正弦定理和余弦定理

合集下载

正弦、余弦定理

正弦、余弦定理

正弦定理和余弦定理1.正、余弦定理:在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则2.重要结论在△ABC 中,常有以下结论 (1)∠A +∠B +∠C =π.(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边. (4)sin(A +B )=sin C ;cos(A +B )=-cos C ; (5)∠A >∠B ⇔a >b ⇔sin A >sin B ⇔cos A <cos B . 3. 三角形中常用的面积公式 (1)S =12ah(h 表示边a 上的高).(2)S =12bcsinA =12acsinB =12absinC.3.例题讲解例1.在△ABC 中,已知3=a ,2=b ,B=45︒, 求边长c解一:由正弦定理得:23245sin 3sin sin ===οb B a A ∵b <a ∴B<A ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===οοBCb c 当A =120︒时C=15︒ 22645sin 15sin 2sin sin -===οοB C b c解二:设c = x 由余弦定理 B ac c a b cos 2222-+= 将已知条件代入,整理:0162=+-x x 解之:226±=x例2、设△ABC 的内角A ,B ,C 所对边的长分别为a ,b ,c .若b +c =2a, 3sin A =5sin B ,则角C =________.解析 由3sin A =5sin B ,得3a =5b ,a =53b ,又b +c =2a ,所以c =73b .根据余弦定理的推论cos C =a 2+b 2-c 22ab,把a =53b ,c =73b 代入,化简得cos C =-12,所以C =2π3.例3.[2017·全国卷Ⅱ]△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若2b cos B =a cos C +c cos A ,则B =________.解析 由2b cos B =a cos C +c cos A 及正弦定理,得2sin B cos B =sin A cos C +sin C cos A . ∴2sin B cos B =sin(A +C ). 又A +B +C =π,∴A +C =π-B . ∴2sin B cos B =sin(π-B )=sin B . 又sin B ≠0,∴cos B =12.∴B =π3.4.过关练习(1)在△ABC中,已知sin A∶sin B=2∶1,c2=b2+2bc,则三内角A,B,C的度数依次是________.(2)设△ABC的内角A,B,C的对边分别为a,b,c.若a=3,sin B=12,C=π6,则b=________.(1)由题意知a=2b,a2=b2+c2-2bc cos A,即2b2=b2+c2-2bc cos A,又c2=b2+2bc,∴cos A=22,A=45°,sin B=12,B=30°,∴C=105°.(2)因为sin B=12且B∈(0,π),所以B=π6或B=5π6.又C=π6,B+C<π,所以B=π6,A=π-B-C=2π3.又a=3,由正弦定理得asin A=bsin B,即3sin2π3=bsinπ6,解得b=1.。

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理:定义:直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。

在△ABC中,角A、B、C所对的边分别为a、b、c,则有a/sinA=b/sinB=c/sinC=2R(R为三角形外接圆的半径)正弦定理(Sine theorem)(1)已知三角形的两角与一边,解三角形(2)已知三角形的两边和其中一边所对的角,解三角形(3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系证明步骤1 在锐角△ABC中,设BC=a,AC=b,AB=c。

作CH⊥AB垂足为点HCH=a·sinB CH=b·sinA ∴a·sinB=b·sinA 得到a/sinA=b/sinB 同理,在△ABC中,b/sinB=c/sinC 步骤 2. 证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O. 作直径BD交⊙O于D. 连接DA. 因为在同圆或等圆中直径所对的圆周角是直角,所以∠DAB=90度因为在同圆或等圆中同弧所对的圆周角相等,所以∠D等于∠ACB. 所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。

意义正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式。

也就是任意三角形的边角关系。

扩展余弦定理(第二余弦定理)定义:直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

余弦定理性质对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质——a^2 = b^2+ c^2 - 2·b·c·c os A b^2 = a^2 + c^2 - 2·a·c·c os B c^2 = a^2 + b^2 - 2·a·b·cos C c os C = (a^2 + b^2 - c^2) / (2·a·b) c os B = (a^2 + c^2 -b^2) / (2·a·c) c os A = (c^2 + b^2 - a^2) / (2·b·c)。

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理在△ABC中,若角A,B,C所对的边分别是a,b,c,R为△ABC外接圆半径,则有正弦定理和余弦定理:正弦定理:a/sinA = b/sinB = c/sinC = 2R余弦定理:a^2 = b^2 + c^2 - 2bccosA;b^2 = c^2 + a^2 - 2cacosB;c^2 = a^2 + b^2 - 2abcosC可以通过变形得到以下公式:cosA = (b^2 + c^2 - a^2) / 2bc;cosB = (c^2 + a^2 - b^2) / 2ac;cosC = (a^2 + b^2 - c^2) / 2ab同时还有以下关系:a = 2RsinA;b = 2RsinB;c = 2RsinCa:b:c =asinB = bsinA;bsinC = csinB;asinC = csinAABC的面积S = absinC = bcsinA = acsinB = r其中r为三角形内切圆半径,可以通过S = (a + b + c)r得到。

选择题:1.在△ABC中,已知a = 2,b = 6,A = 45°,则满足条件的三角形有2个。

2.在△ABC中,A = 60°,AB = 2,且△ABC的面积为3,则BC的长为3.3.已知在△ABC中,a = x,b = 2,B = 45°,若三角形有两解,则x的取值范围是2<x<22.4.已知锐角三角形的边长分别为1,3,x,则x的取值范围是(8,10)。

注:原文中存在格式错误,已经进行修正。

整理得2c=b+bc,因为c≠0,所以等式两边同时除以c,得到2=c+b,解得c=2/(b+1)。

在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且△ABC的面积为315,b-c=2,cosA=1/4,求a的值。

解析:由cosA=1/4,得到sinA=√15/4,S△ABC=bcsinA=bc*√15/4=315,因此bc=24.又因为b-c=2,所以b^2-2bc+c^2=4,联立解得b^2+c^2=52.由余弦定理得,a=b+c-2bccosA=52-2*24*(1/4)=64,因此a=8.在△ABC中,已知内角A、B、C所对的边分别为a、b、c,且A=π/4,b^2-a^2=c^2/2.1)求tanC的值;2)若△ABC的面积为3,求b的值。

余弦定理与正弦定理

余弦定理与正弦定理

余弦定理与正弦定理余弦定理和正弦定理是三角函数中重要的定理,它们在解决三角形相关问题时有着广泛的应用。

本文将介绍余弦定理和正弦定理的数学表达、推导方法以及在实际问题中的应用。

一、余弦定理余弦定理是解决三角形边长和内角之间关系的定理。

它的数学表达式如下:c² = a² + b² - 2abcosC其中,a、b和c分别表示三角形的三条边的长度,C表示夹角C的度数,cosC表示夹角C的余弦值。

为了更好地理解余弦定理,我们可以通过一个实例来说明。

假设有一个三角形,其两边分别为a=4,b=6,夹角C=60°,我们可以利用余弦定理计算第三边c的长度。

根据余弦定理,代入a、b和C的值:c² = 4² + 6² - 2×4×6×cos60°= 16 + 36 - 48×0.5= 16 + 36 - 24= 28通过开方运算我们可以得知c的长度为√28≈5.29。

二、正弦定理正弦定理也是解决三角形边长和内角之间关系的定理。

它的数学表达式如下:a / sinA =b / sinB =c / sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示三角形的三个内角的度数,sinA、sinB、sinC分别表示三个内角的正弦值。

同样以一个实例来说明正弦定理的应用。

假设有一个三角形,两边分别为a=4,b=6,夹角C=60°,我们可以利用正弦定理计算第三边c的长度。

根据正弦定理,代入a、b、C的值:4 / sinA = 6 / sinB = c / sin60°通过推导我们可以得到:c = 4 × sin60° / sinA= 6 × sin60° / sinB接下来,我们需要使用正弦函数的性质求出sinA和sinB的值。

假设A为夹角A的度数,则夹角B的度数为180° - A - C = 180° - A - 60°,根据三角函数关系得到:sinA / sin(180° - A - 60°) = a / b通过求解以上方程可以得到sinA和sinB的值。

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ac cos B ; c 2=a 2+b 2-2ab cos C 常见变形a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).3.三角形解的判断A 为锐角A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解| 微 点 提 醒 |1.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理 在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ;c =b cos A +a cos B .3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .(√)(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.(√) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .(×)(4)在△ABC 中,“a 2+b 2<c 2”是“△ABC 为钝角三角形”的充分不必要条件.(√) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.(×)‖自主测评‖1.(教材改编题)在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.(教材改编题)在非钝角△ABC 中,2b sin A =3a ,则角B 为( ) A.π6 B.π4 C.π3D.π2解析:选C 由正弦定理得b sin A =a sin B , 所以2a sin B =3a ,即sin B =32,又B 为非钝角,所以B =π3,故选C. 3.在△ABC 中,若a =18,b =24,A =45°,则此三角形( ) A .无解 B .有两解C .有一解D .解的个数不确定解析:选B 因为a sin A =b sin B,所以sin B =b a ·sin A =2418×sin45°=223.又因为a <b ,所以B 有两解.4.(教材改编题)已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A.2π3 B.3π4C.5π6D.7π12解析:选A 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab =(3k 2)+(5k )2-(7k )22×3k ×5k=-12,又0<C <π,所以C =2π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sin A ,bc =2,则△ABC 的面积为________.解析:由cos2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC的面积S =12bc sin A =12×2×12=12.答案:12………………考点一 利用正、余弦定理解三角形……|多维探究型|……………|多角探明|角度一 求三角形的边长【例1】 (2018届贵阳模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)(一题多解)求AB 边上的高CD 的长. [解] (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,∴a =3或a =-2(舍去),∴a =3.(2)解法一:由(1)知a =3,b =5,c =7,由三角形的面积公式得12ab sin ∠ACB =12c ×CD ,∴CD =ab sin ∠ACBc=3×5×327=15314,即AB 边上的高CD =15314. 解法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin ∠ACB =7sin120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求三角形的角或角的三角函数值【例2】 (1)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010(2)(2018届河北“五个一名校联盟”模拟)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B -A )=2sin2A ,则A =________.[解析] (1)设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc=52c 2+c 2-92c 22×102c ×c=-1010,故选C.(2)在△ABC 中,由sin C +sin(B -A )=2sin2A 可得sin(A +B )+sin(B -A )=2sin2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,∴cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A , ①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a ,由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,∴a =233,b =433,∴b 2=a 2+c 2,∴B =π2,∴A =π6.综上可得,A =π2或π6.[答案] (1)C (2)π2或π6『名师点津』………………………………………………|品名师指点迷津|应用正弦、余弦定理的解题技巧(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa 或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化;如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.|变式训练|1.(2018届福建莆田联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A=12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.(2019届黄冈模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若23cos 2A +cos2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值; (2)若a =3,A =π3,求b +c 的取值范围.解:(1)∵23cos 2A +cos2A =23cos 2A +2cos 2A -1=0, ∴cos 2A =125,又A 为锐角,∴cos A =15,a 2=b 2+c 2-2bc cos A ,即b 2-125b -13=0, 得b =5(负值舍去),∴b =5.(2)解法一:由正弦定理可得b +c =2(sin B +sin C )=2⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫2π3-B =23sin ⎝⎛⎭⎫B +π6, 又0<B <2π3,∴π6<B +π6<5π6,∴12<sin ⎝⎛⎭⎫B +π6≤1,∴b +c ∈(3,23]. 解法二:由余弦定理a 2=b 2+c 2-2bc cos A 可得b 2+c 2-3=bc , ∴(b +c )2-3=3bc ≤34(b +c )2,当且仅当b =c 时取等号,∴b +c ≤23,又由两边之和大于第三边可得b +c >3, ∴b +c ∈ (3,23].………………考点二 判断三角形的形状…………|重点保分型|……………|研透典例|【典例】 (一题多解)在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状.[解] 解法一:利用边的关系来判断 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b .又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 解法二:利用角的关系来判断 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°, 所以C =60°,所以△ABC 为等边三角形.『名师点津』………………………………………………|品名师指点迷津|判定三角形形状的两种常用途径[提醒]“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.|变式训练|在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 解析:选D 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),所以b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], 所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .解法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin2A =sin2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 解法二:由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac, 所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0, 即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.………………考点三 三角形面积的计算………………|多维探究型|……………|多角探明|角度一 求三角形的面积【例1】 (2018届武汉调研)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c . (1)求B ;(2)若b =2,a +c =5,求△ABC 的面积. [解] (1)由正弦定理,知2sin B cos C =2sin A +sin C , 由A +B +C =π,得2sin B cos C =2sin(B +C )+sin C , 化简,得2sin B cos C =2(sin B cos C +cos B sin C )+sin C , 即2cos B sin C +sin C =0. 因为sin C ≠0,所以cos B =-12.因为0<B <π,所以B =2π3.(2)由余弦正理b 2=a 2+c 2-2ac cos B ,可知b 2=(a +c )2-2ac -2ac cos B , 因为b =2,a +c =5,所以22=(5)2-2ac -2ac cos 2π3,得ac =1.所以S △ABC =12ac sin B =12×1×32=34.角度二 已知三角形的面积解三角形【例2】 (2018届沈阳教学质量监测(一))在△ABC 中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且2c cos B =2a +b . (1)求C ;(2)若a +b =6,△ABC 的面积为23,求c . [解] (1)由正弦定理得2sin C cos B =2sin A +sin B , 又sin A =sin(B +C ),∴2sin C cos B =2sin(B +C )+sin B ,∴2sin C cos B =2sin B cos C +2cos B sin C +sin B , ∴2sin B cos C +sin B =0, ∵sin B ≠0,∴cos C =-12.又C ∈(0,π),∴C =2π3.(2)∵S △ABC =12ab sin C =23,∴ab =8,由余弦定理,得c 2=a 2+b 2-2ab cos C =a 2+ab +b 2=(a +b )2-ab =28, ∴c =27.角度三 求有关三角形面积或周长的最值(范围)问题【例3】 (2018届沈阳市教学质量检测(一)) 已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________. [解析] 由题意得:4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1,又0<A <π,所以π4<A +π4<5π4,所以A +π4=3π4,所以A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,所以bc ≤16,所以S 的最大值为8. [答案] 8『名师点津』………………………………………………|品名师指点迷津|与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.|变式训练|1.(2018年全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析:选C 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c 22ab =cos C ,所以在△ABC 中,C =π4.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33. 故△ABC 的周长为3+33.。

正弦定理余弦定理知识点

正弦定理余弦定理知识点

正弦定理余弦定理知识点正弦定理和余弦定理是三角学中两个重要的定理。

它们在解决三角形问题时起着重要的作用。

在本文中,我们将详细介绍这两个定理的定义、推导过程以及应用场景。

首先,我们来看正弦定理。

正弦定理描述了三角形中各边与其对应角度之间的关系。

设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则正弦定理可以表述为以下公式:a / sin(A) =b / sin(B) =c / sin(C) = 2R其中R是三角形外接圆的半径。

接下来,我们来推导正弦定理。

设三角形的三个顶点为A、B、C,对应的边长为a、b、c。

以边长a为底边,作角A的高,垂足为D。

则有以下关系:sin(B) = BD / csin(C) = CD / b再设三角形的外接圆半径为R,即OD=R,其中O为三角形外接圆心。

那么,我们可以推导得出以下关系:sin(B) = BD / c = 2R / csin(C) = CD / b = 2R / b。

由于三角形的三个内角之和为180度,所以有角A=180度-B-C。

将以上关系带入得到以下公式:sin(A) = sin(180度 - B - C) = sin(B + C) = sin(B)cos(C) + cos(B)sin(C) =(2R / c)cos(C) + (2R / b)sin(C)。

化简以上公式,得到sin(A) = (2R / c)cos(C) + (2R / b)sin(C) = (2R / bc)(bcos(C) + csin(C))a / sin(A) = 2R / (bc)(bcos(C) + csin(C)) = 2R。

可见,我们得到了正弦定理。

正弦定理可以用来计算三角形中的未知边长或角度,同时也可以用来证明一些三角形的性质。

接下来,我们来看余弦定理。

余弦定理描述了三角形中各边与角度之间的关系。

设三角形的三个边长为a、b、c,对应的夹角为A、B、C,则余弦定理可以表述为以下公式:c² = a² + b² - 2abcos(C)。

正弦定理和余弦定理

正弦定理和余弦定理

第3讲 正弦定理和余弦定理基础梳理1.正弦定理:a sin A =b sin B =csin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c2R等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos_A ,b 2=a 2+c 2-2ac cos_B ,c 2=a 2+b 2-2ab cos_C .余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .4.已知两边和其中一边的对角,解三角形时,注意解的情况.如已知a ,b ,A ,则A 为锐角A 为钝角或直角图形关系 式 a <b sin Aa =b sin Ab sin A <a <b a ≥ba >ba ≤b解的 个数无解 一解 两解 一解 一解 无解一条规律在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B . 两种途径根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,并常用正弦(余弦)定理实施边、角转换.双基自测1.(人教A 版教材习题改编)在△ABC 中,A =60°,B =75°,a =10,则c 等于( ). A .5 2 B .10 2 C.1063D .5 6解析 由A +B +C =180°,知C =45°, 由正弦定理得:a sin A =c sin C ,即1032=c 22.∴c =1063.答案 C2.在△ABC 中,若sin A a =cos B b ,则B 的值为( ).A .30°B .45°C .60°D .90° 解析 由正弦定理知:sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°. 答案 B3.(2011·郑州联考)在△ABC 中,a =3,b =1,c =2,则A 等于( ). A .30° B .45° C .60° D .75° 解析 由余弦定理得:cos A =b 2+c 2-a 22bc =1+4-32×1×2=12,∵0<A <π,∴A =60°. 答案 C4.在△ABC 中,a =32,b =23,cos C =13,则△ABC 的面积为( ).A .3 3B .2 3C .4 3 D. 3 解析 ∵cos C =13,0<C <π,∴sin C =223,∴S △ABC =12ab sin C=12×32×23×223=4 3.答案 C5.已知△ABC 三边满足a 2+b 2=c 2-3ab ,则此三角形的最大内角为________. 解析 ∵a 2+b 2-c 2=-3ab , ∴cos C =a 2+b 2-c 22ab =-32,故C =150°为三角形的最大内角. 答案 150°考向一 利用正弦定理解三角形【例1】►在△ABC 中,a =3,b =2,B =45°.求角A ,C 和边c .[审题视点] 已知两边及一边对角或已知两角及一边,可利用正弦定理解这个三角形,但要注意解的判断.解 由正弦定理得a sin A =b sin B ,3sin A =2sin 45°,∴sin A =32. ∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°, c =b sin C sin B =6+22;当A =120°时,C =180°-45°-120°=15°, c =b sin C sin B =6-22.(1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.【训练1】 (2011·北京)在△ABC 中,若b =5,∠B =π4,tan A =2,则sin A =________;a =________.解析 因为△ABC 中,tan A =2,所以A 是锐角, 且sin Acos A=2,sin 2A +cos 2A =1,联立解得sin A =255,再由正弦定理得a sin A =bsin B ,代入数据解得a =210. 答案255210 考向二 利用余弦定理解三角形【例2】►在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积. [审题视点] 由cos B cos C =-b2a +c,利用余弦定理转化为边的关系求解. 解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b2a +c 得:a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b 2a +c , 整理得:a 2+c 2-b 2=-ac . ∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B , ∴13=16-2ac ⎝⎛⎭⎫1-12,∴ac =3. ∴S △ABC =12ac sin B =334.(1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 【训练2】 (2011·桂林模拟)已知A ,B ,C 为△ABC 的三个内角,其所对的边分别为a ,b ,c ,且2cos 2 A2+cos A =0.(1)求角A 的值;(2)若a =23,b +c =4,求△ABC 的面积. 解 (1)由2cos 2 A2+cos A =0,得1+cos A +cos A =0, 即cos A =-12,∵0<A <π,∴A =2π3.(2)由余弦定理得,a 2=b 2+c 2-2bc cos A ,A =2π3,则a 2=(b +c )2-bc , 又a =23,b +c =4, 有12=42-bc ,则bc =4, 故S △ABC =12bc sin A = 3.考向三 利用正、余弦定理判断三角形形状【例3】►在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin C ,试判断△ABC 的形状. [审题视点] 首先边化角或角化边,再整理化简即可判断. 解 由已知(a 2+b 2)sin(A -B )=(a 2-b 2)sin C , 得b 2[sin(A -B )+sin C ]=a 2[sin C -sin(A -B )], 即b 2sin A cos B =a 2cos A sin B ,即sin 2B sin A cos B =sin 2A cos B sin B ,所以sin 2B =sin 2A , 由于A ,B 是三角形的内角. 故0<2A <2π,0<2B <2π. 故只可能2A =2B 或2A =π-2B , 即A =B 或A +B =π2.故△ABC 为等腰三角形或直角三角形.判断三角形的形状的基本思想是;利用正、余弦定理进行边角的统一.即将条件化为只含角的三角函数关系式,然后利用三角恒等变换得出内角之间的关系式;或将条件化为只含有边的关系式,然后利用常见的化简变形得出三边的关系. 【训练3】 在△ABC 中,若a cos A =b cos B =c cos C;则△ABC 是( ). A .直角三角形 B .等边三角形 C .钝角三角形D .等腰直角三角形解析 由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C (R 为△ABC 外接圆半径). ∴sin A cos A =sin B cos B =sin C cos C. 即tan A =tan B =tan C ,∴A =B =C . 答案 B考向三 正、余弦定理的综合应用【例3】►在△ABC 中,内角A ,B ,C 对边的边长分别是a ,b ,c ,已知c =2,C =π3.(1)若△ABC 的面积等于3,求a ,b ;(2)若sin C +sin(B -A )=2sin 2A ,求△ABC 的面积.[审题视点] 第(1)问根据三角形的面积公式和余弦定理列出关于a ,b 的方程,通过方程组求解;第(2)问根据sin C +sin(B -A )=2sin 2A 进行三角恒等变换,将角的关系转换为边的关系,求出边a ,b 的值即可解决问题.解 (1)由余弦定理及已知条件,得a 2+b 2-ab =4.又因为△ABC 的面积等于3,所以12ab sin C =3,得ab =4,联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得⎩⎪⎨⎪⎧a =2,b =2. (2)由题意,得sin(B +A )+sin(B -A )=4sin A cos A , 即sin B cos A =2sin A cos A . 当cos A =0,即A =π2时,B =π6,a =433,b =233;当cos A ≠0时,得sin B =2sin A , 由正弦定理,得b =2a .联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,b =2a ,解得⎩⎨⎧a =233,b =433.所以△ABC 的面积S =12a b sin C =233.正弦定理、余弦定理、三角形面积公式对任意三角形都成立,通过这些等式就可以把有限的条件纳入到方程中,通过解方程组获得更多的元素,再通过这些新的条件解决问题. 【训练3】 (2011·北京西城一模)设△ABC 的内角A ,B ,C 所对的边长分别为a ,b ,c ,且cos B =45,b =2.(1)当A =30°时,求a 的值;(2)当△ABC 的面积为3时,求a +c 的值. 解 (1)因为cos B =45,所以sin B =35.由正弦定理a sin A =b sin B ,可得a sin 30°=103,所以a =53.(2)因为△ABC 的面积S =12ac ·sin B ,sin B =35,所以310ac =3,ac =10.由余弦定理得b 2=a 2+c 2-2ac cos B ,得4=a 2+c 2-85ac =a 2+c 2-16,即a 2+c 2=20.所以(a +c )2-2ac =20,(a +c )2=40. 所以a +c =210.第7讲 正弦定理、余弦定理应用举例基础梳理1.用正弦定理和余弦定理解三角形的常见题型测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图(1)).(2)方位角指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图(2)).(3)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏东60°等.(4)坡度:坡面与水平面所成的二面角的度数.一个步骤解三角形应用题的一般步骤:(1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.(2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型.(3)根据题意选择正弦定理或余弦定理求解.(4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等.双基自测1.(人教A版教材习题改编)如图,设A,B两点在河的两岸,一测量者在A所在的同侧河岸边选定一点C,测出AC的距离为50 m,∠ACB=45°,∠CAB=105°后,就可以计算出A,B 两点的距离为().A.50 2 m B.50 3 m C.25 2 m D.2522m解析由正弦定理得ABsin∠ACB=ACsin B,又∵B=30°∴AB=AC·sin∠ACBsin B=50×2212=502(m).答案 A2.从A处望B处的仰角为α,从B处望A处的俯角为β,则α,β的关系为().A .α>βB .α=βC .α+β=90°D .α+β=180° 解析 根据仰角与俯角的定义易知α=β. 答案 B3.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( ). A .北偏东15° B .北偏西15° C .北偏东10° D .北偏西10°解析 如图.答案 B4.一船向正北航行,看见正西方向相距10海里的两个灯塔恰好与它在一条直线上,继续航行半小时后,看见一灯塔在船的南偏西60°,另一灯塔在船的南偏西75°,则这艘船的速度是每小时( ). A .5海里 B .53海里 C .10海里D .103海里解析 如图所示,依题意有∠BAC =60°,∠BAD =75°,所以∠CAD =∠CDA =15°,从而CD =CA =10(海里),在Rt △ABC 中,得AB =5(海里), 于是这艘船的速度是50.5=10(海里/时).答案 C5.海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C 间的距离是________海里.解析 由正弦定理,知BC sin 60°=AB sin (180°-60°-75°).解得BC =56(海里).答案 5 6考向一 测量距离问题【例1】►如图所示,为了测量河对岸A ,B 两点间的距离,在这岸定一基线CD ,现已测出CD =a 和∠ACD =60°,∠BCD =30°,∠BDC =105°,∠ADC =60°,试求AB 的长. [审题视点] 在△BCD 中,求出BC ,在△ABC 中,求出AB .解 在△ACD 中,已知CD =a ,∠ACD =60°,∠ADC =60°,所以AC =a .∵∠BCD =30°,∠BDC =105°∴∠CBD =45°在△BCD 中,由正弦定理可得BC =a sin 105°sin 45°=3+12a .在△ABC 中,已经求得AC 和BC ,又因为∠ACB =30°,所以利用余弦定理可以求得A ,B 两点之间的距离为AB =AC 2+BC 2-2AC ·BC ·cos 30°=22a . (1)利用示意图把已知量和待求量尽量集中在有关的三角形中,建立一个解三角形的模型.(2)利用正、余弦定理解出所需要的边和角,求得该数学模型的解.【训练1】 如图,A ,B ,C ,D 都在同一个与水平面垂直的平面内,B 、D 为两岛上的两座灯塔的塔顶,测量船于水面A 处测得B 点和D 点的仰角分别为75°,30°,于水面C 处测得B 点和D 点的仰角均为60°,AC =0.1 km.试探究图中B 、D 间距离与另外哪两点间距离相等,然后求B ,D 的距离.解 在△ACD 中,∠DAC =30°,∠ADC =60°-∠DAC =30°,所以CD =AC =0.1 km.又∠BCD =180°-60°-60°=60°,故CB 是△CAD 底边AD 的中垂线,所以BD =BA . 又∵∠ABC =15°在△ABC 中,AB sin ∠BCA =AC sin ∠ABC , 所以AB =AC sin 60°sin 15°=32+620(km), 同理,BD =32+620(km). 故B 、D 的距离为32+620km. 考向二 测量高度问题【例2】►如图,山脚下有一小塔AB ,在塔底B 测得山顶C 的仰角为60°,在山顶C 测得塔顶A 的俯角为45°,已知塔高AB =20 m ,求山高CD .[审题视点] 过点C 作CE ∥DB ,延长BA 交CE 于点E ,在△AEC 中建立关系.解如图,设CD =x m ,则AE =x -20 m ,tan 60°=CD BD , ∴BD =CD tan 60°=x 3=33x (m). 在△AEC 中,x -20=33x , 解得x =10(3+3) m .故山高CD 为10(3+3) m.(1)测量高度时,要准确理解仰、俯角的概念;(2)分清已知和待求,分析(画出)示意图,明确在哪个三角形内应用正、余弦定理.【训练2】 如图所示,测量河对岸的塔高AB 时,可以选与塔底B 在同一水平面内的两个测点C 与D ,现测得∠BCD =α,∠BDC =β,CD =s ,并在点C 测得塔顶A 的仰角为θ,求塔高AB .解 在△BCD 中,∠CBD =π-α-β, 由正弦定理得BC sin ∠BDC =CD sin ∠CBD , 所以BC =CD sin ∠BDC sin ∠CBD =s ·sin βsin (α+β)在Rt △ABC 中,AB =BC tan ∠ACB =s tan θsin βsin (α+β). 考向三 正、余弦定理在平面几何中的综合应用【例3】►如图所示,在梯形ABCD 中,AD ∥BC ,AB =5,AC =9,∠BCA =30°,∠ADB =45°,求BD 的长.[审题视点] 由于AB =5,∠ADB =45°,因此要求BD ,可在△ABD 中,由正弦定理求解,关键是确定∠BAD 的正弦值.在△ABC 中,AB =5,AC =9,∠ACB=30°,因此可用正弦定理求出sin ∠ABC ,再依据∠ABC 与∠BAD 互补确定sin ∠BAD 即可. 解 在△ABC 中,AB =5,AC =9,∠BCA =30°.由正弦定理,得AB sin ∠ACB =AC sin ∠ABC, sin ∠ABC =AC ·sin ∠BCA AB =9sin 30°5=910. ∵AD ∥BC ,∴∠BAD =180°-∠ABC ,于是sin ∠BAD =sin ∠ABC =910. 同理,在△ABD 中,AB =5,sin ∠BAD =910, ∠ADB =45°,由正弦定理:AB sin ∠BDA =BD sin ∠BAD, 解得BD =922.故BD 的长为922. 要利用正、余弦定理解决问题,需将多边形分割成若干个三角形,在分割时,要注意有利于应用正、余弦定理.【训练3】 如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解 在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°,∴∠ADB =60°. 在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B =10sin 60°sin 45°=10×3222=5 6.。

高中数学必修五-正弦定理与余弦定理

高中数学必修五-正弦定理与余弦定理

正弦定理与余弦定理知识集结知识元正弦定理公式知识讲解1.正弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角在△ABC中,已知a,b和角A时,解的情况A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b一解两解一解一解解的个数由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.2、三角形常用面积公式1.S=a•h a(h a表示边a上的高);2.S=ab sin C=ac sin B=bc sin A.3.S=r(a+b+c)(r为内切圆半径).【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识(1)测距离问题:测量一个可到达的点到一个不可到达的点之间的距离问题,用正弦定理就可解决.解题关键在于明确:①测量从一个可到达的点到一个不可到达的点之间的距离问题,一般可转化为已知三角形两个角和一边解三角形的问题,再运用正弦定理解决;②测量两个不可到达的点之间的距离问题,首先把求不可到达的两点之间的距离转化为应用正弦定理求三角形的边长问题,然后再把未知的边长问题转化为测量可到达的一点与不可到达的一点之间的距离问题.(2)测量高度问题:解题思路:①测量底部不可到达的建筑物的高度问题,由于底部不可到达,因此不能直接用解直角三角形的方法解决,但常用正弦定理计算出建筑物顶部或底部到一个可到达的点之间的距离,然后转化为解直角三角形的问题.②对于顶部不可到达的建筑物高度的测量问题,我们可选择另一建筑物作为研究的桥梁,然后找到可测建筑物的相关长度和仰、俯角等构成三角形,在此三角形中利用正弦定理或余弦定理求解即可.点拨:在测量高度时,要理解仰角、俯角的概念.仰角和俯角都是在同一铅锤面内,视线与水平线的夹角.当视线在水平线之上时,成为仰角;当视线在水平线之下时,称为俯角.例题精讲正弦定理公式例1.已知△ABC中,角A,B,C所对的边分别是a,b,c.若A=45°,B=30°,a=,则b=()A.B.1 C.2 D.例2.在△ABC中,角A,B,C的对边分别为a,b,c,若,则B=()A.B.C.D.或例3.在△ABC中,已知三个内角为A,B,C满足sin A:sin B:sin C=3:5:7,则C=()A.90°B.120°C.135°D.150°利用正弦定理解三角形知识讲解【正余弦定理的应用】1、解直角三角形的基本元素.2、判断三角形的形状.3、解决与面积有关的问题.4、利用正余弦定理解斜三角形,在实际应用中有着广泛的应用,如测量、航海、几何等方面都要用到解三角形的知识例题精讲利用正弦定理解三角形例1.在△ABC中,a,b,c是内角A,B,C所对的边.若a>b,则下列结论不一定成立的()A.A>B B.sin A>sin BC.cos A<cos B D.sin2A>sin2B例2.在△ABC中,角A,B,C的对边分别是a,b,c,且,则角A的大小为()A.B.C.D.例3.在△ABC中,三内角A,B,C的对边分别为a,b,c,若sin B =b sin A,则a=()A .B .C.1 D.三角形面积公式的简单应用知识讲解1.余弦定理【知识点的知识】1.正弦定理和余弦定理定理正弦定理余弦定理内容=2R(R是△ABC外接圆半径)a2=b2+c2﹣2bc cos A,b2=a2+c2﹣2ac cos B,c2=a2+b2﹣2ab cos C变形形式①a=2R sin A,b=2R sin B,c=2R sin C;②sin A=,sin B=,sin C=;③a:b:c=sin A:sin B:sin C;④a sin B=b sin A,b sin C=c sin B,a sin C=c sin A cos A=,cos B=,cos C=解决三角形的问题①已知两角和任一边,求另一角和其他两条边;②已知两边和其中一边的对角,求另一边和其他两角①已知三边,求各角;②已知两边和它们的夹角,求第三边和其他两角A为锐角A为钝角或直角图形关系式a=b sin A b sin A<a<b a≥b a>b 解的个数一解两解一解一解由上表可知,当A为锐角时,a<b sin A,无解.当A为钝角或直角时,a≤b,无解.例题精讲三角形面积公式的简单应用例1.已知△ABC的内角A,B,C的对边分别为a,b,c,且(a+b)2=c2+ab,B=30°,a=4,则△ABC的面积为()A.4 B.3C.4D.6例2.设△ABC的三个内角A,B,C成等差数列,其外接圆半径为2,且有,则三角形的面积为()A.B.C.或D.或例3.在△ABC中角ABC的对边分别为a、b、c,cos C=,且a cos B+b cos A=2,则△ABC面积的最大值为()A.B.C.D.利用余弦定理解三角形当堂练习填空题练习1.如图,O在△ABC的内部,且++3=,则△ABC的面积与△AOC的面积的比值为_____.练习2.锐角△ABC的内角A,B,C的对边分别为a,b,c,已知c2-8=(a-b)2,a=2c sin A,则△ABC的面积为____.练习3.在△ABC中,内角A,B,C的对边分别为a,b,c,已知,则的最大值是____.解答题练习1.'在△ABC中,角A,B,C所对的边分别为a,b,c,且满足.(1)求角B的大小;(2)若D为AC的中点,且BD=1,求S△ABC的最大值.'练习2.'在△ABC中,角A、B、C的对边分别是a、b、c,若(a+c)sin B-b sin C=b cos A.(1)求角A;(2)若△ABC的面积为4,a=6,求△ABC的周长.'练习3.'△ABC内角A,B,C所对的边分别为a,b,c.若。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

分别为a,b,c,若bc o s C+cc o s B=as n i A,则△ABC的形状为 ( ) A . 锐角三角形 C . 钝角三角形 B . 直角三角形 D . 不确定
第三章 第7讲
第26页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
2 2 2
第三章 第7讲
第24页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
2 5 2 () 由c o s B= ,得s n i B= ,进而得c o s 2 3 3 1 9, s n i2 B=2 s n i 4 5 Bc o s B= 9 . π B-3)=s n i2 π Bc o s 3-c o s 2 π Bs n i 3
第三章 第7讲
第13页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
1 [填 一 填 ] 1 () 在△ABC中,a=3 2 ,b=2 3,cosC= ,则 3 4 3 △ABC的面积为 . (2)在△ABC中,AB= 3 ,AC=1,B=30° ,则△ABC的面 3 3 积等于 4 或 2 .
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
1条必知规律——三角形中的边角关系 在三角形中,大角对大边,大边对大角;大角的正弦值也较 大,正弦值较大的角也较大,即在△ABC中,A>B⇔a>b⇔ sinA>sinB.
第三章 第7讲
第 4页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
第三章 第7讲
第14页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
02突破3个热点考向
第三章 第7讲
第15页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
B=2 c o s
2
B-1=-
所以s n i2 (
4 5+ 3 = 18 .
第三章 第7讲
第25页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
考向二 利用正、余弦定理判断三角形形状 例2 1 () [ 2 0 1 3 · 陕西高考]设△ABC的内角A,B,C所对的边
第三章 第7讲
第 5页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
3种必会方法——解三角形的三种方法 (1)已知两角和一边(如A、B、c),由A+B+C=π求C,由正弦定 理求a、b. (2)已知两边和夹角(如a、b、C),应用余弦定理求c边;再应用 正弦定理先求较短边所对的角,然后利用A+B+C=π,求另一 角.
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
[解析]
1 () 由2as n i B= 3 b得2 s n i
As n i B= 3 s n i B,故s n i A=
3 π 2π π ,故A= 或 .又△ABC为锐角三角形,故A= . 2 3 3 3 2 () ①由余弦定理b2=a2+c2-2acc o s B, 得b2=(a+c)2-2ac(1+c o s B), 7 又b=2,a+c=6,c o s B=9, 所以ac=9,解得a=3,c=3.
[想 一 想 ]
在 三 角 形 中 ,
“a2+b2<c2”是“△ABC为钝角三
角形”的什么条件?“a2+b2>c2”是“△ABC为锐角的三角 形”的什么条件? 提示:“a2+b2<c2”是“△ABC为钝角三角形”的充分不 必要条件,“a2+b2>c2”是“△ABC为锐角三角形”的必要不 充分条件.
第三章 第7讲
第三章 第7讲
第20页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
[学以致用] 1. [ 2 0 1 2 · 天津高考]在△ABC中,内角A,B,C所对的边分别 )
是a,b,c.已知8b=5c,C=2B,则c o s C =( 7 A . 25 7 C ± . 25 7 B . - 25 24 D . 25
2 () [ 2 0 1 4 ·
温州模拟]在△ABC中,角A、B、C所对的边分别
为a、b、c,若∠B=60° ,2b=a+c,判断△ABC的形状.
第三章 第7讲
第27页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
2 () [ 2 0 1 3 ·
山东高考]设△ABC的内角A,B,C所对的边分别
7 为a,b,c,且a+c=6,b=2,c o s B=9. ①求a,c的值; ②求s n i( A-B)的值.
第三章 第7讲
第17页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
第 7讲
正弦定理和余弦定理
第三章 第7讲
第 2页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问 题.
第三章 第7讲
第 3页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
考点1 正弦定理和余弦定理
第三章 第7讲
第 9页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
第三章 第7讲
第10页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
第三章 第7讲
第 6页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
3 () 已知两边和其中一边的对角(如a、b、A),应用正弦定理求 B,由A+B+C=π求C,再由正弦定理或余弦定理求c边,要注 意解可能有多种情况.
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
第三章 三角函数、解三角形
第三章 第7讲
第 1页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
答案:A
B=2 c o s
2
7 B-1= . 25
第三章 第7讲
第22页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
2. [ 2 0 1 3 ·
天津高考]在△ABC中,内角A,B,C所对的边分别
2 是a,b,c.已知bs n i A=3cs n i B,a=3,c o s B=3. 1 () 求b的值; 2 () 求s n i2 ( π B- )的值. 3
第三章 第7讲
第23页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
解:1 () 在△ABC中,由
= ,可得bs n i A=as n i B, s n i A s n i B
a
b
又由bs n i A=3cs n i B,可得a=3c,又a=3,故c=1. 2 故b =a +c -2acc o s B,c o s B=3,可得b= 6.
考向一 利用正、余弦定理解三角形 例1 1 () [ 2 0 1 3 · 湖南高考]在锐角△ABC中,角A,B所对的边 )
长分别为a,b.若2as n i B= 3b,则角A等于( π A . 12 π C . 4 π B . 6 π D . 3
第三章 第7讲
第16页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
[答案]
2
1 A= . 3
10 2 A-B)=s n i Ac o s B-c o s As n i B= 27 .
(1)D (2)见解析
第三章 第7讲
第19页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
第三章 第7讲
第 7页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
01抓住2个必备考点
第三章 第7讲
第 8页
金版教程 · 高三一轮总复习 · 新课标 ·数学(文)
抓住2个必备考点 突破3个热点考向 破译5类高考密码 迎战2年高考模拟 限时规范特训
相关文档
最新文档