渔用合成纤维新材料研究进展
合成纤维材料制造技术的研究进展

合成纤维材料制造技术的研究进展合成纤维材料是通过化学合成方法制得的纤维,其具有天然纤维所不具备的独特性能,如耐磨、耐化学腐蚀、强度高、易加工等。
随着科学技术的不断发展,合成纤维材料的制造技术也在不断进步,其在纺织、服装、建筑、汽车等领域的应用也越来越广泛。
本文将详细介绍合成纤维材料制造技术的研究进展。
合成纤维材料的分类及制造原理合成纤维材料主要分为聚酯类、尼龙类、丙烯腈类和其他类。
其中,聚酯类纤维主要包括聚酯纤维和聚酯复合纤维,其制造原理是通过酯化反应将聚酯单体合成聚酯,再通过纺丝、拉伸和热定型等工艺制成纤维。
尼龙类纤维主要包括尼龙6和尼龙66,其制造原理是通过己内酰胺或己二酸和己二胺的缩聚反应制成尼龙树脂,再通过纺丝、拉伸和热定型等工艺制成纤维。
丙烯腈类纤维主要包括腈纶和粘胶纤维,其制造原理是通过丙烯腈的聚合反应制成丙烯腈树脂,再通过纺丝、拉伸和热定型等工艺制成纤维。
其他类合成纤维包括聚丙烯、聚乙烯、聚氯乙烯等,其制造原理主要是通过聚合反应制成树脂,再通过纺丝、拉伸和热定型等工艺制成纤维。
合成纤维材料的制造技术进展1.高性能合成纤维材料的制备近年来,随着航空航天、体育用品、汽车等领域的需求,高性能合成纤维材料的研究成为热点。
目前,主要的研究方向包括超高强度合成纤维、耐高温合成纤维、耐化学腐蚀合成纤维等。
制备高性能合成纤维的方法主要有两种:一是通过分子设计,引入具有高性能特性的单体,如芳香族聚酯、聚酰亚胺等;二是通过物理或化学方法对已有的合成纤维进行改性,如液晶聚合物的应用、原位复合等。
2.生物基合成纤维材料的研发生物基合成纤维材料是以生物质为原料,通过化学合成方法制得的纤维。
与传统石油基合成纤维相比,生物基合成纤维具有可再生、环保等优点。
当前,生物基合成纤维的研究主要集中在聚乳酸(PLA)、聚己内酰胺(PA6)、聚羟基烷酸(PHA)等生物降解聚合物。
生物基合成纤维的制造技术主要包括生物质原料的制备、生物化学合成、聚合反应、纺丝、拉伸和热定型等工艺。
尼龙渔网材料的紫外光老化行为研究

尼龙渔网材料的紫外光老化行为研究余雯雯;刘永利;石建高;王磊;陈晓雪;周文博;闵明华;宋伟华【摘要】尼龙渔网又称聚酰胺渔网(PA渔网),研究利用紫外老化试验,采用傅立叶变换红外光谱仪(FI-IR)、差示扫描热仪(DSC)、力学性能、动态疲劳等测试表征分析了PA渔网材料在老化过程中结构与性能的变化规律.结果表明:红外分析谱图中各特征峰强度减弱,PA大分子链在紫外老化作用下发生了断裂,并且断裂程度随老化时间的增加而增大;热性能分析表明,PA渔网材料随着老化时间的增加,Tg呈先升高后下降,而Xc呈先下降后升高的趋势,该特征与紫外老化初期的PA分子链交联反应和后期基体内部断裂生成的小分子物质有关.力学性能分析表明,PA渔网材料的断裂强力随老化时间的增加,下降显著,当老化时间为170~400 h,强力损失率与老化时间的变化趋于线性关系.动态疲劳分析表明,紫外辐照可加速PA渔网材料的失效.【期刊名称】《渔业信息与战略》【年(卷),期】2018(033)004【总页数】5页(P267-271)【关键词】尼龙渔网;紫外光老化;疲劳;结构与性能【作者】余雯雯;刘永利;石建高;王磊;陈晓雪;周文博;闵明华;宋伟华【作者单位】中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海200090;中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;中国水产科学研究院东海水产研究所,农业农村部远洋与极地渔业创新重点实验室,上海 200090;浙江海洋大学水产学院,浙江舟山 316022【正文语种】中文【中图分类】S972.5聚酰胺(Polyamide, PA)具有优异的强度、耐磨、质坚、耐寒、耐热、无毒、耐腐蚀、易加工、自润滑等优点[1-3],被普遍用于渔业领域,尼龙渔网,又称聚酰胺渔网(PA渔网),常应用于流刺网、围网、深水网箱、养殖围网和其它渔具,其所制作的渔具具有较好的经济性、渔获性能和操作效率[4-7]。
渔用共混改性 MMWPE/PP单丝和普通 PE单丝拉伸力学性能的比较

渔用共混改性 MMWPE/PP单丝和普通 PE单丝拉伸力学性能的比较石建高;黄南婷;徐学明;刘永利;王磊;马海有;闵明华;余雯雯;陈晓雪;吕呈涛;黄中兴【摘要】在实验室对渔用共混改性中高分子量聚乙烯/聚丙烯单丝(简称共混改性MMWPE/PP单丝)和普通聚乙烯单丝(简称普通PE单丝)拉伸力学性能进行了比较试验。
结果表明,共混改性MMWPE/PP单丝较普通PE单丝断裂强度提高32.3%、结节强度提高25.6%、结强损失率提高7.4%,而断裂伸长率降低47.9%。
在保持断裂强力优势的前提下,以共混改性MMWPE/PP绳网替代普通PE绳网,能使远洋拖网与养殖网具用原材料降低消耗及水阻力减小,从而实现渔业生产的降耗减阻。
结论可为高性能材料的选配、远洋拖网与养殖网具的优化设计提供参考。
%The modification of mid -high molecular weight polyethylene/polypropylene monofilament for fisheries (blending modification MMWPE/PP monofilament for short) and common polyethylene monofilament (common PE monofilament for short) tensile mechanical properties were compared in the laboratory .The result shows that compared with common PE monofilament ,breaking strength and knot breaking strength of the MMWPE/PP monofilament are enhanced by 32 .3% and 25 .6% sepa‐rately .However ,loss rate of knot breaki ng strength and elongation at break of the MMWPE/PP mon‐ofilament separately increased 7 .4% and decreased 47 .9% .U nder the condition of keeping the advan‐tage of breaking load ,the raw material consumption of the pelagic trawl & farming netting gear as well as the resistance of netting gear in water can be reduced if the PE rope & netting is replacedby the M M WPE/PP rope & netting ,and thus the consumption decreasing and the resistance reducing in fishery can be realized .The conclusion can be used as a reference in high performance materials selec‐tion ,pelagic trawl and farming netting gear design .【期刊名称】《河北渔业》【年(卷),期】2015(000)010【总页数】5页(P5-8,21)【关键词】远洋拖网;养殖网具;拉伸力学性能;共混改性MMWPE/PP单丝【作者】石建高;黄南婷;徐学明;刘永利;王磊;马海有;闵明华;余雯雯;陈晓雪;吕呈涛;黄中兴【作者单位】中国水产科学研究院东海水产研究所,上海200090;江苏昇和塑业有限公司,江苏南通211600;中国水产科学研究院东海水产研究所,上海200090;中国水产科学研究院东海水产研究所,上海200090;中国水产科学研究院东海水产研究所,上海200090;中国水产科学研究院东海水产研究所,上海200090;中国水产科学研究院东海水产研究所,上海200090;中国水产科学研究院东海水产研究所,上海200090;中国水产科学研究院东海水产研究所,上海200090;山东爱地高分子材料有限公司,山东莱芜271100;浙江东一海洋经济发展有限公司,浙江温州325704【正文语种】中文【中图分类】S971.2现代渔业的发展对合成纤维绳网的拉伸力学性能提出了更高要求,普通合成纤维绳网拉伸力学性能已不能满足现代渔业生产的大型化、现代化及深水作业特殊化的需要,(中)高强纤维或超高强纤维研发及其在渔业上的应用使这种需要成为可能[1-3]。
环保海洋纤维材料在面料再造当中的应用探究

环保海洋纤维材料在面料再造当中的应用探究纺织行业已经是地球上污染最严重的经济活动之一。
大部分衣服都是由合成纤维织物制成,尤其是聚酯纤维,是微型塑料污染的第一大来源。
海洋垃圾中所发现的大量衣物纤维也向我们敲响了警钟,过度快时尚消费造成的环境污染问题与每个人息息相关,投资更环保、更耐用的服装以减少资源浪费,开发使用可再生、可降解、绿色环保的纺织材料新能源已经成为一种趋势,科技的发展推动了面料再造设计中对于新技术新材料的运用。
标签:微型塑料污染;环保材料;面料再造设计1.海洋微型纤维污染现状全球经济的飞速发展为人们带来了更高质量的生活,同时也有意或无意地破坏了地球的生态环境。
2017年,国际自然保护联盟发布的一份报告估计,海水中微型塑料污染有35%来自纺织品,是微型塑料污染的第一大来源。
微型塑料纤维可以避开污水处理厂的过滤器,被直接排放后进入海洋。
相关研究不仅在鲸鱼和鲨鱼的食道内发现了微型塑料纤维,而且在人类日常食用的水产品中也发现了这种纤维,在北极、南极,甚至是马里亚纳海沟底部,对人类自身来说,吃“塑料”也从不可思议变成了确实存在。
服装行业每年创造的碳排放量为12亿吨。
制造和维护我们的衣服还会消耗掉大量的水、能源和不可再生资源,同时这个范围也几乎包括了所有的家居用品、美妆用品(面膜、卫生巾等),多以人造化纤、棉花、涤纶等为主。
就目前而言,纺织行业面临棉花与粮食争地矛盾突出、不可降解废弃纺织品的环境污染等问题,开发使用可再生、可降解、绿色环保的纺织材料新来源已经成为一种趋势,安全、优质,成为了越来越多人的选择。
2.环保海洋纤维材料的产生与发展随着环境问题的日益严重,人们对环保的呼声也越来越高。
随着科技的不断发展,推动了面料再造设计中对于新技术新材料的运用,面料再造不再满足于传统的艺术手法与材料运用。
在“绿色设计”要求的前提下,面料再造不止要考虑实用性与观赏性,还要考虑参与材料是否健康无害,再造过程是否环保。
聚酯纤维的改性技术及其在海洋领域的应用

综述与专论合成纤维工业,2023,46(4):52CHINA㊀SYNTHETIC㊀FIBER㊀INDUSTRY㊀㊀收稿日期:2023-03-22;修改稿收到日期:2023-07-12㊂作者简介:宇平(1989 ),男,讲师,博士,主要研究方向为高性能树脂及纤维增强复合材料㊂E-mail:yup @㊂基金项目:江苏省先进材料功能调控技术重点实验室开放基金(jsklfctam202109)㊂㊀∗通信联系人㊂E-mail:hzm@㊂聚酯纤维的改性技术及其在海洋领域的应用宇㊀平1,孙钦超2,王㊀彦3,胡祖明3∗(1.江苏海洋大学环境与化学工程学院,江苏连云港222005;2.山东华纶新材料有限公司,山东临沂276600;3.东华大学纤维材料改性国家重点实验室,上海201620)摘㊀要:介绍了聚酯纤维的抗菌㊁阻燃㊁导电㊁超疏水㊁黏附力改性技术进展,指出添加无机抗菌剂共混熔融改性,添加磷系等无卤阻燃剂共混熔融改性,采用碳纳米管㊁石墨烯等导电材料填充改性,采用硅氧烷㊁含氟化合物等低表面能物质修饰改性,采用等离子体㊁紫外光表面改性等是当前赋予聚酯纤维抗菌㊁阻燃㊁导电㊁超疏水㊁黏附力的主要手段㊂阐述了聚酯纤维在深海缆绳㊁海洋混凝土㊁油污收集网㊁大型远洋渔具等海洋工程领域的应用及发展前景,指出研发高性价比㊁高可靠性及差别化的高性能聚酯纤维具有重要意义,市场前景巨大㊂关键词:聚酯纤维㊀表面改性㊀海洋领域㊀应用㊀发展前景中图分类号:TQ342㊀㊀文献标识码:A㊀㊀文章编号:1001-0041(2023)04-0052-05㊀㊀聚酯通常是以二元酸和二元醇缩聚得到,其中聚对苯二甲酸乙二醇酯(PET)是一种通用的热塑性聚酯材料,其重复单元含有柔性链段和刚性苯环,可广泛应用于纺织纤维领域㊂由于聚酯纤维具有强度高㊁模量高㊁耐化学试剂性好,以及较高的性价比,自1947年英国帝国化学工业集团实现聚酯纤维的工业化试验和1951年杜邦公司将其命名涤纶以来,其在世界范围内获得了极大的发展,已占世界纺织品市场的40%[1-2]㊂2020年,国内聚酯纤维产量49227kt,约占化学纤维总产量的82%,在化学纤维中占有举足轻重的地位㊂然而,与天然纤维和部分化学纤维相比,聚酯纤维存在具有亲水性㊁染色效果差及阻燃性能不佳等缺陷,这在一定程度上制约了其发展,亟待进一步扩大其应用领域㊂作者综述了聚酯纤维的改性技术及其在海洋工程领域的应用情况,旨在为高性能聚酯纤维的研发和生产提供借鉴㊂1㊀聚酯纤维的物理化学改性和功能化1.1㊀抗菌改性织物由于本身具有微孔结构,被认为是最适合真菌和细菌等微生物滋生和繁殖的温床,因此,聚酯纤维及其织物的抗菌改性逐渐受到重视㊂为提高聚酯材料的抗菌效果,许多科研工作者开展了大量研究㊂WANG S H 等[3]将PET 与抗菌材料混合,使用双螺杆挤出抗菌母料,再将抗菌母料和纯PET 树脂通过高速熔纺设备制得抗菌率达90%且具有良好力学性能的复合抗菌PET 纤维㊂DAI S H 等[4]通过 种子 和 后期生长 两步化学溶液法在PET 纤维表面合成氧化锌纳米结构(ZnO@PET),该纤维对大肠杆菌的抗菌率为99%,洗涤20次后,虽部分纳米ZnO 脱落,但抗菌率仍保持在62%㊂LIN Y X 等[5]将光敏剂四羧基酞菁锌接枝到聚酯纤维上,然后在其纤维表面涂覆壳聚糖开发了一种双接枝抗菌纤维材料,可杀灭高达99.99%的革兰氏阳性菌和阴性菌,同时表现出比未经处理的PET 纤维更好的细菌捕获效率(95.68%),为开发能够高效杀灭空气中病原体并具有良好生物安全性的空气过滤材料提供了新思路㊂ZHOU J L 等[6]将质量分数为0.2%的纳米片材氧化铜@磷酸锆整合到原位聚合的PET纤维中,该纤维表现出高效的抗菌性能(抗菌率大于92%)㊂K.OPWIS 等[7]利用超临界二氧化碳将有机金属化合物引入PET 纤维,赋予了改性PET 纤维纺织品电学㊁抗菌及催化性能㊂田梅香[8]利用二碳酸二叔丁酯作为丝氨醇分子中氨基的保护基合成第三单体并参与PET 共聚,对大肠杆菌和金黄色葡萄球菌的抑菌率分别可达93%和95%㊂中国石油辽阳石化公司成功实现纤维级抗菌聚酯试生产,生产出合格产品超过1kt[9]㊂袁凯等[10]制备了一种载银海藻酸盐/ PET复合纤维,其亲水性㊁抗静电性能及抗菌性能较PET纤维具有明显的提升㊂目前,无机抗菌剂以添加灵活㊁效果显著等优势成为新型抗菌聚酯纤维的研究热点㊂1.2㊀阻燃改性PET纤维织物属于易燃材料,如果发生火灾,会剧烈燃烧,熔体滴落会对皮肤造成很大伤害,因此,开发阻燃性能优异且能自熄的聚酯织物具有重要意义㊂J.FABIA等[11]基于商用的有机蒙脱石,提出了降低聚酯纤维可燃性的替代方法,改性聚酯纤维极限氧指数(LOI)值为24.0%,同时氧化降解产物毒性没有明显增加㊂ZHU S F等[12]利用辐照剂量为200kGy㊁剂量率为12kGy/s的电子束对聚酯纤维进行辐照处理,发现辐照后的纤维断裂伸长率增加,断裂强度降低,这主要是因为辐照过程交联度会降低,同时不可避免地造成了纤维的损伤;另外,燃烧时,由于交联密度不够高,该体系不能有效地防止燃烧熔体的滴漏㊂XUE B X等[13]以碳微球为碳源,磷酸三聚氰胺为酸源和气源制备PET复合纤维,纤维LOI值和垂直燃烧等级分别为27.4%和B-1级,纤维的阻燃性能提高㊂何秀泽[14]通过添加含磷的阻燃剂进行改性,阻燃共聚酯纤维的LOI值约为29%,垂直燃烧UL-94级别为V-2级㊂许卓等[15]将新型环保阻燃剂2-羧乙基苯基次磷酸与乙二醇进行预酯化制得酯化液,再与精对苯二甲酸的酯化液混合,经聚合反应后得到阻燃聚酯,其LOI值为32%,达到FV-0级㊂总之,基于共混技术的阻燃物理改性相对化学改性,具有成本低㊁制备简单㊁易于市场推广等显著优势,同时由于卤系阻燃剂的环境影响,磷系等无卤阻燃剂改性聚酯纤维逐渐受到关注㊂1.3㊀导电改性静电会对聚酯纤维的生产过程造成影响,同时使得衣服纠缠人体,产生不舒服感,更为严重的是静电会引发火灾等危险[16]㊂导电纤维具有导电㊁导热㊁抗电磁屏蔽等特点,作为一种重要的功能纤维,近年来广泛受到研究者的关注㊂马良玉[17]研究了碳纳米/石墨烯复合导电液与聚酯纤维相互作用,改性纤维电阻稳定在100Ω/cm以下㊂W.K.CHOI等[18]对超细PET纤维表面进行化学镀镍使得纤维导电性能增强㊂S.MAZINANI等[19]采用多壁碳纳米管对PET熔纺纤维进行改性,获得高导电性能(电导率为0.01S/cm),最大断裂拉伸应变值是纯PET纤维的3倍㊂目前主要采用填充法制备聚酯导电纤维,赋予材料抗静电和导电等功能㊂1.4㊀超疏水改性像荷叶一样的超疏水材料具有自清洁㊁油水分离㊁防污㊁防腐蚀㊁减阻等功能,为满足复杂环境的需求,具有优异耐久性和自修复性能的超疏水织物越来越受到人们的关注㊂周存等[20]为制备兼具疏水和导电功能织物,先对PET织物进行导电整理,再采用溶剂诱导结晶的方法在导电织物的表面构造微观粗糙结构,然后用甲基三氯硅烷修饰,制备出水接触角不低于158.6ʎ的导电织物㊂ZHOU F等[21]利用十二烷基三甲氧基硅烷改性二氧化钛作为涂层材料,使得PET织物的水接触角达到158.6ʎʃ0.6ʎ,经过50次洗涤循环后仍能保持在150ʎ以上㊂H.J.KIM等[22]基于聚二甲基硅氧烷涂层改性PET织物的吸水和吸油行为,织物表层水接触角高达155ʎʃ4.9ʎ,对水分的吸收率由25.1%降至0.1%,具有比聚丙烯织物更为优异的吸油性能,是一种潜在的石油吸附剂,可用于清理石油泄漏㊂周旋[23]利用有机硅氧烷甲基三甲氧基硅烷㊁正辛基三乙氧基硅烷和三甲基氯硅烷㊁含氟改性剂1H,1H,2H,2H-全氟癸基三乙氧基硅烷及含氟树脂聚偏氟乙烯在PET织物表面构造超双疏表面,其在紫外光持续照射35h的情况下仍保持着超疏水和疏油性能(油接触角大于140ʎ)㊂朱宝顺[24]采用聚二甲基硅氧烷母粒和季戊四纯硬脂酸酯改性PET纤维,使得体系的水接触角由68.6ʎ提高到110.3ʎ,提升了织物的拒水性能㊂聚酯纤维的超疏水改性手段包括纳米颗粒沉积,以及硅氧烷㊁含氟化合物等低表面能物质修饰改性等,在实验室中已相对比较成熟,相关文献研究也较多㊂1.5㊀黏附力改性聚酯纤维材料的黏附力会影响其与其他材料的复合效果㊂J.TREJBAL等[25]探究离子体处理对水泥复合材料中PET纤维的表面性能影响,通过显微镜观察和润湿角测量,证明等离子体处理能有效改变PET纤维表面,离子轰击使纤维表面粗糙化,同时激活纤维表面极性基团,使纤维与胶35第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀宇㊀平等.聚酯纤维的改性技术及其在海洋领域的应用凝基质的附着力更好㊂LIU X D等[26]提出一种通过在甲苯溶液中用异氰酸酯处理,高效提高PET织物黏合力方法,与未改性PET织物相比,其最大剥离强度达到2.27kN/m,提高了3倍㊂M.RAZAVIZADEH等[27]采用紫外线照射将PET 羧基化,增强了其与丁腈橡胶的附着力㊂聚酯纤维功能化改性方法包括熔融共混改性㊁接枝改性㊁复合纺丝改性㊁化学溶液改性㊁原位聚合改性㊁后处理改性等㊂其中,熔融共混改性对原料的粒度要求不严格,但在制备过程中要考虑共混料的分散效果㊁相容情况及热稳定性;复合纺丝改性改性剂用量少,对聚酯纤维力学性能影响小,但存在喷丝板加工难度大㊁生产成本高的缺点;采用接枝改性制备出来的改性聚酯性能比较稳定㊁成分通常不易析出㊁耐久性好,但制备过程复杂㊁反应条件严格,不利于工业化生产;后处理改性操作简单㊁易实施,但往往会出现纤维耐久性㊁耐水洗牢度较差及环境污染等问题[28]㊂2㊀聚酯纤维在海洋领域中的应用当前,我国正在加快建设海洋强国并且海洋工程正在向深海和远海发展㊂面对海上复杂的极端环境及海洋工程向深水区域发展的未知风险,开发具备耐海水侵蚀㊁耐老化㊁高强度及抗蠕变等特性的高性能纤维对推进海洋生态保护㊁海洋经济发展和海防建设,培育壮大海洋战略性新兴产业,建设现代海洋产业体系,具有十分重大的意义和作用㊂目前,聚酯纤维已在深海缆绳㊁海洋混凝土㊁油污收集网㊁大型远洋渔具等海洋工程领域取得一定进展,极大地提高了材料的安全服役寿命,并拓展了聚酯纤维在深海远海等高端领域的应用㊂2.1㊀深海缆绳传统的钢缆绳难以在水下保持紧绷状态,同时由于其密度大,安装过程比较复杂性,且减弱了船舶的有效载荷能力㊂早在20世纪60年代,纤维绳就被建议作为主要的系泊绳索,以避免链条和钢丝绳的缺点[29]㊂纤维绳密度小㊁质量轻,且力学性能㊁耐磨性及拒海水性好,不仅可以提高船舶的载荷能力,而且拥有钢缆绳优良的力学性能㊂聚酯纤维具有高强㊁耐磨㊁耐疲劳等特点,且耐海水腐蚀性较好,可以提高系泊系统的耐磨性和耐久性,已成为深远海系泊系统首选材料[30]㊂国外深海系泊聚酯纤维缆绳生产商主要在欧美国家,代表性的缆绳制造商有Bexco公司㊁Lankhorst Ropes公司㊁Bridon公司等㊂2001年,巴西国家石油公司将聚酯纤维绳索成功应用于钻井平台㊁浮式生产及储存和卸载系统[31]㊂国内海洋工程用聚酯纤维缆绳生产㊁应用起步较晚㊂2020年,在南海陵水17-2气田上,聚酯纤维缆绳首次被应用于深海油气田作业平台的系泊系统㊂目前该聚酯纤维缆绳已应用于国际多个深海系泊平台项目,为国产聚酯缆绳的自主研发生产提供坚强保障[32]㊂2021年,我国自主勘探开发的首个1500m超深水大气田 深海一号 在海南岛东南陵水海域正式投产,标志我国海洋工程中油气田开采进入 超深水 时代,不断增加的水深和风㊁浪㊁流的影响,对工作平台的系泊系统提出了更高的要求,亟待开发性能更优的聚酯纤维缆绳以满足新的㊁更高的应用需求㊂浙江金汇特材料有限公司采用特殊结构喷丝板纺得的海洋缆绳用高强低伸涤纶工业丝涂覆拒海水型功能油剂后,耐磨次数对数值最高达4.21且上油均匀性好,油剂添加量明显减少[33]㊂该纺丝工艺可有效降低海洋缆绳用高耐磨高强低伸涤纶工业丝的生产成本,提高产品附加值㊂山东华纶新材料有限公司通过共混反应先得到侧基含蒽官能团的增黏聚酯,再与双马来酰亚胺进行熔融共混纺丝,可在不影响熔体可纺性以及废旧聚酯纤维回收利用的前提下提高纤维的强度及抗蠕变性,在海洋用绳索及其他工业领域具有广阔的应用前景[34]㊂2.2㊀海洋混凝土海洋环境下的强腐蚀性和海洋微生物的破坏对混凝土的耐久性和耐腐蚀性提出了更高的要求,普通水泥混凝土由于易膨胀开裂㊁脆性大㊁表面起层剥落等缺陷,很难适应海水中的氯离子渗透腐蚀和海洋微生物的破坏㊂聚酯纤维具有抗拉强度和弹性模量高㊁耐碱性好等优势,在混凝土中掺杂聚酯纤维可大大改善抗裂性和抗渗性,提升强度和韧性[35]㊂2.3㊀油污收集网溢油已成为海水的重要污染来源,严重危害人类生存健康,清除泄漏到海洋㊁河流和陆地的石油一直备受关注㊂为了有效地分离油与水,研究者对各种吸收剂结构进行了大量研究,研究表明,聚酯纤维织物是一种潜在的用于去除泄漏石油的吸收剂,具有很好的成本效益,且吸油性能优异㊂王洪杰等[36]以正硅酸乙酯为硅源,以氟硅烷为疏45㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷水改性剂,采用一步法制备了负载硅纳米粒子的超疏水聚酯纤维织物,水接触角可达156.2ʎ,对水和柴油混合物的分离效率达到98.32%㊂2.4㊀大型远洋渔具聚酯纤维由于具有性价比高㊁耐腐蚀性好及强度高等优势已取代天然纤维,应用于捕捞和渔业工程方面㊂20世纪90年代,日本东丽公司推出一种聚芳酯(Vectran)纤维,具有耐磨性㊁耐切割性㊁耐冲击性及耐酸碱性好等优势,已用于钓鱼线㊁绳索等的生产[37]㊂2017年11月,江苏恒力化纤股份有限公司联合多家科研院所攻克了聚酯纤维材料抗蠕变和抗水解的关键技术难题,具有抗海水腐蚀㊁拒紫外线照射等特殊功能,大大提升了聚酯纤维在海洋环境下的应用韧性㊂2022年9月,江苏德力化纤有限公司的 高均匀性超柔软聚酯纤维 ㊁ 微细聚酯纤维 ㊁ 亲水速干涤纶 ㊁ 亲水阻燃功能性聚酯纤维 及 亲水抗菌功能性聚酯纤维 五款产品通过省级新产品鉴定,有望助推聚酯纤维在海洋领域的拓展应用[38]㊂3㊀展望近10年来,虽然我国聚酯纤维改性技术取得了很大进展,不少改性品种已投入工业化生产,但与国外先进技术相比,仍存在较大差距,尤其是在海洋工程领域,如水下防护网㊁隔离网㊁过滤网及防污网用高强高模聚酯纤维,高性能经编格栅及土工布用聚酯纤维,抗芯吸轻量化耐磨聚酯纤维,悬浮式海洋油污拦截网和处理收集网用聚酯纤维,以及基于海洋风电和海上制氢的海洋清洁能源装备用聚酯纤维等,开发应用还有很大提升空间㊂同时,我国海洋工程用聚酯纤维在设备㊁自动化控制,以及专业测试手段方面还相对比较薄弱,亟待加强㊂绿色化㊁清洁化㊁差别化㊁功能化是实现聚酯纤维可持续发展的必由之路㊂未来,在实现聚酯纤维绿色㊁清洁生产的基础上,应进一步加强以PET为基材的差别化新型聚酯及其纤维的研发,进一步拓宽聚酯纤维在海洋工程领域的应用,同时赋予聚酯纤维功能化,提高产品综合性能和附加值㊂参㊀考㊀文㊀献[1]㊀CHU J W,HU X Y,KONG L H,et al.Dynamic flow andpollution of antimony from polyethylene terephthalate(PET)fi-bers in China[J].Science of The Total Environment,2021, 71:144643.[2]㊀金联创网络科技有限公司.2020年聚酯新产能持续增长增速放缓[EB/OL].(2020-12-25)[2023-07-10].http:///a/440405934_120066020.[3]㊀WANG S H,HOU W S,WEI L Q,et al.Structure and prop-erties of composite antibacterial PET fibers[J].Journal of Ap-plied Polymer Science,2009,112(4):1927-1932. [4]㊀DAI S H,ZHANG J P,WENG L,et al.Synthesis and proper-ties of ZnO on nonwoven PET fiber[J].Chemical Physics, 2021,551:111335.[5]㊀LIN Y X,CHEN J Y,MAI Y H,et al.Double-grafted PET fi-ber material to remove airborne bacteria with high efficiency [J].ACS Applied Materials Interfaces,2022,14(41): 47003-47013.[6]㊀ZHOU J L,FEI X,LI C,et al.Integrating nano-Cu2O@ZrPinto in situ polymerized polyethylene terephthalate(PET)fi-bers with enhanced mechanical properties and antibacterial ac-tivities[J].Polymers,2019,11(1):113.[7]㊀OPWIS K,PLOHL D,SCHNEIDER J,et al.Metallization ofPET fibers in supercritical carbon dioxide and potential applica-tions in the textile sector[J].The Journal of Supercritical Flu-ids,2022,191:105722.[8]㊀田梅香.PET-co-PST共聚酯的合成表征及抗菌性能研究[D].上海:东华大学,2018.[9]㊀钱伯章.辽阳石化公司试产纤维级抗菌聚酯[J].合成纤维工业,2020,43(5):47.[10]袁凯,胡祖明,于俊荣,等.载银海藻酸盐/PET纤维的制备及性能研究[J].合成纤维工业,2017,40(1):37-41.[11]FABIA J,GAWLOWSKI A,ROM M,et al.PET fibers modi-fied with cloisite nanoclay[J].Polymers,2020,12(4):774.[12]ZHU S F,SHI M W,TIAN M W,et al.Effects of irradiationon polyethyleneterephthalate(PET)fibers impregnated with sensitizer[J].The Journal of The Textile Institute,2018,109(3):294-299.[13]XUE B X,QIN R H,SHAO M Q,et al.Improving the flameretardancy of PET fiber by constructing the carbon micro-spheres based melamine polyphosphate powder[J].The Jour-nal of The Textile Institute,2020,111(4):597-603.[14]何泽秀.含磷阻燃共聚酯耐水解改性及纤维应用研究[D].上海:东华大学,2022.[15]许卓,支海萍,张顺花.阻燃改性聚酯的合成及性能分析[J].浙江理工大学学报(自然科学版),2022,47(3): 323-328.[16]李珊珊,乔辉,胡蝶,等.聚酯纤维抗静电改性的研究进展[J].现代化工,2017,37(9):17-20.[17]马良玉.碳纳米导电液与聚酯纤维相互作用研究[D].开封:河南大学,2018.[18]CHOI W K,KIM B K,PARK S J.Fiber surface and electricalconductivity of electroless Ni-plated PET ultra-fine fibers[J].Carbon Letters,2013,14(4):243-246.[19]MAZINANI S,AJJI A,DUBOIS C.Structure and properties ofmelt-spun PET/MWCNT nanocomposite fibers[J].Polymer Engineering and Science,2010,50(10):1956-1968.55第4期㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀宇㊀平等.聚酯纤维的改性技术及其在海洋领域的应用[20]周存,何雅僖.超疏水导电聚酯织物的制备及其性能[J].纺织学报,2018,39(8):88-94.[21]ZHOU F,ZHANG Y F,ZHANG D S,et al.Fabrication of ro-bust and self-healing superhydrophobic PET fabrics based on profiled fiber structure[J].Colloids and Surfaces A,2021, 609(1):125686.[22]KIM H J,HAN S W,KIM J H,et al.Oil absorption capacityof bare and PDMS-coated PET non-woven fabric;dependency of fiber strand thickness and oil viscosity[J].Current Applied Physics,2018,18(4):369-376.[23]周旋.聚酯纤维的超疏水改性研究[D].南京:东南大学,2019.[24]朱宝顺.基于共混方法制备拒水PET聚酯纤维及其性能研究[D].上海:东华大学,2019.[25]TREJBAL J,KOPECK L,TESÁREK P,et al.Impact of sur-face plasma treatment on the performance of PET fiber rein-forcement in cementitious composites[J].Cement and Con-crete Research,2016,89:276-287.[26]LIU X D,SHENG D K,GAO X M,et al.UV-assisted surfacemodification of PET fiber for adhesion improvement[J].Ap-plied Surface Science,2013,264:61-69.[27]RAZAVIZADEH M,JAMSHIDI M.Adhesion of nitrile rubberto UV-assisted surface chemical modified PET fabric,part II: Interfacial characterization of MDI grafted PET[J].Applied Surface Science,2016,379:114-123.[28]章瑞,李院院,周潘飞,等.氧化锌抗菌聚酯的制备及其性能[J].现代纺织技术,2023,31(3):113-120. [29]连宇顺,刘海笑.海洋系泊工程中合成纤维系缆研究述评[J].海洋工程,2019,37(1):142-154.[30]UMANA E C,TAMUNODUKODIPI D T,INEGIYEMIEMAparative analysis of fibre rope(polyester)and steel (wire)rope for a Floating Production Storage and Offloading (FPSO)terminal[J].Ocean Engineering,2022,243: 110081.[31]PETRUSKA D,GEYER J,MACON R,et al.Polyester moor-ing for the Mad Dog spar-design issues and other considera-tions[J].Ocean Engineering,2005,32(7):767-782. [32]王宇骅,李航宇,董海磊,等.海洋工程中国产深海聚酯缆绳述评[J].合成纤维,2022,51(10):36-40. [33]马建平,严剑波,林启松,等.海洋缆绳用高耐磨高强低伸涤纶工业丝的开发[J].产业用纺织品,2019,37(3):10-16. [34]胡祖明,孙钦超,王彦,等.一种海洋用抗蠕变高强聚酯纤维及其制备方法与应用:202210862789.6[P].2022-11-08.[35]朱丹.海洋环境下改性聚酯纤维混凝土耐久性研究[J].建材与装饰,2019,13:42-43.[36]王洪杰,赵娜,潘显苗,等.超疏水聚酯织物的制备及其油水分离性能研究[J].高分子通报,2022(6):46-53. [37]石建高,王鲁民,陈晓蕾,等.渔用合成纤维新材料研究进展[J].现代渔业信息,2008,23(5):7-10. [38]钱伯章.恒力石化超细纤维再填国内技术空白[J].合成纤维,2022,51(10):32.Modification technology and application of polyester fibers in marine fieldYU Ping1,SUN Qinchao2,WANG Yan3,HU Zuming3(1.School of Environmental and Chemical Engineering,Jiangsu Ocean University,Lianyungang222005;2.ShandongHualun Advanced Materials Co.,Ltd.,Linyi276600;3.State Key Laboratory for Modification ofChemical Fibers and Polymer Materials,Donghua University,Shanghai201620) Abstract:The technological progress of polyester fiber modification in antibacterial,flame retardant,conductive,superhydro-phobic properties and adhesive force was introduced.The techniques to endow polyester fibers with antibacterial properties,flame retardance,conductivity,superhydrophobicity and adhesive force mainly involve blend melting modification by adding inorganic antibacterial agents or halogen-free phosphorus flame retardants,filling modification using carbon nanotubes,graphene and other charged materials,modification using siloxane,fluorine compounds and other low-surface energy materials,plasma and ultraviolet light surface modification and so on.The application and development prospects of polyester fibers in marine engineering fields, such as deep-sea cables,marine concrete,oil spill collection nets and large ocean fishing gear,were described.It was pointed out that the development of high-performance polyester fibers with high cost-effectiveness,high reliability and differentiation be of great significance and the market prospects be enormous.Key words:polyester fiber;surface modification;marine field;application;development prospect65㊀合㊀成㊀纤㊀维㊀工㊀业㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀㊀2023年第46卷。
高性能乙纶八股绳性能研究

( 国水 产科 学研 究 院东 海水 产研 究所 ;农 业部 海 洋与 河 口渔业 重点 开放 实验 室 ) 中
中 国 上 海 市 军 工 路 3 0号 邮 编 :2 0 9 0 000
【 要 】 2 0 年 ~ 00 提 0 7 2 1 年期间 在东海水 产研究 所对 高性能 乙纶八 股绳性 能进行 了研究 。 结果表 明 , 公称 直径 1 . mm和 2 0 1.m 4 m高性能乙纶八股绳 的力学性 能 、 0 耐磨性和使用 寿命 优于等直径 的普通 三股乙纶绳 , 其性能价格 比优 于普 通三股乙纶绳和 普通 三股锦纶 绳。 高性能 乙纶八股 绳为我 国节能降耗 型网具 的研 制提供 了配套材料 , 具有一定 的安全效果 和经济可行性 , 能在
高性 能 乙 纶 八 股 绳 材 料 由 东 海 水 产 研 究 所 设 计 开 发 。 先 将 111 所 述 的数 根 渔 用 高 性 能 乙 纶 单 丝 在 高速 环 锭 捻 ..节
计提供基础资料。
绳索 、 高性能 绳索 和特种 性能绳 索等 ;按其 股数分 为三 股
绳、 四股 绳 、 股 绳 和 多 股 绳 等 。 着 合 成 纤 维 工 业 的发 展 , 八 随
1 材 料 与方 法
11 试 验 材 料 .
合成纤 维绳索逐 渐取代 了天然 纤维绳 索 ;普通 三股 乙纶 绳 和普 通三股 锦纶绳 等合 成纤 维绳索 在渔业 上应 用较 广 。 渔 用合 成纤 维绳索新 材料 的开 发对提 高 网具 渔用 效果 、 进 促
要 指 标 ¨ 。 用 绳 索 的 分 类 方 法 很 多 , 其 生 产 工 艺 分 为 渔 按
究所 进行 的高性能 乙纶八 股绳 的研究结 果为依 据 , 分析 比
新型功能纤维的合成及应用前景

新型功能纤维的合成及应用前景随着科技的不断进步,纤维材料也在不断地发展和创新。
在未来的发展中,新型功能纤维无疑将成为发展的重点之一。
接下来,我们一起来了解一下新型功能纤维的合成及应用前景。
一、纤维材料简介早在几千年前,人类就已经开始使用纤维材料,主要是利用天然材料如动物毛发、植物纤维等进行制作。
随着人类文明的不断进步和科技的发展,纤维材料也得到了巨大的发展。
目前,纤维材料广泛应用于纺织、建筑、航空、医疗、环保等领域。
二、新型功能纤维的定义新型功能纤维是指通过新技术或新材料合成而来的纤维材料,它们具有比传统纤维更高的物理性能和更广泛的应用领域。
新型功能纤维的主要特点包括功能多样化、耐热性能、耐化学性能、高强度等。
三、新型功能纤维的合成方法1. 高分子合成法高分子合成法是指利用化学反应合成新型功能纤维。
常见的高分子合成法包括聚合法、掺杂法、复合法等。
其中,聚合法是指通过单体的聚合反应来生成高分子材料,如聚酯纤维、聚酰胺纤维等。
掺杂法是指在聚合物中加入一些特殊的物质,改变其物理性质,如掺杂碳纤维、金属纤维等。
复合法是指将两种或两种以上的高分子复合成一种新的纤维材料,如PAN/PPS复合纤维、PAN/PVDF复合纤维等。
2. 生物合成法生物合成法是指通过利用生物学过程合成新型功能纤维。
生物合成法具有生物特性强、可再生性好、安全环保等特点。
常见的生物合成法包括菌汁法、生物法等。
菌汁法是指利用能产生纤维素的微生物,利用特殊的生长条件在大规模制备纤维。
生物法是指利用生物学修饰技术将功能化物质与纤维材料结合,产生新型功能纤维。
四、新型功能纤维的应用前景1. 工业应用新型功能纤维具有高强度、高韧性、耐腐蚀、耐高温等特点,适用于制造机械、船舶、汽车等工业用品。
例如,利用碳纤维制造的轻型飞机、汽车可以减轻重量,提高燃油效率,提升机器的性能。
2. 医疗应用新型功能纤维具有生物相容性好、耐热性能强等特性,适用于医疗领域。
生物可降解合成纤维研究进展

生物可降解合成纤维研究进展
陈雨龙;赵立环;王玉稳;闫子妍;李长静
【期刊名称】《棉纺织技术》
【年(卷),期】2024(52)6
【摘要】介绍当前研究的几种生物可降解材料结构、性能及其纤维的制备方法和
应用。
针对研究较热的聚乳酸、聚羟基脂肪酸酯、聚对苯二甲酸⁃己二酸丁二醇酯、聚丁二酸丁二醇酯和聚乙交酯纤维,概述了其研究开发进展,并分析了其性能特点和
不足;结合目前复合纤维的发展情况,探究了几种常见的生物可降解复合纤维的性能
和研究现状。
认为:通过材料的共聚、共混、复合、改性及纺丝工艺的优化等方式,
可以改善纤维的可纺性能,降低生产成本,加大规模化生产,促进生物可降解纤维的应用和发展。
【总页数】9页(P96-104)
【作者】陈雨龙;赵立环;王玉稳;闫子妍;李长静
【作者单位】天津工业大学;天津齐邦新材料有限公司
【正文语种】中文
【中图分类】TS155.6
【相关文献】
1.医用生物可降解材料的生物学评价体系研究进展
2.合成纤维织物的生物可降解性能研究
3.日本钟纺公司开发生物可降解合成纤维
4.生物基可降解聚合物在生物医
学领域的应用及研究进展
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
达 2 .c /t 03 N de x以上 ; et n V cr 纤维的种类 有长丝纱 、 a 初纺纱 、 芯鞘 纱和短 切纤维 。 e ̄ n V c a 纤维 的优异性 能使其 应用领 域 越来越广泛 , 规格品种也越来 越丰富。 et n V c a 纤维主要用于 r 绳 索 、吊带 、钓鱼线 、 合线 、帘子 线 和防护服 等 。 et n 缝 V c a r 纤维 是一种优异 的渔用合 成纤维 新材料 。 随着 V c a 纤 维 et n r 材料 的产量的增加 , 人们 已将少量 P T P A纤维应用 于渔业 生 产, 其中包括 V c a 纤维在钓鱼线 、 et n r 绳索等 中的应用 。 在渔 业 上 , 们利 用 V c a 纤维 强度 高 和耐 冲击性 好等 特征 , 人 et n r 制作 了 V c a 钓鱼 线 , et n r 如在 日本 钓鱼线 的制造 中使用 了商 品名为 V c a M 和 V c a et nH r et nNT的超强 V c a 纤维替代聚 r et n r 酰胺钓 鱼线 , et n V c a 纤维材料 的应用 , 为开发高效、高性 r 成
物降解纤维、 超高分子量聚乙烯纤维、 对位芳香族聚酰胺纤维和高强度渔用聚乙烯单丝等几种渔用合成纤维新材料的性能、 研
究进展及 其在渔业上 的应用情况 , 最后对渔用合 成纤维新 材料发展前 景作 了展望 , 以期为养殖 网箱 、 捕捞 渔具及其 它渔业工程
用 材料的选配或研发提供参考 。
石建高等 , 0 8 渔用合成纤 维 材料研究进展 , 现代渔业 信息 》 20  ̄ 《 杂志 , 3 5) - 0 1 。 2 ( :7 1 , 3 关键词 :渔用合成纤维 新 材料 性能 应用
维普资讯
第2卷 第5 3 期 20 0 8年 5月
现
代
渔
业
信
息
Vo .3 No5 1 2 .
Ma . 2 0 y, 0 8
M ODE RN I HE I NF F S R_ ES I 0RM A I T ON
渔 用 合 成 纤 维 新 材 料 研 究 进 展
合 成纤 维是 渔用材 料 的主体 , 在渔业 上 目前它 不但 已 基 本代替 渔用天然纤维 , 而且价 格一般 已低于棉 、 蚕丝等传 统渔用 天然纤 维。渔用合 成纤 维在科 技上取 得 的进 展也超 过渔用天然纤 维 , 出现了聚芳酯纤 维 、 可生物 降解纤 维、 超 高分子 量聚乙烯纤维 、 对位芳香族聚酰胺纤维 、 碳纤维和高 强度渔用聚 乙烯 单丝等渔用合 成纤维新材 料¨ 本文重点 。 介 绍上述 渔用 合成纤维 新材 料 的性 能、研究进 展及 其在渔
为普通聚酯纤维 的 6 , 倍 与金属纤维 的强 度相 当, 且材料质 轻 、 吸收水 分 、 低温特性强 。 e ̄ n 维 已在宇航业 中 不 耐 Vc a纤 获 得了很多应用 , 且耐 磨性 、 耐切割性 、 酸碱 性和耐 冲击 耐 等 皆优 于聚对苯二 甲酰对苯二胺 ( P A) P T 纤维 , 耐候性类似
2 可生物解 纤维
可生 物降解纤维 材料是指受 到 自然界 的生物 ( 如细菌 、 真菌 、藻类 等 ) 侵蚀 后可 以完 全降解 的纤 维材 料¨ 。在 ’ 环境 保护 的备受 关注 的今 天 , 生物 降解 纤维 材料 已成 为 可 当今 世界各 国研 究 的热 点。可生 物降解 纤维材 料最初是 在 2 世纪 6 年代应 医用需要 而发展起来 的。 0 0 经过 4 多年的发 0 展 ,由于其性能缺 陷或成本过高 , 大多数 可生物降解 纤维的 应用仍局 限于医疗 和园艺领域 , 只有 少量性能优 良、 成本较 低 的可生 物降解 纤维的应用拓展到 了渔业 、 建筑等领域 。 可 生物 降解纤 维是由可生物降解聚合物纺制而成 的。目前 , 主 要有天然高分子及 其衍 生物、 生物合成 高分子、 学合成 微 化 高分子三大类可生物降解聚合物 。 可生物 降解纤维是一种新用新材料 , 它在渔业上 的应 用 将取得较好 的负责任捕捞效果 。随着 可生物 降解纤维材料成 本 的降低 , 们 已将少量 可生物 降解纤维 应用于渔业生产 , 人
能钓鱼具 的重要手段 , 并取得了较好的钓捕效果。
程用 材料的选配或研 发提 供参考 。
1 聚 芳 酯 纤 维
聚芳 酯纤维是一种高强度 的聚酯纤 维 , 日本 可乐丽公 由
司于 2 世 纪 9 年 代推 出 , 实现工业 化生产 , 商品名为 0 0 并 其
V c a ,品种 有 V crnHT V c a 和 V c a et n r et 、 et nHM a r et nNT, r 全 球 现只有可乐丽公 司独家生产 ¨ 。 et n 维的强度约 ’ Vc a纤 r
石 建 高 王 鲁 民 陈 晓 蕾 史 航
( 农业部海洋与河口渔业重点开放试验室, 中国水产科学研究院东海水产研究所 )
中国上海市军工路 3 0号 0 邮编 :2 0 9 000
【 提要 】 合成纤维新材 料已经被应用于捕 捞与渔业工程领域 , 取得 了一些研 究和应用成果 。 本文 重点介绍 了碳纤维 、 可生
于 PT P A纤 维 。 et n纤 维 的 密 度 为 1 1 1 2gc , 度 V cr a . ~ . /m3 强 4 4
文稿收到 日期 : 0 8 0 — 1 2 0 — 3 3
作者简 介 :石 建高 ( 99 , , 16一)男 硕士 , 副研 , 从事标 准化 、 捕捞与渔业工 程研究 。 项 目资 助 : 中 央 级 公 益 性 科 研 院 所 基 本 科 研 业 务 费 专 项 资 金 (中 国 水 产 科 学 研 究 院 东 海 水 产 研 究 所 ) 资 助 项 目( 0 7 2 、农 业 科 技 成 果 转 化 资 金 项 目 2 0 M 0) ( 0 6 B 3 6 3 4 、国家 高新 技术 研究发 展 ( 6 计 划 ) 20G 2 209 ) 83 专