正弦定理余弦定理

合集下载

第三章 第七节 正弦定理和余弦定理

第三章  第七节  正弦定理和余弦定理

首先利用正弦定理把边转化为角,求角 , 首先利用正弦定理把边转化为角,求角C,再利 用面积公式可求得ab,结合余弦定理得出结论 用面积公式可求得 ,结合余弦定理得出结论.
【解】 (1)由 由
及正弦定理得, 及正弦定理得,
3 Q sin A ≠ 0,∴ sin C = . 2
∵△ABC是锐角三角形, 是锐角三角形, 是锐角三角形 (2)法一:∵ 法一: 法一
内角A, , 对边的边长分别是 对边的边长分别是a, , , 解:设△ABC内角 ,B,C对边的边长分别是 ,b,c, 内角 (1)证明∵m=(sinA,cosC),n=(cosB,sinA), 证明∵ = 证明 , , = , , mn=sinB+sinC, = + , ∴sinAcosB+sinAcosC=sinB+sinC. + = + 由正弦定理得acosB+acosC=b+c. + 由正弦定理得 = + 由余弦定理得 整理得(b+ 整理得 +c)(a2-b2-c2)=0. = 为直角三角形. ∵b+c>0,∴a2=b2+c2,故△ABC为直角三角形 + , 为直角三角形
1 ab sin 2
由面积公式得 即ab=6. = ①
由余弦定理得
a + b 2ab cos
2 2
π
3
= 7, 即a 2 + b 2 ab = 7.
由②变形得(a+b)2=3ab+7. 变形得 + + 将①代入③得(a+b)2=25, 代入③ + , 故a+b=5. + =

法二:前同法一,联立①、②得 法二:前同法一,联立①
2.利用正、余弦定理把已知条件转化为内角的三角函数 利用正、 利用正 间的关系,通过三角函数恒等变形,得出内角的关系, 间的关系,通过三角函数恒等变形,得出内角的关系, 从而判断出三角形的形状,此时要注意应用 + + = 从而判断出三角形的形状,此时要注意应用A+B+C= π这个结论 这个结论. 这个结论 【注意】 在上述两种方法的等式变形中,一般两边不要 注意】 在上述两种方法的等式变形中, 约去公因式,应移项提取公因式,以免漏解 约去公因式,应移项提取公因式,以免漏解.

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理正弦定理是什么正弦定理是三角学中的一个基本定理,它定义了在任意三角形中,角A、B、C所对的边长a、b、c与它们的正弦值之比相等,都等于外接圆的直径,即a/sinA = b/sinB = c/sinC = 2r=D(r为外接圆半径,D为直径)。

这个定理也可以表达为在任意一个平面三角形中,各边和它所对角的正弦值的比相等且等于外接圆的直径。

正弦定理的应用非常广泛,在解决三角形问题时非常有用。

例如,可以用正弦定理来求解三角形的边长或角的大小,或者判断一个三角形是否可能存在等。

余弦定理是什么余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广。

余弦定理中角条件是唯一的,所以角的对边在等式左边,两邻边及角的余弦在等式右边。

等式右边除夹角余弦值外的部分,可以看作是差的完全平方公式,可以辅助我们记忆。

正弦定理的证明方法方法1、直接过三角形一顶点如C作对边AB的垂线(设垂线长为h),则sinA=h/b,sinB=h/a,所以,sinA/a=sinB/b,同理可得sinC/c=sinB/b,因此a/sinA=b/sinB=c/sinC。

方法2、利用三角形面积公式:S=1/2absinC=1/2bcsinA=1/2casinB,整理即得:a/sinA=b/sinB=c/sinC。

方法3:作三角形的外接圆,过B作边BC的垂线交圆于D,连接CD,因圆周角为直角,则CD长为直径(不妨直径长度设为d)。

因圆周角相等,即角D=角A,所以sinA=sinD=BC/CD=a/d,同理可证sinB=b/d,sinC=c/d.所以,a/sinA=b/sinB=c/sinC。

方法4.还有一种向量的方法,在旧版课本上。

正弦定理证明具体步骤步骤1.在锐角△ABC中,设BC=a,AC=b,AB=c。

作CH⊥AB垂足为点HCH=a·sinBCH=b·sinA∴a·sinB=b·sinA得到 a/sinA=b/sinB同理,在△ABC中, b/sinB=c/sinC步骤2.证明a/sinA=b/sinB=c/sinC=2R:如图,任意三角形ABC,作ABC的外接圆O.作直径BD交⊙O于D.连接DA.因为直径所对的圆周角是直角,所以∠DAB=90度因为同弧所对的圆周角相等,所以∠D等于∠C.所以c/sinC=c/sinD=BD=2R 类似可证其余两个等式。

正弦定理和余弦定理公式

正弦定理和余弦定理公式

正弦定理和余弦定理公式正弦定理是指在一个三角形ABC中,三角形的任意一个角a、b、c的正弦与相对应的边的比例相等,即:sin(a)/a = sin(b)/b = sin(c)/c其中a、b、c分别表示三角形的三个边长,A、B、C分别表示对应的角度。

根据正弦定理公式,我们可以推导出以下两个关系式:a/sin(A) = b/sin(B) = c/sin(C)A = arcsin(a/b*sin(B)) = arcsin(a/c*sin(C))B = arcsin(b/a*sin(A)) = arcsin(b/c*sin(C))C = arcsin(c/a*sin(A)) = arcsin(c/b*sin(B))这些关系式可以帮助我们在已知三角形的两个角度和一个边长的情况下,求解出其他未知的边长和角度。

正弦定理的应用:-在解决三角形边长和角度的问题时,特别是当已知一个角度和两个边长时,可以利用正弦定理来求解其他未知量。

-在几何学中,可以利用正弦定理来计算两个不相邻边的夹角。

余弦定理是用来计算一个三角形的任意一个角的余弦值的平方与其余两边长度的关系。

在一个三角形ABC中,余弦定理可以表达如下:c^2 = a^2 + b^2 - 2ab*cos(C)b^2 = a^2 + c^2 - 2ac*cos(B)a^2 = b^2 + c^2 - 2bc*cos(A)其中a、b、c分别表示三角形的三个边长,A、B、C分别表示对应的角度。

根据余弦定理公式,我们可以推导出以下两个关系式:cos(A) = (b^2 + c^2 - a^2) / 2bccos(B) = (a^2 + c^2 - b^2) / 2accos(C) = (a^2 + b^2 - c^2) / 2ab这些关系式可以帮助我们在已知三角形的三个边长的情况下,求解出三个角度的余弦值。

余弦定理的应用:-在解决三角形边长和角度的问题时,特别是当已知三个边长时,可以利用余弦定理来求解其他未知量。

15正弦定理与余弦定理

15正弦定理与余弦定理

正弦定理与余弦定理【技巧要点】角与边的关系灵活转换【基础知识】1.正弦定理:a sin A =b sin B =c sin C =2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =sin A ∶sin B ∶sin C ;(2)a =2R sin_A ,b =2R sin_B ,c =2R sin_C ;(3)sin A =a 2R ,sin B =b 2R ,sin C =c 2R 等形式,以解决不同的三角形问题.2.余弦定理:a 2=b 2+c 2-2bc cos A ,b 2=a 2+c 2-2ac cos B ,c 2=a 2+b 2-2ab cos C . 余弦定理可以变形为:cos A =b 2+c 2-a 22bc ,cos B =a 2+c 2-b 22ac,cos C =a 2+b 2-c 22ab . 3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )(R 是三角形外接圆半径,r 是三角形内切圆的半径),并可由此计算R ,r .*在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即在△ABC 中,A >B ⇔a >b ⇔sin A >sin B .【典例分析】1. 已知函数1()sin cos (0,0)2f x x x λωωλω=>>的部分图象如图所示,其中点为最高点,点为图象与轴的交点,在ABC ∆中,角,,A B C 对边为,,a b c ,b c =,且满足(2)cos cos 0c B A =.(Ⅰ)求ABC ∆的面积;(Ⅱ)求函数()f x 的单调递增区间.2. 设a R ∈,函数2()cos (sin cos )cos ()2f x x a x x x π=-+-满足()(0)3f f π-=. (Ⅰ)求()f x 的单调递减区间;(Ⅱ)设锐角△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c ,且2222222a c b c a c a b c+-=-+-, 求()f A 的取值范围.3.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,a=btanA .(Ⅰ)证明:sinB=cosA ;(Ⅱ)若sinC ﹣sinAcosB=,且B 为钝角,求A ,B ,C .【基础训练】 222( ) ] ,] 2.(2015•广东)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a=2,c=2,cosA=.且 .3.(2015•黑龙江模拟)钝角三角形ABC 的面积是,AB=1,BC=,则AC=( ) . 4.(2015•沈阳模拟)若△ABC 的角A ,B ,C 对边分别为a 、b 、c ,且a=1,∠B=45°,S △ABC =2,. D .5.(2015•山东一模)在△ABC 中,若b=2,A=120°,三角形的面积S=,则三角形外接. B 26.(2015•河南二模)在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若,a=2,,则b 的值为( ).B..D.7.(2015•南关区校级三模)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,【提高训练】8.(2015•山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin(A+B)=,ac=2,求sinA和c的值.9.(2015•湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA.(Ⅰ)证明:sinB=cosA;(Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C.10.(2015•静安区一模)在锐角△ABC中,a、b、c分别为内角A、B、C所对的边长,且满足.(1)求∠B的大小;(2)若b=,△ABC的面积S△ABC=,求a+c的值.11.(2015•乌鲁木齐模拟)在△ABC中,角A,B,C的对边分别是a,b,c,且acosB﹣bcosA=c.(Ⅰ)求证tanA=3tanB;(Ⅱ)若B=45°,b=,求△ABC的面积.补充-三角形解的个数。

三角形中的正弦定理与余弦定理

三角形中的正弦定理与余弦定理

三角形中的正弦定理与余弦定理正文:三角形中的正弦定理与余弦定理三角形是几何学中最基本的图形之一,它包含了很多重要的定理和公式。

在三角形的研究中,正弦定理和余弦定理是两个非常重要且常用的公式。

它们可以帮助我们计算三角形的各种属性,如边长、角度等。

本文将详细介绍这两个定理的含义、推导过程,并给出实际应用的一些例子。

一、正弦定理正弦定理是指在一个三角形中,三条边与三个对应的正弦值之间存在一定的关系。

设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB、sinC分别为三个角的正弦值。

这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的比例关系。

如果我们已知了三角形的一个角度和两个对应的边长,就可以利用正弦定理来计算第三个边的长度。

例如,已知三角形ABC中,角A的度数为30°,边AB的长度为3,边AC的长度为4,我们可以利用正弦定理求解边BC的长度。

根据正弦定理,我们有:BC/sinA = AC/sinC代入已知条件,得到:BC/sin30° = 4/sinC进一步计算可得:BC = 4*sin30°/sinC ≈ 4*0.5/sinC = 2/sinC通过这个简单的计算过程,我们可以求解出BC的长度。

正弦定理在实际应用中非常有用,可以帮助我们解决各种与三角形边长相关的问题。

二、余弦定理余弦定理是指在一个三角形中,三条边与一个对应的角度之间存在一定的关系。

设三角形的三条边分别为a、b、c,对应的角度为A、B、C,则余弦定理可以表示为:c^2 = a^2 + b^2 - 2ab*cosC这个定理实际上是在说明了三角形的三个边的长度与对应的角度之间存在一定的关系。

利用余弦定理,我们可以计算三角形的一个边长,当已知该边的两个对应角度和另一边的长度时。

例如,已知三角形ABC中,边AB的长度为3,边AC的长度为4,角C的度数为60°,我们可以利用余弦定理来计算边BC的长度。

三角函数的正弦定理与余弦定理

三角函数的正弦定理与余弦定理

三角函数的正弦定理与余弦定理三角函数是数学中一门重要的分支,在几何学、物理学等领域有广泛的应用。

其中,正弦定理与余弦定理是三角函数的重要定理之一,可以用于求解各种三角形的边长和角度。

本文将分别介绍正弦定理与余弦定理的概念与应用。

一、正弦定理正弦定理是用来求解三角形的边长与角度之间的关系的定理。

对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。

正弦定理可以表示为:a/sinA = b/sinB = c/sinC = 2R其中,R为该三角形外接圆的半径。

利用正弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。

这在实际问题求解中非常有用。

例如,已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用正弦定理来求解第三条边的长度。

根据正弦定理可知:a/sinA = b/sinB = c/sinC那么代入已知条件,我们可以得到:3/sin60° = c/sinC进而可以得到:c = (3 * sinC) / sin60°通过计算,我们可以求得c的值。

二、余弦定理余弦定理是用来求解三角形的边长和角度之间的关系的定理。

对于任意三角形ABC,其三条边分别为a、b、c,对应的角度为A、B、C。

余弦定理可以表示为:c^2 = a^2 + b^2 - 2abcosC利用余弦定理,我们可以在已知两边和一个夹角的情况下,求解出第三条边的长度,或者在已知三边长度的情况下,求解出三个角度的大小。

例如,我们已知一个三角形的两条边分别为3和4,夹角为60°,我们可以利用余弦定理来求解第三条边的长度。

根据余弦定理可知:c^2 = a^2 + b^2 - 2abcosC代入已知条件,我们可以得到:c^2 = 3^2 + 4^2 - 2 * 3 * 4 * cos60°通过计算,我们可以求得c的值。

正弦定理和余弦定理

正弦定理和余弦定理

返回
[研一题] [例 2] B、b. π 在△ABC 中,c= 6,C=3,a=2,求 A、
返回
[自主解答] π 3 ∴A=4或4π.
a c asin C 2 ∵sin A=sin C,∴sin A= c = 2 .
π 又∵c>a,∴C>A.∴A=4. 5π 6· sin 1n C = π = 3+1. sin 3
第四章
三角函数

正弦定理和余弦定理
• 1、正、余弦定理
定理 正弦定理
a b c = = sin A sin B sin C =2R
余弦定理 a2= a2+c2-2accos B b2=a2+b2-2abcosC c2 =
b2+c2-2bccos A

; ; .

定理
变 形 形 式
正弦定理 余弦定理 ①a= 2Rsin A , b= 2Rsin B , c= 2Rsin C ; b2+c2-a2 cosB= a b 2bc ②sin A=2R,sin B=2R, 2 a +c2-b2 c 2ac sin C=2R; cos B= ; 2 2 2 a + b - c (其中 R 是△ABC 外接圆半径) cos C= 2ab . ③a∶b∶c=sinA∶sin B∶sin C ④asin B=bsin A,bsin C=csin B, asin C=csin A.
(2)由正弦定理知sin A∶sin B∶sin C=a∶b∶c正确,即
(2)正确.
返回
2.在△ABC中,若A>B,是否有sin A>sin B?反之,是 否成立?
提示:∵A>B,∴a>b. a b 又∵sin A=sin B,∴sin A>sin B. 反之,若 sin A>sin B, 则 a>b,即 A>B. 故 A>B⇔sin A>sin B.

正弦定理和余弦定理

正弦定理和余弦定理

正弦定理和余弦定理1.正弦定理和余弦定理定理正弦定理余弦定理内容a sin A =b sin B =c sin C =2R (R 为△ABC 外接圆半径)a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ac cos B ; c 2=a 2+b 2-2ab cos C 常见变形a =2R sin A ,b =2R sin B ,c =2R sin C ; sin A =a 2R ,sin B =b 2R ,sin C =c2R;a ∶b ∶c =sin A ∶sin B ∶sin C ; a +b +c sin A +sin B +sin C =asin Acos A =b 2+c 2-a 22bc ;cos B =a 2+c 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形中常用的面积公式 (1)S =12ah (h 表示边a 上的高);(2)S =12bc sin A =12ac sin B =12ab sin C ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).3.三角形解的判断A 为锐角A 为钝角或直角 图形关系式 a =b sin A b sin A <a <b a ≥b a >b 解的个数 一解两解一解一解| 微 点 提 醒 |1.三角形中的三角函数关系 (1)sin(A +B )=sin C ; (2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C 2.2.三角形中的射影定理 在△ABC 中,a =b cos C +c cos B ; b =a cos C +c cos A ;c =b cos A +a cos B .3.利用正、余弦定理解三角形时,要注意三角形内角和定理对角的范围的限制.‖易错辨析‖判断下列结论是否正确(请在括号中打”√”或“×”)(1)在△ABC 中,已知a ,b 和角B ,能用正弦定理求角A ;已知a ,b 和角C ,能用余弦定理求边c .(√)(2)在三角形中,已知两角和一边或已知两边和一角都能解三角形.(√) (3)在△ABC 中,sin A >sin B 的充分不必要条件是A >B .(×)(4)在△ABC 中,“a 2+b 2<c 2”是“△ABC 为钝角三角形”的充分不必要条件.(√) (5)在△ABC 的角A ,B ,C ,边长a ,b ,c 中,已知任意三个可求其他三个.(×)‖自主测评‖1.(教材改编题)在△ABC 中,已知a =5,b =7,c =8,则A +C =( ) A .90° B .120° C .135°D .150°解析:选B cos B =a 2+c 2-b 22ac =25+64-492×5×8=12.所以B =60°,所以A +C =120°.2.(教材改编题)在非钝角△ABC 中,2b sin A =3a ,则角B 为( ) A.π6 B.π4 C.π3D.π2解析:选C 由正弦定理得b sin A =a sin B , 所以2a sin B =3a ,即sin B =32,又B 为非钝角,所以B =π3,故选C. 3.在△ABC 中,若a =18,b =24,A =45°,则此三角形( ) A .无解 B .有两解C .有一解D .解的个数不确定解析:选B 因为a sin A =b sin B,所以sin B =b a ·sin A =2418×sin45°=223.又因为a <b ,所以B 有两解.4.(教材改编题)已知△ABC 的三边之比为3∶5∶7,则最大角为( ) A.2π3 B.3π4C.5π6D.7π12解析:选A 由三边之比为a ∶b ∶c =3∶5∶7,可设a =3k ,b =5k ,c =7k (k >0),由余弦定理得cos C =a 2+b 2-c 22ab =(3k 2)+(5k )2-(7k )22×3k ×5k=-12,又0<C <π,所以C =2π3.5.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos2A =sin A ,bc =2,则△ABC 的面积为________.解析:由cos2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC的面积S =12bc sin A =12×2×12=12.答案:12………………考点一 利用正、余弦定理解三角形……|多维探究型|……………|多角探明|角度一 求三角形的边长【例1】 (2018届贵阳模拟)在△ABC 中,内角A ,B ,C 的对边a ,b ,c 成公差为2的等差数列,C =120°. (1)求边长a ;(2)(一题多解)求AB 边上的高CD 的长. [解] (1)由题意得b =a +2,c =a +4,由余弦定理cos C =a 2+b 2-c 22ab 得cos120°=a 2+(a +2)2-(a +4)22a (a +2),即a 2-a -6=0,∴a =3或a =-2(舍去),∴a =3.(2)解法一:由(1)知a =3,b =5,c =7,由三角形的面积公式得12ab sin ∠ACB =12c ×CD ,∴CD =ab sin ∠ACBc=3×5×327=15314,即AB 边上的高CD =15314. 解法二:由(1)知a =3,b =5,c =7,由正弦定理得3sin A =7sin ∠ACB =7sin120°,即sin A =3314,在Rt △ACD 中,CD =AC sin A =5×3314=15314,即AB 边上的高CD =15314.角度二 求三角形的角或角的三角函数值【例2】 (1)在△ABC 中,B =π4,BC 边上的高等于13BC ,则cos A =( )A.31010B.1010C .-1010D .-31010(2)(2018届河北“五个一名校联盟”模拟)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 所对的边,且c =2,C =π3,若sin C +sin(B -A )=2sin2A ,则A =________.[解析] (1)设△ABC 中角A ,B ,C 的对边分别是a ,b ,c ,由题意可得13a =c sin π4=22c ,则a =322c .在△ABC 中,由余弦定理可得b 2=a 2+c 2-2ac =92c 2+c 2-3c 2=52c 2,则b =102c .由余弦定理,可得cos A =b 2+c 2-a 22bc=52c 2+c 2-92c 22×102c ×c=-1010,故选C.(2)在△ABC 中,由sin C +sin(B -A )=2sin2A 可得sin(A +B )+sin(B -A )=2sin2A ,即sin A cos B +cos A sin B +cos A sin B -sin A cos B =4sin A cos A ,∴cos A sin B =2sin A cos A ,即cos A (sin B -2sin A )=0,即cos A =0或sin B =2sin A , ①当cos A =0时,A =π2;②当sin B =2sin A 时,根据正弦定理得b =2a ,由余弦定理c 2=b 2+a 2-2ab cos C ,结合c =2,C =π3,得a 2+b 2-ab =4,∴a =233,b =433,∴b 2=a 2+c 2,∴B =π2,∴A =π6.综上可得,A =π2或π6.[答案] (1)C (2)π2或π6『名师点津』………………………………………………|品名师指点迷津|应用正弦、余弦定理的解题技巧(1)求边:利用公式a =b sin A sin B ,b =a sin B sin A ,c =a sin Csin A或其他相应变形公式求解.(2)求角:先求出正弦值,再求角,即利用公式sin A =a sin B b ,sin B =b sin A a ,sin C =c sin Aa 或其他相应变形公式求解.(3)已知两边和夹角或已知三边可利用余弦定理求解.(4)灵活利用式子的特点转化;如出现a 2+b 2-c 2=λab 形式用余弦定理,等式两边是关于边或角的正弦的齐次式用正弦定理.|变式训练|1.(2018届福建莆田联考)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C +c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A=12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6,故选A.2.(2019届黄冈模拟)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c . (1)若23cos 2A +cos2A =0,且△ABC 为锐角三角形,a =7,c =6,求b 的值; (2)若a =3,A =π3,求b +c 的取值范围.解:(1)∵23cos 2A +cos2A =23cos 2A +2cos 2A -1=0, ∴cos 2A =125,又A 为锐角,∴cos A =15,a 2=b 2+c 2-2bc cos A ,即b 2-125b -13=0, 得b =5(负值舍去),∴b =5.(2)解法一:由正弦定理可得b +c =2(sin B +sin C )=2⎣⎡⎦⎤sin B +sin ⎝⎛⎭⎫2π3-B =23sin ⎝⎛⎭⎫B +π6, 又0<B <2π3,∴π6<B +π6<5π6,∴12<sin ⎝⎛⎭⎫B +π6≤1,∴b +c ∈(3,23]. 解法二:由余弦定理a 2=b 2+c 2-2bc cos A 可得b 2+c 2-3=bc , ∴(b +c )2-3=3bc ≤34(b +c )2,当且仅当b =c 时取等号,∴b +c ≤23,又由两边之和大于第三边可得b +c >3, ∴b +c ∈ (3,23].………………考点二 判断三角形的形状…………|重点保分型|……………|研透典例|【典例】 (一题多解)在△ABC 中,若a 2+b 2-c 2=ab ,且2cos A sin B =sin C ,试判断△ABC 的形状.[解] 解法一:利用边的关系来判断 由正弦定理得sin C sin B =cb,由2cos A sin B =sin C ,有cos A =sin C 2sin B =c2b .又由余弦定理得cos A =b 2+c 2-a 22bc ,所以c 2b =b 2+c 2-a 22bc,即c 2=b 2+c 2-a 2,所以a 2=b 2,所以a =b . 又因为a 2+b 2-c 2=ab .所以2b 2-c 2=b 2,所以b 2=c 2, 所以b =c ,所以a =b =c . 所以△ABC 为等边三角形. 解法二:利用角的关系来判断 因为A +B +C =180°, 所以sin C =sin(A +B ), 又因为2cos A sin B =sin C ,所以2cos A sin B =sin A cos B +cos A sin B , 所以sin(A -B )=0.又因为A 与B 均为△ABC 的内角,所以A =B , 又由a 2+b 2-c 2=ab ,由余弦定理,得cos C =a 2+b 2-c 22ab =ab 2ab =12,又0°<C <180°, 所以C =60°,所以△ABC 为等边三角形.『名师点津』………………………………………………|品名师指点迷津|判定三角形形状的两种常用途径[提醒]“角化边”后要注意用因式分解、配方等方法得出边的相应关系;“边化角”后要注意用三角恒等变换公式、三角形内角和定理及诱导公式推出角的关系.|变式训练|在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),则△ABC 的形状是( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 解析:选D 因为(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),所以b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )], 所以2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .解法一:由正弦定理知a =2R sin A ,b =2R sin B , 所以sin 2A cos A sin B =sin 2B sin A cos B , 又sin A ·sin B ≠0,所以sin A cos A =sin B cos B ,所以sin2A =sin2B . 在△ABC 中,0<2A <2π,0<2B <2π,所以2A =2B 或2A =π-2B .所以A =B 或A +B =π2.所以△ABC 为等腰三角形或直角三角形,故选D. 解法二:由正弦定理、余弦定理得: a 2bb 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac, 所以a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2),所以(a 2-b 2)(a 2+b 2-c 2)=0, 所以a 2-b 2=0或a 2+b 2-c 2=0, 即a =b 或a 2+b 2=c 2.所以△ABC 为等腰三角形或直角三角形.故选D.………………考点三 三角形面积的计算………………|多维探究型|……………|多角探明|角度一 求三角形的面积【例1】 (2018届武汉调研)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,且2b cos C =2a +c . (1)求B ;(2)若b =2,a +c =5,求△ABC 的面积. [解] (1)由正弦定理,知2sin B cos C =2sin A +sin C , 由A +B +C =π,得2sin B cos C =2sin(B +C )+sin C , 化简,得2sin B cos C =2(sin B cos C +cos B sin C )+sin C , 即2cos B sin C +sin C =0. 因为sin C ≠0,所以cos B =-12.因为0<B <π,所以B =2π3.(2)由余弦正理b 2=a 2+c 2-2ac cos B ,可知b 2=(a +c )2-2ac -2ac cos B , 因为b =2,a +c =5,所以22=(5)2-2ac -2ac cos 2π3,得ac =1.所以S △ABC =12ac sin B =12×1×32=34.角度二 已知三角形的面积解三角形【例2】 (2018届沈阳教学质量监测(一))在△ABC 中,已知内角A ,B ,C 的对边分别是a ,b ,c ,且2c cos B =2a +b . (1)求C ;(2)若a +b =6,△ABC 的面积为23,求c . [解] (1)由正弦定理得2sin C cos B =2sin A +sin B , 又sin A =sin(B +C ),∴2sin C cos B =2sin(B +C )+sin B ,∴2sin C cos B =2sin B cos C +2cos B sin C +sin B , ∴2sin B cos C +sin B =0, ∵sin B ≠0,∴cos C =-12.又C ∈(0,π),∴C =2π3.(2)∵S △ABC =12ab sin C =23,∴ab =8,由余弦定理,得c 2=a 2+b 2-2ab cos C =a 2+ab +b 2=(a +b )2-ab =28, ∴c =27.角度三 求有关三角形面积或周长的最值(范围)问题【例3】 (2018届沈阳市教学质量检测(一)) 已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c ,面积为S ,且满足4S =a 2-(b -c )2,b +c =8,则S 的最大值为________. [解析] 由题意得:4×12bc sin A =a 2-b 2-c 2+2bc ,又a 2=b 2+c 2-2bc cos A ,代入上式得:2bc sin A =-2bc cos A +2bc ,即sin A +cos A =1,2sin ⎝⎛⎭⎫A +π4=1,又0<A <π,所以π4<A +π4<5π4,所以A +π4=3π4,所以A =π2,S =12bc sin A =12bc ,又b +c =8≥2bc ,当且仅当b =c 时取“=”,所以bc ≤16,所以S 的最大值为8. [答案] 8『名师点津』………………………………………………|品名师指点迷津|与三角形面积有关问题的解题策略(1)求三角形的面积.对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用含哪个角的公式.(2)已知三角形的面积解三角形.与面积有关的问题,一般要利用正弦定理或余弦定理进行边和角的互化.(3)求有关三角形面积或周长的最值(范围)问题.一般转化为一个角的一个三角函数,利用三角函数的有界性求解,或利用余弦定理转化为边的关系,再应用基本不等式求解.|变式训练|1.(2018年全国卷Ⅲ)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若△ABC 的面积为a 2+b 2-c 24,则C =( )A.π2B.π3C.π4D.π6解析:选C 根据题意及三角形的面积公式知12ab sin C =a 2+b 2-c 24,所以sin C =a 2+b 2-c 22ab =cos C ,所以在△ABC 中,C =π4.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知△ABC 的面积为a 23sin A .(1)求sin B sin C ;(2)若6cos B cos C =1,a =3,求△ABC 的周长. 解:(1)由题设得12ac sin B =a 23sin A ,即12c sin B =a3sin A .由正弦定理得12sin C sin B =sin A3sin A .故sin B sin C =23.(2)由题设及(1)得cos B cos C -sin B sin C =-12,即cos(B +C )=-12.所以B +C =2π3,故A =π3.由题设得12bc sin A =a 23sin A,即bc =8.由余弦定理得b 2+c 2-bc =9,即(b +c )2-3bc =9,得b +c =33. 故△ABC 的周长为3+33.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七节 正弦定理、余弦定理应用举例时间:45分钟 分值:75分一、选择题(本大题共6小题,每小题5分,共30分)1.如图所示,已知两座灯塔A 和B 与海洋观察站C 的距离都等于a km ,灯塔A 在观察站C 的北偏东20°,灯塔B 在观察站C 的南偏东40°,则灯塔A 与灯塔B 的距离为( ) A .a km B.3a km C.2a kmD .2a km解析 利用余弦定理解△ABC .易知∠ACB =120°,在△ACB 中,由余弦定理得AB 2=AC 2+BC 2-2AC ·BC cos120°=2a 2-2a 2×⎝⎛⎭⎪⎫-12=3a 2,∴AB =3a . 答案B2.张晓华同学骑电动自行车以24 km/h 的速度沿着正北方向的公路行驶,在点A 处望见电视塔S 在电动车的北偏东30°方向上,15 min 后到点B 处望见电视塔在电动车的北偏东75°方向上,则电动车在点B 时与电视塔S 的距离是( ) A .2 2 kmB .3 2 kmC .3 3 kmD .2 3 km解析 如图,由条件知AB =24×1560=6,在△ABS 中,∠BAS =30°,AB =6,∠ABS =180°-75°=105°,所以∠ASB =45°.由正弦定理知BS sin30°=AB sin45°,所以BS =ABsin45°sin30°=3 2. 答案B3.轮船A 和轮船B 在中午12时离开海港C ,两艘轮船航行方向的夹角为120°,轮船A 的航行速度是25海里/小时,轮船B 的航行速度是15海里/小时,下午2时两船之间的距离是( ) A .35海里 B .352海里 C .353海里D .70海里解析 设轮船A 、B 航行到下午2时时所在的位置分别是E ,F ,则依题意有CE =25×2=50,CF =15×2=30,且∠ECF =120°, EF =CE 2+CF 2-2CE ·CF cos120°=502+302-2×50×30cos120°=70.答案D4.(2014·济南调研)为测量某塔AB 的高度,在一幢与塔AB 相距20 m的楼的楼顶处测得塔顶A 的仰角为30°,测得塔基B 的俯角为45°,那么塔AB 的高度是( )A .20⎝⎛⎭⎪⎫1+33 mB .20⎝⎛⎭⎪⎫1+32 mC .20(1+3) mD .30 m解析 如图所示,由已知可知,四边形CBMD 为正方形,CB =20 m ,所以BM =20 m .又在Rt △AMD 中, DM =20 m ,∠ADM =30°, ∴AM =DM tan30°=2033(m). ∴AB =AM +MB =2033+20=20⎝⎛⎭⎪⎫1+33(m).答案A5.(2013·天津卷)在△ABC 中,∠ABC =π4,AB =2,BC =3,则sin ∠BAC =( ) A.1010B.105C.31010D.55解析 由余弦定理AC 2=AB 2+BC 2-2AB ·BC cos ∠ABC =(2)2+32-2×2×3×22=5,所以AC =5,再由正弦定理:sin ∠BAC =sin ∠ABC AC ·BC =3×225=31010. 答案C6.(2014·滁州调研)线段AB 外有一点C ,∠ABC =60°,AB =200 km ,汽车以80 km/h 的速度由A 向B 行驶,同时摩托车以50 km/h 的速度由B 向C 行驶,则运动开始多少h 后,两车的距离最小( ) A.6943 B .1 C.7043D .2解析 如图所示,设t h 后,汽车由A 行驶到D ,摩托车由B 行驶到E ,则AD =80t ,BE =50t .因为AB =200,所以BD =200-80t ,问题就是求DE 最小时t 的值.由余弦定理,得DE 2=BD 2+BE 2-2BD ·BE cos60°=(200-80t )2+2 500t 2-(200-80t )·50t =12 900t 2-42 000t +40 000. 当t =7043时,DE 最小. 答案 C二、填空题(本大题共3小题,每小题5分,共15分)7.已知A ,B 两地的距离为10 km ,B ,C 两地的距离为20 km ,现测得∠ABC =120°,则A 、C 两地的距离为________km.解析 如右图所示,由余弦定理可得: AC 2=100+400-2×10×20×cos120°=700, ∴AC =107(km). 答案 1078.如下图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°处,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°处,且与它相距82n mile.此船的航速是________n mile/h.解析 设航速为v n mile/h在△ABS 中,AB =12v ,BS =82,∠BSA =45°, 由正弦定理得:82sin30°=12v sin45°, ∴v =32(n mile/h). 答案 329.如图,为测得河对岸塔AB 的高,先在河岸上选一点C ,使C 在塔底B 的正东方向上,测得点A 的仰角为60°,再由点C 沿北偏东15°方向走10米到位置D ,测得∠BDC =45°,则塔AB 的高是________米.解析 在△BCD 中 ,CD =10,∠BDC =45°,∠BCD=15°+90°=105°,∠DBC =30°,BC sin45°=CDsin30°, BC =CD sin45°sin30°=102(米).在Rt △ABC 中,tan60°=ABBC ,AB =BC tan60° =106(米). 答案 10 6三、解答题(本大题共3小题,每小题10分,共30分)10.(2014·台州模拟)某校运动会开幕式上举行升旗仪式,旗杆正好处于坡度15°的看台的某一列的正前方,从这一列的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为106米(如图所示),旗杆底部与第一排在一个水平面上.若国歌长度约为50秒,升旗手应以多大的速度匀速升旗?解 在△BCD 中,∠BDC =45°,∠CBD =30°,CD =106,由正弦定理,得BC =CD sin45°sin30°=20 3.在Rt △ABC 中,AB =BC sin60°=203×32=30(米),所以升旗速度v =AB t =3050=0.6(米/秒).11.如图,A 、B 是海面上位于东西方向相距5(3+3)海里的两个观测点,现位于A 点北偏东45°,B 点北偏西60°的D 点有一艘轮船发出求救信号,位于B 点南偏西60°且与B 点相距203海里的C 点的救援船立即前往营救,其航行速度为30海里/时,该救援船到达D 点需要多长时间?解 由题意,知AB =5(3+3)海里,∠DBA =90°-60°=30°,∠DAB =90°-45°=45°,∴∠ADB =180°-(45°+30°)=105°. 在△DAB 中,由正弦定理,得 DBsin ∠DAB =ABsin ∠ADB, 于是DB =AB ·sin ∠DAB sin ∠ADB=5(3+3)·sin45°sin105° =5(3+3)·sin45°sin45°cos60°+cos45°sin60°=53(3+1)3+12=103(海里).又∠DBC =∠DBA +∠ABC =30°+(90°-60°)=60°,BC =203(海里), 在△DBC 中,由余弦定理,得 CD 2=BD 2+BC 2-2BD ·BC ·cos ∠DBC =300+1 200-2×103×203×12=900. 得CD =30(海里),故需要的时间t =3030=1(小时), 即救援船到达D 点需要1小时. 12.(2013·江苏卷)如图,游客从某旅游景区的景点A 处下山至C 处有两种路径.一种是从A 沿直线步行到C ,另一种是先从A 沿索道乘缆车到B ,然后从B 沿直线步行到C .现有甲、乙两位游客从A 处下山,甲沿AC 匀速步行,速度为50 m/min.在甲出发2 min 后,乙从A 乘缆车到B ,在B 处停留1 min 后,再从B 匀速步行到C .假设缆车匀速直线运行的速度为130 m/min ,山路AC 长为1 260 m ,经测量,cos A =1213,cos C =35.(1)求索道AB 的长;(2)问乙出发多少分钟后,乙在缆车上与甲的距离最短?(3)为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在什么范围内?解 (1)在△ABC 中,因为cos A =1213,cos C =35, 所以sin A =513,sin C =45.从而sin B =sin[π-(A +C )]=sin(A +C ) =sin A cos C +cos A sin C =513×35+1213×45=6365. 由正弦定理AB sin C =AC sin B ,得AB =ACsin B ×sin C = 1 2606365×45=1 040(m). 所以索道AB 的长为1 040 m.(2)假设乙出发t 分钟后,甲、乙两游客距离为d ,此时,甲行走了(100+50t )m ,乙距离A 处130t m ,所以由余弦定理得d 2=(100+50t )2+(130t )2-2×130t ×(100+50t )×1213=200(37t 2+70t+50),因0≤t ≤1 040130,即0≤t ≤8,故当t =3537(min)时,甲、乙两游客距离最短.11 (3)由正弦定理BC sin A =AC sin B ,得BC =AC sin B ×sin A =1 2606365×513=500(m).乙从B 出发时,甲已走了50×(2+8+1)=550(m),还需走710 m 才能到达C .设乙步行的速度为v m/min ,由题意得-3≤500v -71050≤3,解得1 25043≤v ≤62514,所以为使两位游客在C 处互相等待的时间不超过3分钟,乙步行的速度应控制在[1 25043,62514](单位:m/min)范围内.。

相关文档
最新文档