》姓名:__________ 班级:__________ 学号:__________一、基础相遇问题(共5题)1.甲、乙两人分别从A、B 两地同时出发相向而行,甲每小时走5 千米,乙每小时走4 千米,经过3 小时后两人相遇,A、B 两地相距多少千米?2.小明和小红同时从学校和图书馆相向而行,小明每分钟走60 米,小红每分钟走50 米,经过8 分钟两人相遇,学校和图书馆相距多少米?3.一辆汽车和一辆摩托车同时从相距240 千米的两地相向而行,汽车每小时行60 千米,摩托车每小时行40 千米,几小时后两车相遇?4.甲乙两地相距360 千米,A、B 两车分别从甲乙两地同时出发相向而行,A 车每小时行80 千米,B 车每小时行70 千米,经过几小时两车相遇?5.小强和小亮同时从相距180 米的两地相向而行,小强每分钟走10 米,小亮每分钟走8 米,几分钟后两人相遇?二、稍复杂的相遇问题(共5题)6.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时共走了6 小时,A、B 两地相距多少千米?7.一辆客车和一辆货车同时从相距450 千米的两地相向而行,客车每小时行80 千米,货车每小时行70 千米,几小时后两车相距90 千米?8.甲乙两人在环形跑道上跑步,跑道一圈长400 米,甲每分钟跑280 米,乙每分钟跑240 米,两人同时同地同向出发,经过多少分钟甲第一次追上乙?如果两人同时同地反向出发,经过多少分钟两人第一次相遇?9.小明和小红同时从相距1200 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,途中小明因事停留了2 分钟,两人相遇时各走了多少米?10.一辆汽车和一辆摩托车同时从A、B 两地相向而行,汽车每小时行60 千米,摩托车每小时行40 千米,两车相遇后汽车又行了 4 小时到达B 地,A、B 两地相距多少千米?三、多人相遇问题(共5题)11.甲、乙、丙三人同时从A 地出发到B 地,甲每小时走6 千米,乙每小时走5 千米,丙每小时走4 千米,甲到达B 地后立即返回,在距B 地12 千米处与乙相遇,A、B 两地相距多少千米?12.小明、小红和小刚同时从学校出发去公园,小明每分钟走60 米,小红每分钟走50 米,小刚每分钟走40 米,小明到达公园后立即返回,在距公园80 米处与小红相遇,学校到公园有多远?13.甲乙丙三人在环形跑道上跑步,甲每分钟跑200 米,乙每分钟跑180 米,丙每分钟跑160 米,三人同时同地同向出发,经过多少分钟甲第一次追上乙?再经过多少分钟甲第一次追上丙?14.一辆客车、一辆货车和一辆小轿车同时从甲地开往乙地,客车每小时行80 千米,货车每小时行70 千米,小轿车每小时行100 千米,小轿车到达乙地后立即返回,在距乙地60 千米处与客车相遇,甲乙两地相距多少千米?15.甲、乙、丙、丁四人同时从A 地出发到B 地,甲每小时走8 千米,乙每小时走7 千米,丙每小时走 6 千米,丁每小时走5 千米,甲到达B 地后立即返回,在距B 地20 千米处与乙相遇,此时丙、丁相距多少千米?四、不同速度的相遇问题(共5题)16.甲、乙两人分别从相距240 千米的A、B 两地同时出发,甲每小时走40 千米,乙每小时走60 千米,几小时后两人相遇?17.一辆汽车和一辆自行车同时从相距180 千米的两地相向而行,汽车每小时行60 千米,自行车每小时行15 千米,几小时后两车相遇?18.小明和小刚同时从相距1500 米的两地相向而行,小明每分钟走80 米,小刚每分钟走70 米,两人相遇时小明比小刚多走了多少米?19.甲乙两人在一条长400 米的环形跑道上跑步,甲每分钟跑260 米,乙每分钟跑240 米,两人同时同地反向出发,几分钟后两人第一次相遇?20.一辆卡车和一辆摩托车同时从相距320 千米的两地相向而行,卡车每小时行50 千米,摩托车每小时行70 千米,两车相遇时卡车行了多少千米?五、行程变化的相遇问题(共5题)21.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,途中甲休息了 2 小时,结果两人在距中点10 千米处相遇,A、B 两地相距多少千米?22.一辆汽车和一辆摩托车同时从相距360 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,汽车在途中加油停了1 小时,两车相遇时汽车行了多少千米?23.小明和小红同时从相距1200 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,小明中途休息了3 分钟,两人相遇时各走了多少分钟?24.甲乙两人在环形跑道上跑步,跑道一圈长480 米,甲每分钟跑300 米,乙每分钟跑240 米,甲先跑了20 秒后乙才出发,两人同向而行,经过多少分钟甲第一次追上乙?25.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行70 千米,货车每小时行60 千米,两车相遇后继续前进,到达对方出发地后立即返回,第二次相遇时客车比货车多行了120 千米,A、B 两地相距多少千米?六、有停留时间的相遇问题(共5题)26.甲、乙两人同时从相距270 千米的A、B 两地出发相向而行,甲每小时走60 千米,乙每小时走40 千米,乙中途停留了3 小时,结果两人在途中相遇,甲走了多少小时?27.小明和小刚同时从相距1600 米的两地相向而行,小明每分钟走80 米,小刚每分钟走60 米,小刚中途休息了4 分钟,两人相遇时各走了多少分钟?28.一辆汽车和一辆摩托车同时从相距300 千米的两地相向而行,汽车每小时行75 千米,摩托车每小时行45 千米,汽车中途停留了2 小时,两车相遇时摩托车行了多少千米?29.甲乙两人在环形跑道上跑步,跑道一圈长500 米,甲每分钟跑250 米,乙每分钟跑200 米,甲先跑了30 秒后乙才出发,乙中途休息了 1 分钟,两人相遇时各跑了多少分钟?30.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行80 千米,货车每小时行70 千米,客车中途停留了3 小时,结果两车在距中点40 千米处相遇,A、B 两地相距多少千米?七、往返相遇问题(共5题)31.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时共走了3 小时,A、B 两地相距多少千米?32.一辆汽车和一辆摩托车同时从相距240 千米的两地相向而行,汽车每小时行70 千米,摩托车每小时行50 千米,两车相遇后继续前进,到达对方出发地后立即返回,第三次相遇时汽车行了多少千米?33.小明和小红同时从学校和图书馆相向而行,小明每分钟走60 米,小红每分钟走50 米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时小明比小红多走了200 米,学校和图书馆相距多少米?34.甲乙两人在环形跑道上跑步,跑道一圈长400 米,甲每分钟跑280 米,乙每分钟跑240 米,两人同时同地同向出发,第二次相遇时甲比乙多跑了多少米?35.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行80 千米,货车每小时行70 千米,两车相遇后继续前进,到达对方出发地后立即返回,第二次相遇时两车一共行了多少千米?八、分阶段的相遇问题(共5题)36.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,两人相遇后继续前进,甲到达B 地后立即返回,当甲回到A 地时,乙距A 地还有3 千米,A、B 两地相距多少千米?37.一辆汽车和一辆摩托车同时从相距300 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,汽车先行了1 小时后摩托车才出发,两车相遇时汽车行了多少千米?38.小明和小红同时从相距1000 米的两地相向而行,小明每分钟走70 米,小红每分钟走50 米,走了一段时间后两人相距200 米,这时他们走了多少分钟?39.甲乙两人在环形跑道上跑步,跑道一圈长480 米,甲每分钟跑320 米,乙每分钟跑280 米,甲先跑了60 米后乙才出发,当甲第二次追上乙时,他们各跑了多少米?40.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行90 千米,货车每小时行80 千米,客车先行了2 小时后货车才出发,两车相遇时客车比货车多行了多少千米?九、带条件限制的相遇问题(共5题)41.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走6 千米,乙每小时走5 千米,两人相遇后继续前进,到达对方出发地后立即返回,第二次相遇时甲比乙多走了12 千米,A、B 两地相距多少千米?42.一辆汽车和一辆摩托车同时从相距280 千米的两地相向而行,汽车每小时行80 千米,摩托车每小时行60 千米,两车相遇时汽车比摩托车多行了40 千米,两车行驶了多少小时?43.小明和小红同时从相距1400 米的两地相向而行,小明每分钟走80 米,小红每分钟走60 米,小明到达中点后又走了100 米与小红相遇,两人相遇时各走了多少分钟?44.甲乙两人在环形跑道上跑步,跑道一圈长540 米,甲每分钟跑300 米,乙每分钟跑270 米,甲在乙后面180 米处同时同向出发,经过多少分钟甲第一次追上乙?45.一辆客车和一辆货车同时从A、B 两地相向而行,客车每小时行85 千米,货车每小时行75 千米,两车相遇时距中点30 千米,A、B 两地相距多少千米?十、实际应用中的相遇问题(共5题)46.甲乙两地相距420 千米,一辆汽车从甲地开往乙地,每小时行70 千米,同时一辆摩托车从乙地开往甲地,每小时行50 千米,两车几小时后相遇?47.小明和小刚同时从学校和家相向而行,学校到家的距离是1200 米,小明每分钟走80 米,小刚每分钟走60 米,两人几分钟后相遇?48.一个工程队和一个运输队同时从工地和材料场相向而行,两地相距360 千米,工程队每小时行60 千米,运输队每小时行40 千米,几小时后两队相遇?49.甲乙两人同时从相距1800 米的两地相向而行,甲每分钟走100 米,乙每分钟走80 米,途中甲掉了东西停留了 2 分钟,两人相遇时各走了多少分钟?50.一辆公交车和一辆出租车同时从公交总站和机场相向而行,两地相距240 千米,公交车每小时行60 千米,出租车每小时行80 千米,两车几小时后相遇?十一、速度变化的相遇问题(共3题)51.甲、乙两人同时从A、B 两地出发相向而行,甲每小时走5 千米,乙每小时走4 千米,走了一段时间后,甲的速度提高到每小时 6 千米,乙的速度提高到每小时5 千米,又经过3 小时两人相遇,A、B 两地相距多少千米?52.一辆汽车和一辆摩托车同时从相距270 千米的两地相向而行,汽车每小时行70 千米,摩托车每小时行50 千米,行驶了一段时间后,汽车速度变为每小时80 千米,摩托车速度变为每小时60 千米,两车又经过 2 小时相遇,两车一开始行驶了多少小时?53.小明和小红同时从相距1500 米的两地相向而行,小明每分钟走80 米,小红每分钟走70 米,走了一会儿后,小明速度变为每分钟90 米,小红速度变为每分钟80 米,两人又走了4 分钟相遇,他们一开始走了多少分钟?。
四年级数学应用题专题相遇问题

四年级数学应用题专题--相遇问题一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程〞指两人从出发到相遇共同的路程;“速度和〞指两人在单位时间内共同走的路程;“相遇时间〞指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B 地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:〔1〕甲走的路程+乙走的路程=全程〔2〕甲〔乙〕走的路程=甲〔乙〕的速度×相遇时间〔3〕全程=〔甲的速度+乙的速度〕×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3.5小时两车相遇.两个车站之间的铁路长多少千米?解法一、〔48+78〕×3.5=126×3.5=441〔千米〕答:两个车站之间的铁路长441千米.解法二、48×3.5+78×3.5=168+273=441〔千米〕答:两个车站之间的铁路长441千米.例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?〔520-70〕÷〔30+20〕=450÷50=9〔时〕答:9小时以后还相距70千米没有相遇.例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?〔520+70〕÷〔30+20〕=590÷50=11.8〔时〕答:11.8小时相遇以后相距70千米例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?解法一、〔840-56×8〕÷8=〔840-448〕÷8=392÷8=49〔千米〕答:第二列火车的速度是每小时49千米.解法二、840÷8-56=105-56=49〔千米〕答:第二列火车的速度是每小时49千米.例5. 甲、乙两城相距680千米,从甲城开往乙城的一般客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?〔680-60×2〕÷〔60+80〕=〔680-120〕÷140=560÷140=4〔时〕答:快车开出4小时后两车相遇.小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的根本数量关系:〔甲速+乙速〕×相遇时间=路程来解答.但有一些相遇问题的已知和所求比拟特别,如果仍采纳常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特别的解题方法.一、抓住两个数量差并采纳对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如下图.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷〔甲速+乙速〕求相遇时间有肯定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:〔50+40〕×[30×2÷〔50-40〕]=90×[60÷10]=90×6=540〔千米〕.答:A、B两地的路程是540千米.二、突出不变量并采纳整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:依据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的根本数量关系来求解是非常不易的.但可依据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240〔分〕.可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120〔分〕.答:再经过120分钟两人再次相遇.【模拟真题】〔答题时间:30分钟〕1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【真题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷〔85+90〕=735÷175=4.2〔时〕答:4.2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?〔85+78〕×6.5=163×6.5=1059.5〔千米〕答:两个车站之间的铁路长1059.5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 〔18-15〕× 5=33-15 =3×5=18〔千米〕=15〔千米〕答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?4320÷〔160÷2+160〕=4320÷〔80+160〕=4320÷240=18〔分钟〕答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?〔654-22〕÷8-42=632÷8-42=79-42=37〔千米〕答:甲船平均每小时行驶37千米.6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?172.5÷3=57.5〔千米〕〔57.5-31.5〕÷2=26÷2=13〔千米〕13+31.5=44.5〔千米〕答:汽车每小时行驶44.5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×〔5-1〕=480-180=300〔千米〕300÷5=60〔千米〕答:乙车每小时行驶60千米.。
小学数学四年级 行程问题(二)相遇问题 PPT+答案

【分析】已知两人的路程和以及相遇时间,可求出两人的速度和。又已知两人 的速度差,利用和差问题方法求解。
速度和:2100÷15=140(米/分钟) 旭旭速度:(140-24)÷2=58(米/分钟) 答:旭旭的速度是58米/分钟.
货车各行驶了多少千米?
【分析】货车耽误2小时,则客车单独走了2小时,剩下的路程为两车同时走的路程和。
然后利用路程和与速度和求相遇时间。两车各自的路程利用速度×时间求解。
第1关 基本相遇问题 A-2 两个县城相距20 千米,甲、乙二人同时从两城出发,相向而行,甲
每小时行驶6千米,乙每小时行驶4 千米,几小时后两人相遇?
【分析】 已知两人路程和及速度,求相遇时间。
相遇时间:20÷(6+4)=2(小时) 答:2小时后两人相遇.
第1关 基本相遇问题 B-1 甲、乙两车从相距800 千米的两地同时出发,相向而行,甲车每小时
乙车在途中停了3 小时,然后继续行进,再过2 小时两车相遇,两地
间的铁路长多少千米?
【分析】采用整体思考方式,在相遇之前,甲车单独行驶3小时,甲乙又共同
行驶了3小时,全长则包含甲单独走的以及两人共同走的路程。
甲3小时路程:51×3=153(千米) 同行时间:1+2=3(小时) 甲乙路程和:(51+45)×3=288(千米) 全长:153+288=441(千米) 答:两地间的铁路长441千米.
相遇时间:(43-15)÷(3+4)=4(小时) 答:甲出发4小时后与B-2 甲、乙两座城市相距610 千米,货车和客车从两城同时出发,相向而
四年级数学应用题专题相遇问题
四年级数学应用题专题--相遇问题一、知识要点:相遇问题就是行程问题的一种典型应用题,也就是相向运动的问题.无论就是走路、行车还就是物体的移动,总就是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度与×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度与”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析与理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B地之间的某处相遇,实质上就是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度与×相遇时间四、例题精讲:例1、两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3、5小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3、5=126×3、5=441(千米)答:两个车站之间的铁路长441千米.解法二、48×3、5+78×3、5=168+273=441(千米)答:两个车站之间的铁路长441千米.例2、 A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3、 A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=11、8(时)答:11、8小时相遇以后相距70千米例4、甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度就是每小时56千米,问第二列火车的速度就是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度就是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度就是每小时49千米.例5、甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结: 解答一般的相遇问题,我们常规的思路就是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知与所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1、甲车从A城到B城,速度就是50千米/小时.乙车从B城到A城,速度就是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键就是求出相遇时间.因路程就是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正就是两车相遇的时间.因此,求A、B两地距离的综合算式就是: (50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程就是540千米.二、突出不变量并采用整体的思维方法例2、 A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,她们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解就是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变与在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以瞧到:第三次相遇时,王涛走的路程就是2AB+BE张华走的路程就是AE,两人走的总路程就是3个AB,所花的时间就是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式就是: 80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6、5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明与张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,就是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车与一辆自行车从相距172、5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31、5千米,求汽车、自行车的速度各就是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=4、2(时)答:4、2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6、5小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×6、5=163×6、5=1059、5(千米)答:两个车站之间的铁路长1059、5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明与张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,就是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车与一辆自行车从相距172、5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31、5千米,求汽车、自行车的速度各就是多少?172、5÷3=57、5(千米)(57、5-31、5)÷2=26÷2=13(千米)13+31、5=44、5(千米)答:汽车每小时行驶44、5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。
第六单元1.相遇问题(教案)青岛版四年级上册数学
第六单元1.相遇问题(教案)青岛版四年级上册数学作为一名经验丰富的教师,我深知教学内容的重要性,因此,在教学青岛版四年级上册数学第六单元1.相遇问题时,我选择了本章的第一个知识点——相遇问题的概念和解决方法。
相遇问题是指在平面直线上,两个或多个运动物体从不同起点同时出发,相向而行,在某一时刻相遇的问题。
相遇问题的解决方法有:公式法、图像法、列表法等。
本节课的教学目标是让学生掌握相遇问题的概念和解决方法,能够运用不同的方法解决实际生活中的相遇问题。
在教学过程中,我遇到了一些难点和重点。
难点在于让学生理解相遇问题的概念和解决方法,重点在于让学生能够灵活运用不同的方法解决实际问题。
为了帮助学生更好地理解相遇问题,我准备了一些教具和学具,如直尺、圆规、三角板等,以及一些实际的例子和图片。
1. 引入:我通过一个实际生活中的例子引入相遇问题,让学生感受到相遇问题的实际意义。
2. 讲解:我讲解了相遇问题的概念和解决方法,并通过具体的例题进行了演示。
3. 练习:我给出了一些随堂练习题,让学生运用所学知识解决实际问题。
在作业设计上,我给出了一道相遇问题的实际题目,并提供了详细的解题步骤和答案。
在课后反思和拓展延伸环节,我鼓励学生思考相遇问题在实际生活中的应用,并尝试解决更多相关问题。
总的来说,我认为这节课的教学效果不错,学生们在课堂上积极参与,认真听讲,通过实际的例题和练习,他们对相遇问题的概念和解决方法有了更深刻的理解。
重点和难点解析:我选择了以实际生活中的例子引入相遇问题。
这是因为我认为只有让学生感受到相遇问题与生活的紧密联系,他们才会对这个问题产生兴趣,从而更愿意去学习和理解。
例如,我以两个人在公园中相遇的情景作为引入,让学生观察和思考,从而引出相遇问题的概念。
我讲解了相遇问题的概念和解决方法,并通过具体的例题进行了演示。
在这个环节中,我使用了多种教学方法,如讲解、示范、引导等,以帮助学生更好地理解和掌握。
四年级数学应用题专题-相遇问题
四年级数学应用题专题-相遇问题四年级数学应用题专题--相遇问题一、知识要点:相遇问题是行程问题的一种典型应用题,也是相向运动的问题.无论是走路、行车还是物体的移动,总是要涉及到三个量:路程、速度、时间.路程、速度、时间三者之间的数量关系路程=速度×时间,速度=路程÷时间,时间=路程÷速度.二、学法引导:相遇问题的计算关系式为:总路程=速度和×相遇时间“总路程”指两人从出发到相遇共同的路程;“速度和”指两人在单位时间内共同走的路程;“相遇时间”指从出发到相遇所经的时间.通常情况下对于相遇问题的求解还要借助线段图来进行直观地分析和理解题意,以突破难点.三、解题技巧:一般的相遇问题:甲从A地到B地,乙从B地到A地,然后两人在A地到B 地之间的某处相遇,实质上是甲、乙两人一起走了A←→B这段路程,如果两人同时出发,那么有:(1)甲走的路程+乙走的路程=全程(2)甲(乙)走的路程=甲(乙)的速度×相遇时间(3)全程=(甲的速度+乙的速度)×相遇时间=速度和×相遇时间四、例题精讲:例1. 两列火车从两个车站同时相向出发,甲车每小时行48千米,乙车每小时行78千米,经过3.5小时两车相遇.两个车站之间的铁路长多少千米?解法一、(48+78)×3.5=126×3.5=441(千米)答:两个车站之间的铁路长441千米.解法二、48×3.5+78×3.5=168+273=441(千米)答:两个车站之间的铁路长441千米.例2. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时以后还相距70千米没有相遇?(520-70)÷(30+20)=450÷50=9(时)答:9小时以后还相距70千米没有相遇.例3. A、D两地相距520千米,甲骑摩托车每小时行30千米,乙骑电动车每小时行驶20千米,几小时相遇以后相距70千米?(520+70)÷(30+20)=590÷50=11.8(时)答:11.8小时相遇以后相距70千米例4. 甲、乙两站相距840千米,两列火车同时从两站相对开出,8小时后相遇,第一列火车的速度是每小时56千米,问第二列火车的速度是多少?解法一、(840-56×8)÷8=(840-448)÷8=392÷8=49(千米)答:第二列火车的速度是每小时49千米.解法二、840÷8-56=105-56=49(千米)答:第二列火车的速度是每小时49千米.例5. 甲、乙两城相距680千米,从甲城开往乙城的普通客车每小时行驶60千米,2小时后,快车从乙城开往甲城,每小时行80千米,快车开出几小时后两车相遇?(680-60×2)÷(60+80)=(680-120)÷140=560÷140=4(时)答:快车开出4小时后两车相遇.小结:解答一般的相遇问题,我们常规的思路是,抓住相遇问题的基本数量关系:(甲速+乙速)×相遇时间=路程来解答.但有一些相遇问题的已知和所求比较特殊,如果仍采用常规的解题思路就难以解决问题,针对各种不同的情况,下面介绍几种特殊的解题方法.一、抓住两个数量差并采用对应的思维方法例1. 甲车从A城到B城,速度是50千米/小时.乙车从B城到A城,速度是40千米/小时.两车同时出发,结果在离A、B两城的中点C 30千米的地方相遇,求A、B两城间的路程?分析与解:这道题的条件与问题如图所示.要求A、B两城的距离,关键是求出相遇时间.因路程是未知的,所以用路程÷(甲速+乙速)求相遇时间有一定的困难.抓住题设中隐含的两个数量差,即甲车与乙车的速度差:50千米/小时-40千米/小时=10千米/小时;相遇时两车的路差:30千米×2=60千米.再将其对应起来思维:正因为甲车每小时比乙车多走10千米,所以甲车多走60千米所花去的时间6小时正是两车相遇的时间.因此,求A、B两地距离的综合算式是:(50+40)×[30×2÷(50-40)]=90×[60÷10]=90×6=540(千米).答:A、B两地的路程是540千米.二、突出不变量并采用整体的思维方法例2. A、B两地间的公路长96千米,张华骑自行车自A往B,王涛骑摩托车自B往A,他们同时出发,经过80分两人相遇,王涛到A地后马上折回,在第一次相遇后40分追上张华,王涛到B地后马上折回,问再过多少时间两个人再相遇?分析与解:根据题意张华、王涛三次相遇情况可画示意图.这道题如果从常规思路入手,运用相遇问题的基本数量关系来求解是非常不易的.但可根据题中小张、小王三次相遇各自的车速不变和在相距96千米的两地其同时相向而行相遇时间不变,进行整体思维.从图中可以看到:第三次相遇时,王涛走的路程是2AB+BE张华走的路程是AE,两人走的总路程是3个AB,所花的时间是80×3=240(分).可见,从第二次相遇到第三次相遇所经过的时间的综合算式是:80×3-80-40=120(分).答:再经过120分钟两人再次相遇.【模拟试题】(答题时间:30分钟)1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船平均每小时行多少千米?6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?【试题答案】1、甲、乙两列火车同时从相距735千米的两地相向而行,甲列车每小时行85千米,乙列车每小时行90千米,几小时两列火车相遇?735÷(85+90)=735÷175=4.2(时)答:4.2小时两列火车相遇.2、两列火车从两个车站同时相向出发,甲车每小时行85千米,乙车每小时行78千米,经过6.5小时两车相遇.两个车站之间的铁路长多少千米?(85+78)×6.5=163×6.5=1059.5(千米)答:两个车站之间的铁路长1059.5千米.3、两人骑马同时从相距165千米的两地相对跑来,5小时相遇.第一匹马每小时跑15千米,第二匹马每小时跑多少千米?第二匹马比第一匹马多跑多少千米?165÷5-15 (18-15)× 5=33-15 =3×5=18(千米)=15(千米)答:第二匹马每小时跑18千米.第二匹马比第一匹马多跑15千米.4、小明和张楠分别从相距4320米的甲乙两地同时相对而行,小明骑车每分钟走160米,是张楠步行速度的2倍,多少分钟后两人相遇?4320÷(160÷2+160)=4320÷(80+160)=4320÷240=18(分钟)答:18分钟后两人相遇.5、甲、乙两艘轮船从相距654千米的两地相对开出而行,8小时两船还相距22千米.已知乙船每小时行42千米,甲船每小时行多少千米?(654-22)÷8-42=632÷8-42=79-42=37(千米)答:甲船平均每小时行驶37千米.6、一辆汽车和一辆自行车从相距172.5千米的甲、乙两地同时出发,相向而行,3小时后两车相遇.已知汽车每小时比自行车多行31.5千米,求汽车、自行车的速度各是多少?172.5÷3=57.5(千米)(57.5-31.5)÷2=26÷2=13(千米)13+31.5=44.5(千米)答:汽车每小时行驶44.5千米,自行车每小时行驶13千米.7、甲、乙两车同时从相距480千米的两地相对而行,甲车每小时行45千米,途中因汽车故障甲车停了1小时,5小时后两车相遇.乙车每小时行多少千米?480-45×(5-1)=480-180=300(千米)300÷5=60(千米)答:乙车每小时行驶60千米.。
四年级数学之相遇问题
四年级数学之相遇问题第十讲相遇问题知识要点与学法指导:相遇问题是行程问题中的一种情况。
两个运动着的物体从两个地方出发,相向运动,越行越近,到一定的时候两者可以相遇。
两个运动的物体同时出发时,相遇时所用的时间相同。
我们已经研究过速度、时间和路程这一组数量关系,在相遇问题中也存在着这样的数量关系,两个运动着的物体都各自有速度、时间和所行驶的路程。
在研究相向运动时,两个物体一小时一共所行驶路程又叫做速度和。
解答相遇问题的基本数量关系是:速度和×相遇时间=总路程总路程÷相遇时间=速度和总路程÷速度和=相遇时间例如:两人同时从两地对面走来,XXX每分钟走70米,XXX每分钟走60米,两人每分钟一共走多少米?走了3分钟,两人一共走了多少米?要求两人每分钟一共走多少米,就是求两人的速度和。
70+60=130(米)要求走了3分钟两人一共多少米,我们可以在前面速度和,也就是每分钟两人所走的路程的基础上解决。
即:70+60=130(米)130×3=390(米)我们还可以这样理解,两人走了3分钟,每一个人都走了3分钟,可以先分别计算每一个人3分钟所走的路程,最后再求和。
70×3=210(米)60×3=180(米)210+180=390(米)答:两人每分钟一共走130米。
两人一共走了390米。
例如1:两人同时从两地对面走来,XXX每分钟走70米,XXX每分钟走60米,9分钟后两人相遇,求两地距离。
分析与解】观察下面的图:两地距离就是两个人相遇的时候所走的路程和。
两人同时出发,所以所行的时间相同。
我们可以这样解决:70+60=130(米)130×9=1170(米)也可以这样解决:70×9=630(米)60×9=540(米)630+540=1170(米)答:两地路程相距1170米。
通过问题的解决,我们可以得到:速度和×相遇时间=总路程试一试1:两人同时从两地对面走来,甲每分钟走60米,乙每分钟走50米,走了5分钟后两人相遇,求两地相距多少米?例如2:两地之间的海上距离是400千米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《相遇问题》教学设计
教学内容:义务教育课程标准实验教科书(青岛版)四年级上册第六单元信息窗第两个红点(相遇问题)
教学目标:
知识与技能:在具体的情境中引导学生理解有关相遇问题的术语,学会分析相遇问题的数量关系,掌握解决相遇问题的解题策略,正确解答求路程的实际问题,培养学生分析解答问题的能力,
过程与方法:让学生模拟相遇问题中两个物体的运动过程,亲身体验知识形成的过程。
情感、态度与价值观:培养学生细致的审题习惯,初步培养学生全面看问题的方法。
教学重点:理解和掌握相遇问题的解答方法。
教学难点:分析相遇问题的数量关系,理解“速度和”的含义。
教学准备:多媒体课件
教学过程:
一、预习检测
拿出预习案,小组汇报预习情况。
二、创设情境,提出问题
出示情境图,引导学生观察。
你能提出什么数学问题?
生思考口答。
师小结:如果我们知道了速度和时间,让我们求路程,该怎样列式?(“速度×时间=路程”)
二、自主学习,合作探究
出示课本例题图示。
(一)初步理解题意,重点是“同时”和“相遇”。
仔细读题、审题,寻找信息。
讨论交流。
师用列表的方式板书整理题里的条件。
师:怎样理解“同时”和“相遇”?
师组织两名学生在教室内做“同时”和“相遇”的表演。
同桌之间用橡皮等在桌面的表演。
师在旁边指导。
动作要规范。
进一步理解“同时”和
“相遇”的含义。
师总结:同学们表演的都很好。
他们同一时刻也就是同时出发,相向而行,经过4小时相遇了。
今天我们就来研究“相遇问题”,板书课题“相遇问题”。
(二)画线段图进一步理解题意
师:同学们,在解决问题的时候,我们除了可以用列表的方法整理题中的条件,还可以用画线段图的方法整理,下面我们就一起来画出线段图。
师指导学生画线段图,并在线段图上标出条件和所求问题。
进一步理解题意。
(三)解决问题
通过以上分析,你们能解决这个问题了吗?
生独立解答或小组合作完成。
三、汇报交流,评价质疑
1.组织交流
为了让大家理解的更透彻,师生共同在黑板上演示1小时共同走的路。
并板书“速度和”。
多次演示,强化学生对“速度和”的理解。
教师小结:在解决这个问题的时候,我们就可以先求两辆车每小时一共走了多少米?再求两车4小时一共走了多少米?
2.比较、质疑。
师:两种方法有什么不同点?组织学生结合线段图和算式说一说。
四、抽象概括,总结提升
今天我们学的行程问题与以往的行程问题有什么不同?
生思考,交流。
师总结:今天学习的是行程问题中的“相遇”问题。
“同时出发,同时运动,在同一地点碰面,求共同走的路程。
”在解决这个问题时我们可以先分别求出每辆车所走的路程,再把每辆车所行的路程加起来。
还可以先求出两车的速度和,再乘以相遇时间。
五、巩固练习、拓展提高
1.练一练。
师:下面我们来做一个小练习,比一比,看谁学的好。
出示课本P82自主练习第2、3题。
仔细读题、审题,画出题里的关键词,可以画一画线段图或同桌讨论完成。
订正时组织学生说想法,并让学生解释“相对开出”的意思。
2.教师小结:同学们,像刚才我们研究的由两个人或两种物体同时从两地出发,相对而
行,最后相遇,求两地相遇多少的问题,我们都可以用这两种思路来解决。
3.智力冲浪。
小华和小亮在环形跑道上跑步,两人从同一地点同时出发,反向而行,小华每秒跑4米,小亮每秒跑6米,经过40秒两人相遇。
环形跑道长多少米?
板书设计:
相遇问题
速度和相遇时间。