《线性代数》3.1线性方程组的初等变换
线性代数_浙江大学中国大学mooc课后章节答案期末考试题库2023年

线性代数_浙江大学中国大学mooc课后章节答案期末考试题库2023年1.【图片】中【图片】的系数等于().参考答案:-12.设【图片】是【图片】阶正定矩阵,则下列结论正确的是参考答案:__也是正定矩阵_3.任意一个对称的可逆实矩阵一定与同阶的单位矩阵().参考答案:(相抵)等价4.设【图片】的三个特征值为【图片】下列结论正确的是 ( )参考答案:如果则__如果的三个特征值互不相同, 则一定可以对角化.5.设E+A可逆,E-A不可逆,则下列正确的是( ).参考答案:1是A的一个特征值_-1不是A的一个特征值6.已知【图片】为一线性方程组的通解. 则下述陈述中正确的是:参考答案:该方程组系数矩阵的秩是2._该方程组至少含有两个方程.7.设有向量【图片】, 下列哪个向量【图片】可以与【图片】组成【图片】的基?参考答案:_8.关于向量线性关系说法正确的是参考答案:若向量组的秩小于向量个数, 则向量组线性相关._若向量组由一个可逆矩阵的列向量组成, 则向量组线性无关.9.已知向量组【图片】和【图片】,下列结论正确的是( ).参考答案:若存在不全为零的数,使得,则向量组线性相关10.下列各项中,是【图片】元向量组【图片】【图片】线性相关的充要条件的是 ( ).参考答案:中至少有一个部分组线性相关11.空间中过下列哪两个点的直线是平行的?【图片】和【图片】【图片】和【图片】【图片】和【图片】【图片】和【图片】参考答案:(d),(a)12.矩阵【图片】其中【图片】为待定常数, 则 ( ).参考答案:当时, 秩为 1_当且时, 秩为 3_当时, 秩为 213.假设【图片】是【图片】矩阵,【图片】是【图片】元非零列向量,【图片】是【图片】元零列向量, 下列说法正确的是 ( )参考答案:若有唯一解, 则仅有零解_若有无穷多解, 则有非零解_若仅有零解,则有唯一解14.下列结论正确的是( ).参考答案:任意一个方阵一定可以表示为一个对称矩阵与一个反对称矩阵的和._与任意n阶方阵均乘法可交换的矩阵一定是n阶数量矩阵._秩为r(r>1)的矩阵中,一定存在不为零的r-1阶子式.15.设非零方阵【图片】满足【图片】,则下列结论不正确的是().参考答案:不可逆16.已知【图片】, 其中【图片】为【图片】阶可逆矩阵,【图片】为【图片】阶可逆矩阵,则下列结论不正确的是 ( ).参考答案:_G不可逆_17.以下结论正确的是( ).参考答案:若或不可逆,则必有不可逆_若均可逆,则必有可逆18.下列矩阵方程解正确的是( ).参考答案:的解是_的解是_的解是_的解是19.设P是数域,【图片】是【图片】的一个特征值.记【图片】,则下列结论正确的是( ).参考答案:_是空间的线性子空间20.设【图片】为实对称矩阵,则下列成立的是()。
同济大学线性代数课件(第三章)

0 0 0
1 0 0
1 0 0
1 2 0
0
6 0
B4
2019/6/24
12
1
rrr123rr1223
0 0 0
0 1 0 0
1 1
0 0
0 0 1 0
4
3 3 0
B5
行最简形
x1 x2
x3 x3
4 3
3
2 5
3
2 3
4
0
6 3
B2
2019/6/24
11
1 1 2 1 4
r2 2
rr43 35rr22
0 0 0
1 0 0
1 0 0
1 2 1
0 6 3
B
3
1 1 2 1 4 行阶梯形
r4 12r4
②③
③2①
④3①
2x2 2x3 2x4 0, ② 5x2 5x3 3x4 6, ③
3x2 3x3 4x4 3, ④
2019/6/24
(B1 )
(B2 )
3
② 1
x1
③52②
④3②
x2 2x3 x2 x3
2019/6/24
2
用消元法
x1 x2 2x3 x4 4, ①
(1)
①③ 12② 22xx11
x2 3x2
x3 x4 2, ② x3 x4 2, ③
线性代数矩阵的初等变换

r2 ( 2) 1
r3
(
1)
0 0
0 1 0
0 0 1
3 2 1
23 , 3
3 2 X 2 3.
1 3
如果要求Y CA1,则可对矩阵 A作初等列变换, C
A 列变换 E
C
CA1
,
即可得Y CA1.
也可改为对( AT ,CT ) 作初等行变换,
行变换
(AT , CT )
a23 a33
a11 a12 a13 a14
a21
a22
a23
a24
a31 a32 a33 a34
矩阵 A 的一个 2 阶子式
a12 a13 a22 a23
矩阵 A 的一个 2 阶子块
a12 a13
a22
a23
定义:设矩阵 A 中有一个不等于零的 r 阶子式 D,且所有 r +1 阶子式(如果存在的话)全等于零,那么 D 称为矩阵 A 的最高阶非零子式,数 r 称为矩阵 A 的秩,记作 R(A).
口诀:左行右列. 定理3.2 设A是一个 m×n 矩阵, ✓对 A 施行一次初等行变换,相当于在 A 的左边乘以相应的 m 阶初等矩阵; ✓对 A 施行一次初等列变换,相当于在 A 的右边乘以相应的 n 阶初等矩阵.
定理3.3 方阵A可逆的充要条件是存在有限个初等矩阵P1, P2, …, Pl,使 A = P1 P2 …, Pl .
r3 3r1 0 2 6 2 12
r1 r2 r3 r2
1 0 2 1 4 0 2 5 1 9 0 0 1 1 3
r1 2r3 1 0 0 3 2
r2 5r3
0 0
2 0 4 6 0 1 1 3
线性代数讲义03线性方程组

第三章 线性方程组第一节 线性方程组与矩阵的行等价一 线性方程组以前学过求解二元一次方程组与三元一次方程组的方法. 这里研究一般的一次方程组.定义3.1 多元一次方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111称为线性方程组. 方程组有m 个方程, n 个未知数i x (1,2,,i n =), 而ij a (1,2,,i n =;m j ,,2,1 =)是未知数的系数, j b (m j ,,2,1 =)是常数项.如果0=j b (m j ,,2,1 =), 则称为齐次线性方程组, 否则称为非齐次线性方程组.数组n c c c ,,,21 是方程组的一个解, 如果用它们分别代替方程组中的未知数n x x x ,,,21 , 可以使方程组变成等式组. 方程组的全部解的集合称为方程组的通解. 相对于通解, 称方程组的一个解为特解.定义3.2 如果两个线性方程组有相同的通解, 则称它们同解.按照定义, 两个方程组同解是指它们的解的集合相等. 集合相等是一种等价关系, 因此方程组同解也是一种等价关系. 特别, 方程组同解具有传递性.通过消元, 可将线性方程组变成比较简单的同解方程组, 从而得到原方程组的解.例3.1 解线性方程组⎪⎩⎪⎨⎧=++=++=+-52452132321321321x x x x x x x x x .解 从上向下消元, 得同解方程组1232332312243x x x x x x -+=⎧⎪-=⎨⎪-=-⎩. 这种方程组称为阶梯形方程组. 从下向上消元, 得同解方程组⎪⎩⎪⎨⎧-=-=-=310232321x x x .再除以第一个未知数的系数, 得线性方程组的解2/31-=x , 52=x , 33=x .解线性方程组的基本方法是加减消元法. 求解过程中常用三种运算.定义3.3 下列三种运算称为方程组的初等变换.(1) 交换两个方程的位置;(2) 用一个非零常数乘以一个方程;(3) 将一个方程的k 倍加到另一个方程上去.注意 如果用一种初等变换将一个线性方程组变成另一个线性方程组, 则也可以用初等变换将后者变成前者. 即初等变换的过程是可逆的.定理3.1 用初等变换得到的新的线性方程组与原方程组同解.证 先证明只进行一次初等变换.首先如果一组数是原方程组的解, 则它满足方程组中的每一个方程. 此后, 无论进行的是哪种初等变换, 这组数也满足新方程组的每个方程, 因此是新方程组的解. 反之, 由于初等变换的可逆性, 新方程组的解也是原方程组的解. 因此, 两个方程组同解.最后, 由于方程组同解的传递性, 进行任意多次初等变换所得方程组与原方程组同解.二 矩阵的行等价用矩阵乘法, 可以将线性方程组⎪⎪⎩⎪⎪⎨⎧=+++=+++=+++mn mn m m n n n n b x a x a x a b x a x a x a b x a x a x a 22112222212111212111写作 11121121222212n n m m mn n a a a x a a a x a a a x ⎛⎫⎛⎫ ⎪⎪ ⎪⎪ ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=m b b b 21, 称为线性方程组的矩阵表示. 其中n m ⨯矩阵)(ij a A =称为方程组的系数矩阵, 1⨯n 列矩阵),,,(21'=n x x x x 称为未知数(矩阵), 1⨯m 列矩阵),,,(21'=m b b b b 称为常数(矩阵). 此时, 线性方程组可以简写作b Ax =.如果数组n c c c ,,,21 是线性方程组b Ax =的解, 令列矩阵12(,,,)n c c c ξ'=, 则有矩阵等式A b ξ=. 列矩阵12(,,,)n c c c ξ'=是方程组的解的矩阵表示.将常数矩阵添加到系数矩阵上作为最后一列, 得到分块矩阵),(b A A =, 称为线性方程组的增广矩阵.线性方程组与其增广矩阵是互相唯一确定的. 因此, 可以将方程组的语言翻译成矩阵的语言. 从线性方程组的初等变换, 产生矩阵的行初等变换的概念.定义3.4 设A 是矩阵, 则下列三种运算称为对矩阵A 的行初等变换.(1) 交换A 的两行;(2) 用非零常数k 乘以A 的一行;(3) 将A 的一行的k 倍加到另一行上去.定义 3.5 如果通过行初等变换, 可以将矩阵A 变成矩阵B , 则称矩阵A 与B 行等价. 记作B A r−→−. 仿照定理3.1的证明, 可以得到下面的结果.性质3.1 行等价是一种等价关系, 即具有下述性质.(1) 反身性: A A r −→−; (2) 对称性: 如果B A r −→−, 则A B r −→−; (3) 传递性: 如果B A r −→−,C B r −→−, 则C A r −→−. 当一类对象具有多种不同的等价关系时,要用不同的符号予以区别. 矩阵的相等是一种等价关系, 已经用等号表示为B A =. 作为矩阵的另一种等价关系, 行等价使用符号B A r −→−. 用矩阵的行等价的概念, 可以将定理3.1写作:定理3.2 如果两个线性方程组的增广矩阵行等价,则这两个线性方程组同解.通过初等变换, 可以从线性方程组产生一个阶梯形方程组. 换成矩阵的语言, 通过行初等变换, 可以从矩阵产生下面的具有特殊结构的矩阵.如果矩阵中某行中所有元素都是0, 则称为零行, 否则称为非零行.定义3.6 具有下面的性质的矩阵称为行阶梯形阵.(1) 非零行在上, 零行在下;(2) 每个非零行的第一个非零元素(首元素)在上面的非零行的首元素的右下方.例3.2 用行初等变换化简矩阵⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A .解 做行初等变换, 得⎪⎪⎪⎭⎫ ⎝⎛-=521451121312A ⎪⎪⎪⎭⎫ ⎝⎛---−→−343042201312r ⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r . 经过消元, 得到的已经是行阶梯形阵. 继续消元, 得⎪⎪⎪⎭⎫ ⎝⎛----−→−310042201312r A ⎪⎪⎪⎭⎫ ⎝⎛----−→−3100100208012r ⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r .最后, 每行除以其首元素, 得⎪⎪⎪⎭⎫ ⎝⎛---−→−3100100203002r A ⎪⎪⎪⎭⎫ ⎝⎛-−→−310050102/3001r .定义3.7 具有下列性质的行阶梯形阵称为行最简阵.(1) 每个非零行的首元素等于1;(2) 包含首元素的列的其它元素都是0.在例3.2中, 最后得到的是行最简阵. 由以上的讨论, 可得下面的定理.定理3.3 对于任意矩阵A , 存在一个行最简阵R , 使得A 与R 行等价.如果矩阵A 与行阶梯形阵R 行等价,则称R 是A 的行阶梯形阵. 如果A 与行最简阵R 行等价, 则称R 为矩阵A 的行等价标准形.其实, 例3.2中的矩阵就是例3.1中线性方程组的增广矩阵. 而矩阵的行初等变换的过程与线性方程组的初等变换的过程完全一样. 唯一的区别在于这里只有系数和常数, 没有未知数和等号. 由于增广矩阵与线性方程组可以互相唯一确定, 缺少未知数和等号完全不影响问题的解决.习题3-11. 写出线性方程组⎪⎪⎩⎪⎪⎨⎧=+++-=----=+-+=+++01123253224254321432143214321x x x x x x x x x x x x x x x x 的系数矩阵与增广矩阵, 并用消元法求解.2. 设线性方程组的增广矩阵为⎪⎪⎪⎭⎫ ⎝⎛------1681355422351312, 写出该线性方程组, 并用消元法求解.3. 求下列矩阵的行等价标准形.(1)102120313043-⎛⎫ ⎪ ⎪ ⎪-⎝⎭; (2) 023*********-⎛⎫ ⎪- ⎪ ⎪--⎝⎭; (3) 11343335412232033421--⎛⎫ ⎪-- ⎪ ⎪-- ⎪ ⎪---⎝⎭; (4) 23137120243283023743--⎛⎫ ⎪-- ⎪ ⎪- ⎪ ⎪-⎝⎭. 4. 求t 的值, 使得矩阵⎪⎪⎪⎭⎫ ⎝⎛-----t 22122351311321的行等价标准形恰有两个非零行.第二节 矩阵的秩一 矩阵的秩的定义定义 3.8 设矩阵n m ij a A ⨯=)(, 从A 中任意选取k 行,k 列(},min{n m k ≤), 位于这些行与列的交叉点上的2k 个元素按照原来的相对位置构成的k 阶行列式称为A 的一个k 阶子式. 例如, 位于矩阵⎪⎪⎪⎭⎫ ⎝⎛---=312097102431A 的第一,三行, 第二,四列的二阶子式为133223-=-. 一个n m ⨯矩阵有kn k m C C 个k 阶子式. 矩阵的每个元素都是它的一个一阶子式. 而n 阶方阵的行列式是它的唯一的n 阶子式.定义3.9 如果矩阵n m ij a A ⨯=)(中有一个r 阶子式不等于零, 而所有1+r 阶子式都等于零, 则称矩阵A 的秩等于r . 记作r A =)rank(.如果矩阵的所有1+r 阶子式都等于零, 根据行列式按照一行展开, 可以证明所有更高阶的子式也都等于零. 因此, 矩阵的秩等于它的不等于零的子式的最高阶数.约定 对于零矩阵O , 约定0)rank(=O .由矩阵的秩的定义, 可以得到下面简单事实:(1) 设A 是非零矩阵, 则1)rank(≥A ;(2) 设A 是n m ⨯矩阵, 则},min{)rank(n m A ≤;(3) n 阶方阵A 可逆的充分必要条件为n A =)rank(. 于是, 可逆阵又称为满秩阵.例3.3 设⎪⎪⎪⎭⎫ ⎝⎛=064212100321A , 求它的秩.解 左上角的二阶子式不等于零. 而所有四个三阶子式都等于零. 于是, 2)rank(=A . 例3.4 求对角阵),,,diag(21n a a a A =的秩.解 由不等于0的主对角元素所在的行与列确定的子式不等于0. 而阶数高于这个子式的子式必然有零行. 因此对角阵的秩等于其不等于0的主对角线元素的个数.例3.5 设矩阵A 的秩等于0>r , 从A 删除一行得到矩阵B , 问B 的秩可能取哪些值? 如果给A 添加一行呢?解 因为矩阵B 的子式也是矩阵A 的子式, 所以B 的秩不大于A 的秩.已知r A =)r a n k (, 不妨设A 的r 阶子式D 不等于0. 如果D 也是B 的子式, 则r B =)rank(. 否则, 根据行列式按照一行展开, 在D 的未被删除的1-r 行中, 至少有一个1-r 阶子式不等于0. 于是1)rank(-≥r B .仿照上面的证明, 添加一行所得矩阵的秩等于r , 或者1+r .性质3.2 设A 是矩阵, k 是数, 则(1) 转置: )rank()rank(A A =';(2) 数乘: 如果0≠k , 则)rank()rank(A kA =.证 只证(2).考虑矩阵A 的一个s 阶子式s D , 根据矩阵的性质2.6, 矩阵kA 的相应的子式等于s s D k .已知0≠k , 因此0=s s D k 的充分必要条件为0=s D .设r A =)rank(, 则A 有一个r 阶子式不等于0, 而所有1+r 阶子式都等于0. 根据前面的分析, 矩阵kA 具有相同的性质. 因此, r kA =)rank(.二 行初等变换用定义计算矩阵的秩时, 需要计算许多个行列式. 计算量非常大.定理3.4 设矩阵A 与B 行等价, 则rank()rank()A B =.证 设一次行初等变换将矩阵A 变成矩阵B ,且r A =)r a n k (, 则A 的所有1+r 阶子式都等于0. 下面对于三种行初等变换证明矩阵B 的所有1+r 阶子式也都等于0.(1) 矩阵A 的一行乘以非零常数k . 此时B 的一个1+r 阶子式或者就是A 的相同位置的1+r 阶子式, 或者是A 的相同位置的1+r 阶子式的一行乘以非零常数k . 于是, B 的所有1+r 阶子式都等于0.(2) 交换矩阵A 的两行. 考虑B 的一个1+r 阶子式D , 则A 有一个1+r 阶子式与D 的差别至多是行的顺序不同. 于是, B 的所有1+r 阶子式都等于0.(3) 将A 的第j 行的k 倍加到第i 行. 如果B 的一个1+r 阶子式不包含A 的第i 行, 它就是A 的相同位置的1+r 子式. 如果B 的一个1+r 阶子式D 包含A 的第i 行, 用行列式的性质, 这个子式可以分解为21kD D +, 其中1D 就是A 的相同位置的1+r 子式. 如果D 不包含A 的第j 行, 则2D 可以由A 的某个1+r 阶子式经交换行得到. 如果D 包含A 的第j 行, 则2D 有两个相同的行. 于是, B 的所有1+r 阶子式都等于0.总之, )rank()rank(A r B =≤.另一方面, 由矩阵的行等价的对称性, 也可以用行初等变换将矩阵B 变成矩阵A . 从而还有)rank()rank(B A ≤. 于是, 无论做哪种行初等变换, 都有rank()rank()A B =.最后, 由矩阵的行等价的传递性, 进行多次行初等变换也不改变矩阵的秩.推论 3.1 矩阵的秩等于它的行阶梯形阵中非零行的个数, 也就是行等价标准形中非零行的个数.证 设矩阵A 的行等价标准形R 中恰有r 个非零行, 则所有1+r 阶子式都等于0. 另一方面, 它的非零行的首元素所在的列的前r 行构成r 阶单位阵. 于是r R =)rank(. 根据定理 3.4, 有r A =)rank(.例3.6 求矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A 的秩. 解 用行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----=7931181332111511A −→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----81440472047201511−→−r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---0000000047201511. 矩阵A 的行阶梯形阵有两个非零行, 因此, 2)rank(=A .例3.7 设分块矩阵⎪⎪⎭⎫ ⎝⎛=C O O B A , 求证: )rank()rank()rank(C B A +=. 证 设矩阵C B ,的行等价标准形分别为R 和S , 分别对B 和C 所在的行做行初等变换, 得⎪⎪⎭⎫ ⎝⎛=C O O B A ⎪⎪⎭⎫ ⎝⎛−→−S O O R r , 其中R 和S 分别是B 和C 的行等价标准形. 将R 所在的行中的零行移动到矩阵的最下方, 而不改变非零行的上下顺序, 可得到一个行最简阵. 而且, 这就是A 的行等价标准形. 于是, A 的行等价标准形中非零行的个数恰等于B 与C 的行等价标准形中非零行的个数之和.用这个方法可以证明: 准对角阵的秩等于各对角块的秩的和.习题3-21. 设矩阵⎪⎪⎭⎫ ⎝⎛=75211111A ,按照从小到大的顺序排列它的所有二阶子式. 2. 设n m ⨯矩阵A 的秩等于r , 任取A 的s 行构成矩阵B , 求证: m s r B -+≥)rank(. *3. 设A 是n m ⨯矩阵,求证:1)rank(=A 的充分必要条件为: 存在1⨯m 非零矩阵B 与n ⨯1非零矩阵C ,使得BC A =.4. 用行初等变换求下列矩阵的秩.(1) 123235471⎛⎫ ⎪- ⎪ ⎪⎝⎭; (2) 321322131345561---⎛⎫ ⎪-- ⎪ ⎪--⎝⎭; (3) 1010011000011000011001011⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭; (4) 132541413514243273613-⎛⎫ ⎪ ⎪ ⎪ ⎪-⎝⎭. 5. 求t 的值, 使得方阵⎪⎪⎪⎭⎫ ⎝⎛-=t A 23312231的秩等于2.第三节 齐次线性方程组的基础解系齐次线性方程组的矩阵表示为0=Ax . 此时方程组与其系数矩阵A 互相唯一确定.齐次线性方程组0=Ax 总有零解. 于是, 解齐次线性方程组的基本问题是:(1) 对给定的齐次线性方程组,判定是否有非零解;(2) 如果有非零解, 求出所有的解(通解). 性质 3.3 如果列矩阵1ξ与2ξ是齐次线性方程组0=Ax 的两个特解, 则对于任意的数k h ,, 列矩阵21ξξk h +也是方程组的解.证 将21ξξk h +代入方程组, 得)(21ξξk h A +00021=+=+=ξξkA hA . 由定理3.2与定理3.3可得解齐次线性方程组的基本路线. 下面通过例题予以说明.例1求齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++=-+++=-----=+++0434503223006225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的系数矩阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------=14345321231111162210A . 然后做行初等变换, 由矩阵A 产生行阶梯形阵. ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------14345321236221011111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-----−→−00000010006221011111r . 继续做行初等变换, 得到矩阵A 的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000010006021050101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--−→−00000010006021050101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===++=--000062054532531x x x x x x x .将行等价标准形的非零行中的首元素对应的未知数留在方程组的左边, 将其余未知数移到方程组的右边, 得到⎪⎪⎩⎪⎪⎨⎧==--=+=0006254532531x x x x x x x . 任意取定右边未知数(自由未知数)的值, 则左边未知数(约束未知数)的值也随之确定, 由此产生方程组的一个解.实际上,由此可以得到方程组的全部解. 设),,,,(54321'd d d d d 是方程组的任意的特解, 上面求解时3x 与5x 可以任意取值, 自然包含取值33d x =与55d x =. 由于),,,,(54321'd d d d d 是方程组的解, 必须满足方程组.因此5315d d d +=,53262d d d --=,04=d . 于是, 这个特解可以由上面的方法产生.令h x =3,k x =5, 得到齐次线性方程组的通解k h x 51+=,k h x 622--=,h x =3, 04=x , k x =5, 其中k h ,是任意常数.在通解中令1=h ,0=k , 得到齐次线性方程组的一个特解1(1,2,1,0,0)ξ'=-. 反之, 令0=h ,1=k , 得到另一个特解2(5,6,0,0,1)ξ'=-. 从而得到齐次线性方程组的通解的矩阵表示: 12x h k ξξ=+, 其中k h ,是任意常数. 为了得到方程组的通解, 只须求得特解1ξ与2ξ, 因此, 称12,ξξ为齐次线性方程组的基础解系.注意 将一个自由未知数取1, 其他自由未知数取0, 得到齐次线性方程组的一个特解. 这些特解的集合就是基础解系. 因此, 如果有s 个自由未知数, 则方程组的基础解系包含s 个特解.定理 3.5 设A 是n m ⨯矩阵, 则齐次线性方程组0=Ax 的基础解系中所包含的特解的个数等于)rank(A n -.证 根据推论 3.1, 系数矩阵A 的秩等于行等价标准形R 中非零行的个数, 也就是约束未知数的个数. 于是, 未知数的个数n 与系数矩阵的秩)rank(A 的差等于自由未知数的个数, 也就是基础解系中所包含的特解的个数.推论 3.2 齐次线性方程组只有零解的充分必要条件为: 系数矩阵的秩等于它的列数.证 根据定理 3.5, 此时没有自由未知数, 于是只有一个零解.推论3.3 设A 是n 阶方阵,求证:齐次线性方程组0=Ax 只有零解的充分必要条件为: 行列式0||≠A .证 根据推论3.2, 齐次线性方程组0=Ax 只有零解的充分必要条件为n A =)rank(. 由矩阵的秩的定义, n A =)rank(的充分必要条件为0||≠A .例 3.9 设A 是n 阶方阵, 且n r A <=)rank(, 求证: 存在n 阶方阵B , 满足O AB =, 且r n B -=)rank(.证 考虑齐次线性方程组0=Ax , 根据定理3.5, 它的r n -个特解12,,,n r ξξξ-组成基础解系. 即有0i A ξ=, r n i -=,,2,1 .构造分块n 阶方阵12(,,,,0,,0)n rB ξξξ-=, 即B 的前r n -列是基础解系中的特解构成的列矩阵, 后面的r 个列的元素都是0. 由基础解系的构造, 在B 的前r n -列中, 与自由未知数对应的行可以构成一个单位阵, 因此r n B -=)rank(.另一方面, 由分块矩阵的运算规则, 有12(,,,,0,,0)n r AB A ξξξ-=12(,,,,0,,0)n r A A A O ξξξ-==.习题3-31. 求下列齐次线性方程组的通解.(1)⎪⎩⎪⎨⎧=+=++=+-03200231321321x x x x x x x x ; (2)⎪⎩⎪⎨⎧=-+-+=+--+=-+-+024242052420632543215432154321x x x x x x x x x x x x x x x ; (3)⎪⎪⎩⎪⎪⎨⎧=-+++=+++=-+++=++++033450622032305432154325432154321x x x x x x x x x x x x x x x x x x x ; (4)⎪⎪⎩⎪⎪⎨⎧=+-+-=-+--=-+-+=+-+-02252022303220254321543215432154321x x x x x x x x x x x x x x x x x x x x .2. 设齐次线性方程组的系数矩阵的列数大于行数, 求证: 该方程组有非零解.3. 当a 满足什么条件时, 齐次线性方程组⎪⎩⎪⎨⎧=++=++=++000321321321x x x x ax x x x ax 只有零解?4. 求a 的值, 使得齐次线性方程组⎪⎩⎪⎨⎧=+-=++=++004202321321321x x x x x x x x ax 有非零解. 并求其基础解系.5. 设0>n , 求证: n 次多项式至多有n 个两两不同的零点.第四节 非齐次线性方程组的通解解非齐次线性方程组b Ax =的基本问题是:(1) 对于给定的方程组, 判断是否有解;(2) 如果有解, 求出全部解(通解).定义 3.10 将非齐次线性方程组b Ax =中各方程的右边变成0, 得到的齐次线性方程组0=Ax 称为方程组b Ax =的导出组.性质3.4 设列矩阵1η与2η是线性方程组b Ax =的两个特解, 则它们的差21ηηξ-=是它的导出组0=Ax 的解.证 将21ηηξ-=代入导出组的左边, 得)(21ηηξ-=A A 021=-=-=b b A A ηη.推论 3.4 如果非齐次线性方程组有解, 则它的通解是它的一个特解与它的导出组的通解的和.证 首先, 设列矩阵η是方程组b Ax =的特解, 列矩阵ξ是其导出组0=Ax 的特解, 则有b b A A A =+=+=+0)(ηξηξ,即列矩阵ηξ+是方程组b Ax =的解.其次, 设列矩阵ζ是方程组b Ax =的任意的特解, 根据性质3.4, 列矩阵ηζξ-=是导出组0=Ax 的解. 移项, 得ξηζ+=, 即方程组b Ax =的任意的特解ζ可以表示为它的取定的特解η与导出组0=Ax 的解ξ的和.综合两方面, 即得本推论.注意 求非齐次线性方程组的通解, 只须求出它的一个特解, 以及它的导出组的通解. 而后面的问题已经解决.在齐次线性方程组的解题路线中, 用增广矩阵代替系数矩阵, 得非齐次线性方程组的解题路线. 现举例说明.例 3.10 求非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334533237246225432154321543215432x x x x x x x x x x x x x x x x x x x 的通解. 解 首先写出方程组的增广矩阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 然后做行初等变换, 由增广矩阵产生行阶梯形阵.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311232462210711111⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------−→−0000000000002462210711111r . 继续做行初等变换, 得到增广矩阵的行等价标准形.⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-00000000000024622101751101⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----−→−00000000000024622101751101r . 从行等价标准形得到同解方程组⎪⎪⎩⎪⎪⎨⎧===+++-=---00002462217554325431x x x x x x x x . 将自由未知数移到右边, 得⎪⎪⎩⎪⎪⎨⎧==+---=-++=00002462217554325431x x x x x x x x . 将自由未知数取值0, 计算约束未知数的值, 即得非齐次方程组的一个特解)0,0,0,24,17('-=η.根据推论 3.3, 还需要求它的导出组的基础解系. 注意到: 如果删除增广矩阵的最后一列, 就是系数矩阵. 在做行初等变换之后, 如果删除增广矩阵的行等价标准形的最后一列, 也就是系数矩阵的行等价标准形. 于是, 如果将非齐次方程组的同解方程组的常数项变成0, 就是它的导出组的同解方程组. 用前面的方法, 得基础解系)0,0,1,2,1(1'-=ξ, )0,1,0,2,1(2'-=ξ,)1,0,0,6,5(2'-=ξ.于是, 非齐次线性方程组的通解的矩阵表示为332211ξξξηk k k x +++=, 其中321,,k k k 是任意常数.例 3.11 解非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧=-+++-=-+++-=-----=+++13334523237246225432154321543215432x x x x x x x x x x x x x x x x x x x .解 这个方程组的增广矩阵为⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---------13133453311237111112462210. 通过行初等变换, 得到行阶梯形阵⎪⎪⎪⎪⎪⎭⎫ ⎝⎛------0000001000002462210711111. 在这里, 有一个非零行的首元素在最后一列. 当从行阶梯形阵出发, 得同解方程组时, 该行对应矛盾方程: 10=. 因此, 同解方程组无解. 于是, 原线性方程组无解. 反之, 如果不出现这种情况, 则用前面的方法可以求出通解.于是, 非齐次线性方程组有解的充分必要条件为: 它的增广矩阵的行阶梯形阵的非零行的首元素不出现在最后一列(常数项). 下面的定理用矩阵的秩表述这个结论.定理 3.6 非齐次线性方程组有解的充分必要条件为: 它的系数矩阵的秩等于它的增广矩阵的秩.证 在增广矩阵的行阶梯形阵中, 首元素不出项在最后一列的充分必要条件为: 增广矩阵的行阶梯形阵的非零行的个数等于系数矩阵的行阶梯形阵的非零行的个数. 由推论 3.1, 即系数矩阵与增广矩阵有相同的秩.推论 3.5 非齐次线性方程组有唯一解的充分必要条件为: 它的系数矩阵的秩等于其列数, 且等于增广矩阵的秩.证 综合定理3.6和推论3.2即可.例 3.12 当b a ,取何值时, 非齐次线性方程组⎪⎪⎩⎪⎪⎨⎧-=+++=--+-=++=+++1232)3(122043214324324321ax x x x bx x a x x x x x x x x 有唯一解, 无解, 有无穷多解? 对后者求通解.解 对增广矩阵做行初等变换, 得⎪⎪⎪⎪⎪⎭⎫ ⎝⎛----112323101221001111a b a⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-------−→−1321023101221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+-−→−01000101001221001111a b a r ⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-+----−→−01000101001221011101a b a r 根据定理3.6, 当1,1-≠=b a 时无解.当1,1-==b a 时, 非齐次线性方程组的特解为)0,0,1,1('-=η, 导出组的基础解系为)0,1,2,1(1'-=ξ, )1,0,2,1(2'-=ξ,通解为2211ξξηk k x ++=, 其中21,k k 是任意常数.当1≠a 时有唯一解)0,1,32,2(11'+--+--=b b a a b a η. 例3.13 设A 是n 阶方阵, 且0||≠A . 将A 分块),(C B A =, 其中C 是A 的最后一列, 求证: 线性方程组C Bx =无解.证 线性方程组的增广矩阵就是A , 由0||≠A , 增广矩阵的秩等于n . 而线性方程组的系数矩阵B 只有1-n 列, 它的秩不大于1-n . 根据定理3.6, 线性方程组C Bx =无解.推论 3.6 设A 是n 阶方阵, 则线性方程组b Ax =有唯一解的充分必要条件为: 行列式0||≠A .证 充分性. 设0||≠A , 则方阵A 的秩等于其列数n . 又方程组的增广矩阵),(b A 只有n 行, 于是, 由例3.5, 有≤=)rank(A n n b A ≤),rank(.根据推论3.5, 方程组有唯一解.必要性. 设方程组b Ax =有唯一解, 根据推论 3.5, 方阵A 的秩等于其列数n . 于是, 行列式0||≠A .条件0||≠A 保证方阵A 可逆. 用A 的逆阵左乘b Ax =, 得b A x 1-=. 这个公式是用逆阵表示线性方程组的唯一解. 从这个公式出发, 可以得到另一个公式. 根据定理2.1, 有 b A x 1-=b A A *||1=, 其中方阵*A 是A 的伴随阵. 计算这个矩阵等式的第j 行的元素, 得)(||12211n nj j j j b A b A b A A x +++= , n j ,,2,1 =. 根据定理 1.3, 等式右边的括号可以看作: 用常数矩阵b 代替系数行列式||A 的第j 列所得的行列式, 按照第j 列的展开式. 将这个行列式记作j D , 又将||A 改写作D , 则上式为D D x jj =, n j ,,2,1 =.这个公式是用行列式的商表示线性方程组的唯一解,称为克拉默法则.习题3-41. 设列矩阵i η(m i ,,,2,1 =)是非齐次线性方程组Ax b =的特解, 数i k (m i ,,,2,1 =)满足121=+++m k k k , 求证: 列矩阵1122m mk k k ηηη+++也是方程组Ax b =的特解.2. 求下列非齐次线性方程组的通解. (1)⎪⎪⎩⎪⎪⎨⎧=-+=++-=-+--=-+337713434234313214321431x x x x x x x x x x x x x ; (2) ⎪⎩⎪⎨⎧-=-+-=+-=-+-22344324314324321x x x x x x x x x x ; (3) ⎪⎪⎩⎪⎪⎨⎧=++-=+-=--=++0644352523222321321321321x x x x x x x x x x x x ; (4) ⎪⎪⎩⎪⎪⎨⎧=+++=++++=++++----nx x x x x x x x x x x x n n n n n n 122113113221 , 其中1>n .3. 求证: 线性方程组⎪⎩⎪⎨⎧=++-=+++=-++2543222432143214321x x x x x x x x x x x x 无解. 4. 求b的值, 使得线性方程组⎪⎩⎪⎨⎧=+-+=+-+=++-b x x x x x x x x x x x x 432143214321114724212有解, 并求其通解.5. 当d c b a ,,,满足什么条件时, 线性方程组⎪⎪⎩⎪⎪⎨⎧=+=+=+=+d x x cx x b x x a x x 42314321有解? 并求其通解.6. 当b a ,取何值时, 线性方程组⎪⎩⎪⎨⎧=++=++=++b ax x x x x x x x x 32132132132263132有唯一解, 无解, 有无穷多解? 对后者求其通解.*7. 设A 是n 阶方阵, b 是1⨯n 矩阵, 且分块方阵满足)rank(0rank A b b A =⎪⎪⎭⎫ ⎝⎛', 求证: 非齐次线性方程组b Ax =有解.第五节 初等方阵与初等变换一 初等方阵定义3.11 对单位阵E 做行初等变换所得方阵称为初等方阵.三种行初等变换产生三种初等方阵:(1) 交换E 的第i 行与第j 行所得方阵记作ij P ;(2) 用非零常数k 乘以E 的第i 行所得方阵记作)(k D i ;(3) 将E 的第j 行的k 倍加到第i 行所得方阵记作)(k T ij .三种初等方阵是可逆阵, 且它们的逆阵也是初等方阵. 实际上, 有ij ij P P =-1, ⎪⎭⎫ ⎝⎛=-k D k D i i 1)(1, )()(1k T k T ij ij -=-.定理 3.7 对矩阵A 做一种行初等变换, 相当于左乘一个相应的初等方阵.注意 定理3.7在矩阵的相等与矩阵的行等价之间建立了联系, 从而可以用矩阵的运算性质研究矩阵的行等价. 下面将看到, 有时这是非常方便的.推论 3.7 任意矩阵A 可以表示成R E E E A s 21=, 其中i E 是初等方阵, R 是A 的行等价标准形.证 对A 做行初等变换, 可得其行等价标准形R . 这个过程相当于用一系列初等方阵i E 左乘矩阵A . 即有R A E E E s =12 . 由于初等方阵可逆, 用它们的逆阵逐个左乘此式, 得R E E E A s 11211---= . 因为初等方阵的逆阵还是初等方阵, 换符号即得推论中的表示.推论3.8 方阵A 可逆的充分必要条件为: 它可以表示成初等方阵的乘积.例3.14 设B A ,都是n m ⨯矩阵, 求证: A 与B 行等价的充分必要条件为存在m 阶可逆阵P , 使得B PA =.二 矩阵方程矩阵方程B AX =, 其中A 是n 阶可逆阵, B 是m n ⨯矩阵, 而X 是m n ⨯未知矩阵.已知A 是可逆阵, 用其逆阵左乘方程, 得矩阵方程的解B A X 1-=. 对于可逆阵A , 存在初等方阵i E , 使得E A E E E s =12 . 用同样的初等方阵左乘矩阵方程B AX =, 得EX AX E E E s =12 B E E E X s 12 ==这个等式说明, 对可逆阵A 与矩阵B 做相同的行初等变换, 当将A 变成单位阵时, 矩阵B 变成矩阵方程B AX =的解B A X 1-=.例3.15设方阵⎪⎪⎪⎭⎫⎝⎛--=111012112A ,⎪⎪⎪⎭⎫ ⎝⎛--=521234311B , 解矩阵方程B AX =.解 做分块矩阵: 左边部分是A ,右边部分是B . 做行初等变换, 得()=B A |⎪⎪⎪⎭⎫⎝⎛----521111234012311112⎪⎪⎪⎭⎫⎝⎛----−→−311112234012521111r⎪⎪⎪⎭⎫ ⎝⎛-------−→−143100872230521111r⎪⎪⎪⎭⎫ ⎝⎛---−→−1431003/1053/80103/813/2001r .于是,⎪⎪⎪⎭⎫ ⎝⎛---==-1433/1053/83/813/21B A X . 如果矩阵方程B AX =中的方阵A 可逆, 方阵B 是单位阵E , 则用这个方法得到的矩阵方程的解E A X 1-=1-=A 就是A 的逆阵. 由此得到计算逆阵的简单方法.例3.16 求方阵⎪⎪⎪⎭⎫ ⎝⎛--=523012101A 的逆阵. 解 用初等变换法.()=E A |⎪⎪⎪⎭⎫ ⎝⎛--100523010012001101⎪⎪⎪⎭⎫ ⎝⎛---−→−127200012210001101r⎪⎪⎪⎭⎫ ⎝⎛----−→−2/112/71001150102/112/5001r于是 ⎪⎪⎪⎭⎫ ⎝⎛----=-2/112/71152/112/51A . 如果X 与B 是列矩阵, 用这里的方法可以得到线性方程组B AX =的解B A X 1-=. 而且这种解法正是前面的消元法.性质 3.5 两个矩阵的乘积的秩不大于每个因子的秩.证 设A 是p m ⨯矩阵, B 是n p ⨯矩阵, r A =)rank(. 先证明r AB ≤)rank(.根据推论 3.7, 有R A E E E s =12 , 其中A 的行等价标准形R 恰有r 个非零行. 用矩阵B 右乘此式, 得RB AB E E E s =)(12 . 根据矩阵乘法定义, 矩阵RB 至多有r 个非零行. 根据定理3.4, 有)rank()rank()rank(A r RB AB =≤=.转置可证明另一部分.例3.17 设A 是可逆阵,则)rank()rank(B AB =.证1 记矩阵AB C =. 由性质 3.5, 有)rank()rank(B C ≤. 用逆阵1-A 左乘AB C =, 得C A B 1-=, 从而有)rank()rank(C B ≤.上面的证明主要体现了逆阵的一种应用, 并不是最简捷的证明.证2 已知A 是可逆阵,根据推论3.8, 有B E E E AB s 12 =. 再根据定理 3.4, 有)rank()rank(B AB =.三 初等变换与矩阵的行初等变换类似, 可以定义矩阵的列初等变换.定义3.12 设A 是矩阵, 称下面三种变换为对矩阵A 的列初等变换.(1) 交换A 的两列;(2) 用非零常数k 乘以A 的一列;(3) 将A 的一列的k 倍加到另一列上去,与行初等变换类似, 可以定义矩阵的列等价与列等价标准形.性质 3.6 列初等变换与列等价具有下述性质.(1) 列初等变换不改变矩阵的秩;(2) 对一个矩阵做列初等变换, 相当于用相应的初等方阵右乘这个矩阵;(3) 矩阵的列等价是等价关系;(4) 矩阵B 与A 列等价的充分必要条件为: 存在可逆阵Q , 使得B AQ =.与用行初等变换解矩阵方程B AX =类似, 可以用列初等变换解矩阵方程B XA =.例3.18设⎪⎪⎪⎭⎫ ⎝⎛--=111012112A , ⎪⎭⎫ ⎝⎛-=234311B , 解矩阵方程B XA =.解 做分块矩阵, 上边是A , 下边是B . 然后做列初等变换. 当将A 变成单位阵时, B变成矩阵方程的解1-=BA X . 如果用→表示列等价, 则有⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---234311111012112⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→423131*********⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→253321301011001⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---→3/253/8122100010001. 于是⎪⎭⎫ ⎝⎛---=3/253/8122X . 例 3.19 设分块矩阵),(B A , 求证: )rank()rank(),rank(B A B A +≤.证 设矩阵B A ,的列等价标准形分别为S R ,,则R 与S 分别有)ra nk(A 与)rank(B 个非零列. 从而分块矩阵),(S R 有)rank()rank(B A +个非零列. 另一方面, 如果在矩阵),(B A 中分别对两个子块做列初等变换, 则可以得到分块矩阵),(S R . 于是, 有)rank()rank(),rank(),rank(B A S R B A +≤=.。
【线性代数】 矩阵的初等变换

a1n xn b1 a2 a21 A a m1 a12 a22 am 2 a1n b1 a2 n b2 amn bm
在我国古代数学经典著作《九章算术》(约公 例习 元3世纪)第八章“方程”(线性方程组)中有如下一问: 今有上禾三秉(束),中禾二秉,下禾一秉,实(产量)三 十九斗;上禾二秉,中禾三秉,下禾一秉,实三十四斗;上 禾一秉,中禾二秉,下禾三秉,实二十六斗,问上、中、下 禾一秉几何? 该书中列出了如下的方程组(中国古代的书写形式是自上 而下,从右到左): 上禾秉数 试列出此问题的方程 中禾秉数 组,并用高斯消元法求出 下禾秉数 斗数 其解。
经初等变换求解线性方程组的这一思路,反映了一般线 性方程组的求解规律。 思考:方程组的解和未知量符号有没有关系? 那和什么有关呢? 没有 和未知量的系数以及右端的常数项有关! 问题:在用初等变换求解方程组时,本质上是对什么 在运算?什么在变化? 未知量的系数以及右端的常数项! 基于此,在解题时可将未知量舍去不写;此时就出现了 由未知量系数以及右端常数项组成的数表:
式简单的方程。
为了便于将此方法应用到任意形式的方程组的求解,仍以
例1为例,完整规范的写出它的解题步骤。
例1
求解线性方程组
解:第一步,为了便于运算,互换(1)与(2)的位置
第二步,消去第一个方程下面的各个方程中的 x1, (1)-2×(2),(3)-4×(2) 得
(1)-2×(2),(3)-4×(2)得
由以上3例思考 不一定! 1. 线性方程组都有解吗?若有解,解一定唯一吗 ? 2. 如何判断解的各种情况?
唯 一 解
线性方程组的消元法和矩阵的初等变换

方程组(II)的过程称为同解变换。
二、线性方程组的消元法
1、线性方程组的初等变换 例1 求解线性方程组
2 x1 x2 x3 x4 2, 1
4
x1 x2 2 x3 x4 x1 6 x2 2 x3 2 x4
4, 4,
2
3 2
72
36
不妨假设每吨货物每公里的运费为 1 元 ,问各厂 的产品如何调配才能使总运费最少?
解 设各厂到各用户的产品数量如表 1-2
表 1-2
A1
A2
A3
B1
x1
x2
x3
B2
x4
x5
x6
依题意,3个厂的总产量和用户的总用量相等: x1 x4 40 , x2 x5 20 , x3 x6 10
crr xr crn xn dr
0 dr1
00
00
(I) 有 0 dr1 , 而 dr1 0 . 这时原方程组无解;
(II)当 dr1 0 或方程组中根本没有 0 0 的方程,分两种情形:
c11 x1 c12 x2 c1n xn d1
c22 x2 c2n xn d2
crr xr dn cr,r1 xr1 crn xn
这样我们可以把 x1 ,x2 ,,xr 通过x1 ,xr1 ,,xn 表示出来
这样一组表达式称为方程组的一般解,而 xr1 ,,xn 称为 一组自由未知量 .
定理2 在齐次线性方程组
a11 x1 a12 x2 a1n xn 0
x1 c 4
x
x2 x3 x4
c
c
3
,
3
(2)
其中c为任意常数.
《线性代数》第三章矩阵的初等变换与线性方程组精选习题及解答
⎯r⎯→
⎢⎢0
−1
2
6 −4⎥⎥ ⎯r⎯→
⎢⎣−1 0 2 5 −3⎥⎦
⎢⎣0 0 1 7 −3⎥⎦
⎡1 0 0 9 −3⎤ ⎢⎢0 1 0 8 −2⎥⎥ ⎢⎣0 0 1 7 −3⎥⎦
5
⎡9 −3⎤ 所以 X = (E − A)−1 B = ⎢⎢8 −2⎥⎥
⎢⎣7 −3⎥⎦
例
3.9
方程组
⎪⎨⎧ax1x1++axx22
⎢⎣1 0 1⎥⎦ 可得 R( A) = 2 .故 R( A2 + 2A) = R( A( A + E)) = R( A) = 2 .
例 3.6 设 A* 是 n 阶矩阵 A 的伴随矩阵,证明
(1) A* = A n−1 ,
⎧n, R( A) = n; (2) R( A*) = ⎨⎪1, R( A) = n −1;
⎢ ⎢
M
M
M
M
⎥ ⎥
⎢⎣a a a L a⎥⎦
(A) 1
1
(B)
1− n
(C) -1
1
(D)
n −1
解 因 为 R( A) = n −1 , 所 以 A = 0 . 又 A = (1− a)n−1[(n −1)a +1] , 故 a = 1 或
a = 1 .当 a = 1 时,易知 R( A) = 1 ,当 a = 1 时, R( A) = n −1.
⎡ x1 ⎤ ⎡− 2c1 + c2 − 1⎤
⎢ ⎢
x2
⎥ ⎥
⎢ ⎢
4c1 − 2c2
⎥ ⎥
⎡− 2⎤
⎢ ⎢
4
⎥ ⎥
⎡ 1 ⎤ ⎡− 1⎤
⎢⎢− 2⎥⎥
§3.1 矩阵的初等变换
(1) 交换两个方程的次序
(2) 用一个非零数 k 乘某个方程 (3) 将某一方程的倍数加到另一个方程上去 (二) 矩阵的初等变换 三种初等行变换 (1) 对调矩阵的 i , j 两行 记作: ri rj
(2) 用非零数 k 乘 i 行中所有元素 记作: ri k
a13 ka23 a23 a33
a14 ka24 a24 a34
即:在 A 的左边乘以初等矩阵 E1,2(k ) 就相当于将矩阵 A 的第二行的 k 倍加到第一列
性质1: 对 Amn 施行一次初等行变换,相当于在 A 的左边乘 上一个相应的 m 阶初等矩阵; 对 Amn 施行一次初等列变换,相当于在 A 的右边乘 上一个相应的 n 阶初等矩阵; 性质2: 初等矩阵都可逆,且其逆矩阵是同一类型的初等矩阵。 即: Ei, j Ei, j 1 1 E i(k ) E i( ) k
矩阵的初等行变换与初等列变换统称为矩阵的初等变换 性质: (1)矩阵的初等变换都是可逆变换;且
ri rj 的逆变换恰为其本身 ri rj 1 ri k 的逆变换为 ri k ri krj 的逆变换为 ri (k )rj
对于初等列变换也有同样的结论。
(2)矩阵的等价 若矩阵 A 可经有限次初等变换得到矩阵 B 则称矩阵A 与 B 等价,并记作:A ~ B 等价关系具有如下性质: (1)反身性 A ~ A (2)对称性 A ~ B B ~ A
变换将其化为标准形:
定义: 由单位矩阵 E 经过一次初等变换得到的矩阵称为 初等矩阵。 三种初等变换对应三种初等矩阵,分别为:
(Ⅰ)把单位矩阵 E 中第 i, j 两行对调,得初等矩阵 E i, j (Ⅱ)用数 k 0 乘单位矩阵 E 的第 i 行得初等矩阵
同济版线性代数笔记
' a21 a22 L a2 i L a2 n
M
M
M
M
M
M
M
M
' an1 an 2 L (ani + ani ) L ann
' an1 an 2 L ani L ann
(8)把行列式的某一列(行)的各元素乘以同一数,然后加到另一列(行)对应的元 素上去,行列式不变。如下所示
a11 L a1i L a1 j L a1n a21 L a2i L a2 j L a2 n M M M M an1 L ani L anj L ann =
t
阶行列式,共有 n 个数,排成 n 行 n 列,其计算如下
2
⎛ a11 ⎜ ⎜ a21 ⎜ M ⎜ ⎝ an1
a12 a22
M an 2
L a1n ⎞ ⎟ L a2 n ⎟ = ∑ (−1)t a1 p1 a2 p2 L anpn M ⎟ ⎟ L ann ⎠
(3)
其中的 p1 p2 L pn 为自然数 1, 2, L , n 的一个排列,t 为这个排列的逆序数。上式共有 n!项。 行列式简记作 det( aij ) 。 特殊行列式: (1)对角阵,如下所示
的代数余子式。关于余子式引出的定理有 (1)一个 n 阶行列式,如果其中第 i 行所有元素除(i,j)元 aij 外都为零,那么这行 列式等于 aij 与它的代数余子式的乘积,即 D = aij Aij 。 (2)行列式按行(列)展开法则:行列式等于它的任一行(列)的各元素与其对应的 代数余子式乘积之和。即
线性代数3-1
0 0
1 0
0 1
0 0
0
0
A4
0 0 0 0 0
1 0 0 0 0
:c4
4 c1
0
c5
5 c1
0
1 0
0 1
0 0
0
0
A5
0 0 0 0 0
§1 矩阵的初等变换
定义:矩阵A3和 A4都称为行阶梯形矩阵,其 特点是:可画出一条阶梯线,线的下方全 为0 ; 每个台阶只有一行,台阶数即是非 零行的行数,阶梯线的竖线(每段竖线的 长度为一行)后面的第一个元素为非零 元,也就是非零行的第一个非零元.
(1) 变换ri↔rj 的逆变换就是其本身ri↔rj ; (2)变换ri×k的逆变换为ri÷k ;
(3)变换ri+krj的逆变换为ri- krj .
§1 矩阵的初等变换
定义:如果矩阵A经过有限次初等行变换变成
矩阵B,就称矩阵A与B行等价,记作
A
r
~
B
;
定义:如果矩阵A经过有限次初等列变换变成
矩阵B,就称矩阵A与B列等价,记作
§1 矩阵的初等变换
主要内容: 一、矩阵的初等行变换 二、矩阵的初等变换 三、矩阵之间等价 四、行阶梯形矩阵 五、行最简形矩阵 六、初等矩阵 七、三种初等变换对应着三种初等矩阵 八、初等矩阵的相关定理
§1 矩阵的初等变换
分析:用消元法解下列方程组的过程.
引例 求解线性方程组
2 x1 x2 x3 x4 2, 1
4
x1 x2 2 x3 x1 6 x2 2 x3
x4 2 x4
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ri krj 表示矩阵第i 行的各元素加上第 j行对应元素的k倍.
2 1 1 1 1 1 2 1 若将方程组①表示为矩阵 B 4 6 2 2 3 6 9 7
对 B 作如下运算
2 4 4 9
第一节 线性方程组的初等变换
一、 线性方程组的初等变换
定义3.1.1 线性方程组的如下变换称为其初等变换:
(1)互换方程组中两个方程的位置;
(2)用一个不为零的常数 k 乘方程组中某一个方程; (3)把某一个方程加上另一个方程的 k 倍.
用 i j 表示互换第 i 个方程与第 j 个方程的位置,
x3 可任意取值.的未知量为自由未知量,写在等号的 右边;把 x1 , x2 , x4 称为非自由变量(基本未知量).
其中 若令 x3
c, 则方程组的解变为
x1 c 4 1 4 x2 c 3 1 3 x c c 1 0 (其中 c 为任意常数) 3 x 3 0 3 4
1 1 2 1 2 1 1 1 B 2 3 1 1 3 6 9 7
r1 r2 1 r3 2
4 2 2 9
1 1 2 1 2 1 1 1 r2 r3 r3 2 r1 2 3 1 1 r4 3 r1 3 6 9 7
x1 (1) ( 2 ) ( 2 ) ( 3)
把
x3 x2 x3
4 (1) 0 (2) x4 3 (3)
方程组变成一个有4个未知量3个方程的阶梯形的方程组,
x1 , x2用含 x3
的式子表示:
得
x1 x3 4 x x 3 2 3 x3 x3 x4 3
x1 x2 2 x3 x4 4 1 ( 2 ) x x x 0 2 3 4 2 ( 3) 5 ( 2 ) 2 x 6 4 ( 4 ) 3( 2 ) x4 3
1 ( 3) 2
(1) (2)
(3) (4)
x1 x2 2 x3 x4 4 (1) x2 x3 x4 0 (2) ( 4 ) ( 3) x4 3 (3)
x1 x2 2 x3 x4 4 (1) 2 x2 2 x3 2 x4 0 (2) ( 2 ) ( 3) ( 4 ) 3(1) 5 x 5 x 3 x 6 (3) 1 3 4 ( 3) 2 (1) 3x2 3 x3 4 x4 3 (4)
这样含有任意常数的解称为方程组的通解.
二、 用矩阵表示线性方程组消元法
从上例消元法求解线性方程组的过程可以看到,实质 上是对应的变量系数间或常数项间的加、减、乘、除的 运算. 因此, 我们可以用与方程组对应的矩阵表示方程组, 并对该矩阵作消元法求解方程组的相应运算.
ri rj 表示互换矩阵的第i 行与第 j行;
解
2 x1 x2 x3 x4 2, (1) x x 2 x x 4, (2) 1 2 3 4 4 x1 6 x2 2 x3 2 x4 4,(3) 3 x1 6 x2 9 x3 7 x4 9. (4)
x x 2 x x 4 ( 1 ) 1 2 3 4 (1) ( 2 ) 2x x x x 2 1 ( 3) (2) 1 2 3 4 2 2 x 3 x x x 2 (3) 1 2 3 4 3x1 6 x2 9 x3 7 x4 9 (4)
(其中 c 为任意实数)
x1
x3 x2 x3 x4
4, 3, 3.
其通解表示为
x1 c 4 1 4 x2 c 3 c 3 x4 3
线 性 代 数
(第二版)
第三章 矩阵的初等变换与线性方程组
• 第一节 线性方程组的初等变换 • 第二节 矩阵的初等变换与初等矩阵 • 第三节 矩 阵 的 秩 • 第四节 线性方程组的解
在第一章中用克莱姆法则求解线性方程组, 要 求线性方程组中方程的个数等于未知量的个数;系 数行列式不为零等条件;并且计算量大。 第二章中介绍了用矩阵的逆矩阵的方法求线性 方程组的解,也要求系数行列式不为零. 本章将给出线性方程组的初等变换、矩阵的初 等变换、矩阵的秩等概念,利用初等变换讨论矩阵 的秩的性质,再利用矩阵的秩讨论更一般的线性方 程组无解、有唯一解或者有无穷多解的充分必要条 件,并介绍用初等变换求解线性方程组的方法.
4 2 2 9
1 1 2 1 1 r2 2 1 1 1 2 r3 5 r2 2 3 1 1 r4 3 r2 3 6 9 7
4 2 2 9
1 1 r3 0 2 r4 r3 0 0
k i 表示以数k乘以第 i 个方程,
i +k j 表示第 i 个方程加上第 j 个方程的k倍.
例1
2 x1 x2 x3 x4 2, x x 2 x x 4, 1 2 3 4 ① 解线性方程组 4 x1 6 x2 2 x3 2 x4 4, 3 x1 6 x2 9 x3 7 x4 9.
1 0 r1 r2 r2 r3 0 0
1 2 1 1 1 1 0 0 0 0
4 0 1 3 0 0
0 1 0 1 1 0 0 0 0 0
4 3 1 3 0 0
最后一个矩阵所表示的方程组就是与(1)同解的方程组