第一章《有理数》单元综合测试题(附答案)
2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷有答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.下列说法正确的是()A.自然数就是非负整数B.一个数不是正数,就是负数C.整数就是自然数D.正数和负数统称有理数2.全面贯彻落实“大气十条”,抓好大气污染防治,是今年环保工作的重中之重.其中推进燃煤电厂脱硫改造15000 000千瓦是《政府工作报告》中确定的重点任务之一.将数据15 000 000用科学记数法表示为()A.15×106B.1.5×107C.1.5×108D.0.15×108 3.在,-4,0,这四个数中,属于负整数的是()A.B.C.0 D.4.|x|=|﹣3|,则x是()A.3 B.-3 C.D.±35.下面计算正确的是()A.﹣(﹣2)2=22B.(﹣3)2×C.﹣34=(﹣3)4D.(﹣0.1)2=0.126.花店、书店、学校依次坐落在一条东西走向的大街上,花店位于书店西边100米处,学校位于书店东边50米处,小明从书店沿街向东走了20米,接着又向西走了–30米,此时小明的位置()A.在书店B.在花店C.在学校D.不在上述地方7.如果两个有理数的积是负数,和是正数,那么这两个有理数()A.同号,且都为正数B.异号,且正数的绝对值较大C.同号,且都为负数D.异号,且负数的绝对值较大8.如图,数轴上的A、B两点分别表示有理数a、b,下列式子中不正确的是()A.|b|>|a| B.a﹣b<0 C.a+b<0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.有理数3.1415精确到百分位结果是.10.两个有理数的和是5,其中一个加数是12,那么另一个加数是.11.某地一天早晨的气温是-7℃,中午气温上升了11℃半夜又下降了9℃,半夜的气温是℃.12.一个数在数轴上所对应的点向右移动4个单位后,得到它的相反数的对应点,则这个数是.13.如图是一个三阶幻方,图中每行、每列、每条对角线上的数字之和相等,则的值为.三、解答题:(本题共5题,共45分)14.计算(1)(2)15.计算:(1)(2)(3)16.已知|a|=10,|b|=4(1)当a,b同号时,求a+b的值;(2)当a,b异号时,求a-b的值。
第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
2023-2024学年七年级数学上册《第一章 有理数》单元测试卷含答案(人教版)

2023-2024学年七年级数学上册《第一章有理数》单元测试卷含答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题:(本题共8小题,每小题5分,共40分.)1.﹣2的相反数是()A.﹣2 B.0 C.2 D.42.粤海铁路是我国第一条横跨海峡的铁路通道,设计年输送货物能力为11 000 000吨,用科学记数法应记为()A.11×106吨B.1.1×107吨C.11×107吨D.1.1×108吨3.从数﹣6,1,﹣3,5,﹣2中任取三个数相乘,则其积最小的是()A.﹣60 B.﹣36C.﹣90 D.﹣304.检测4个足球质量,其中超过标准质量的克数记作正数,不足标准质量的克数记作负数,从轻重的角度看,最接近标准的是()A.+0.9 B.-3.6 C.-0.8 D.+2.55.算式的值与下列选项值相等的是()A.B.C.D.6.|a-2|+|b+1|=0,则a+b等于()A.-1 B.1 C.0 D.-27.一根1米长的绳子,第一次剪去它的三分之一,如此剪下去,第五次后剩下的绳子的长度为()A.米B.米C.米D.米8.有理数a,b在数轴上的位置如图所示,则下列各式中错误的是()A.b<a B.|b|>|a| C.a+b>0 D.ab<0二、填空题:(本题共5小题,每小题3分,共15分.)9.比较大小:.(用“>”“=”或“<”填空).10.用四舍五入法将4.036取近似数并精确到0.01,得到的值是.11.一天早晨的气温是﹣2℃,半夜又下降了1℃,则半夜的气温是℃.12.某车间生产一批圆柱形机器零件,从中抽出了6件进行检验,把标准直径的长记为0,比标准直径长的记为正数,比标准直径短的记为负数,检查记录如下:则第个零件最符合标准.13.数轴上的点A,B是互为相反数,其中A对应的点是2,C是距离点A为6的点,则点B和C所表示的数的和为.三、解答题:(本题共5题,共45分)14.计算15.计算:(1);(2) .16.计算:(1)(2)17.某仓库原有某种商品300件,现记录了8天内该种商品进出仓库的件数如下所示:(“+”表示进库,“﹣”表示出库)+30,﹣10,﹣15,+25,+17,+35,﹣20,﹣15.(1)经过8天,仓库内的该种商品是增加了还是减少了?此时仓库还有多少件商品?(2)如果该种商品每次进出仓库都需要支付人工费每件3元,请问这8天要支付多少人工费?18.“十一”黄金周期间,某市外出旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数)(1)9月30日外出旅游人数记为a,请用含字母a的代数式表示10月2日外出旅游的人数:(2)请判断八天内外出旅游人数最多的是10月日,最少是10月日. (3)如果最多一天出游人数有3万人,且平均每人消费2000元,试问该城市10月5日外出旅游消费总额为万元.参考答案:1.C 2.B 3.B 4.C 5.A 6.B 7.B 8.C 9.>10.4.0411.-312.513.-6或614.解:﹣22﹣×[4﹣(﹣3)2]÷(﹣)=﹣4﹣×(4﹣9)×(﹣)=﹣4﹣×(﹣5)×(﹣)=﹣4﹣2=﹣6.15.(1)解:原式===== ;(2)解:原式=== .16.(1)解:;(2)解:= .17.(1)解:+30+(﹣10)+(﹣15)+(+25)+(+17)+(+35)+(﹣20)+(﹣15)=47(件)300+47=347(件)答:经过8天,仓库内的该种商品是增加了47件,此时仓库还有347件商品;(2)解:|+30|+|﹣10|+|﹣15|+|+25|+|+17|+|+35|+|﹣20|+|﹣15|=167(件)3×167=501(元)答:这8天要支付501元人工费.18.(1)解:由题意可知10月2日外出旅游的人数为:a+1.6+0.8=(a+2.4)万人(2)3;7(3)3600。
第一章《有理数》全章 练习题 (含答案)

第一章《有理数》全章 练习题 (含答案)一、选择题1. 2024的倒数是( )A .2024B .2024−C .12024−D .120242. 中国倡导的“一带一路”建设将促进我国与世界各国的互利合作,根据规划,“一带一路”地区覆盖总人口约为4400000000人,将这个数用科学记数法表示为( )A .84410⨯B .84.410⨯C .94.410⨯D .104.410⨯3.如图,数轴上点A 和点B 分别表示数a 和b ,则下列式子正确的是( )A .0a >B .0ab >C .0a b −>D .0a b +<4.下列几种说法中,不正确的有( )个.①绝对值最小的数是0;②最大的负有理数是﹣1;③数轴上离原点越远的点表示的数就越小;④平方等于本身的数只有0和1;⑤倒数是本身的数是1和﹣1.A .4B .3C .2D .15. 若|m ﹣2|+(n +3)2=0,则m ﹣n 的值为( )A .﹣5B .﹣1C .1D .56. 如图是嘉淇同学的练习题,他最后得分是( )A .20分B .15分C .10分D .5分6. 如图,数轴上,A B 两点分别对应有理数,a b ,则下列结论:①0ab <;②0a b +>;③1a b −>;④||||0a b −<,⑤220a b −<.其中正确的有( )A .1个B .2个C .3个D .4个8.如图是一个数值转换机, 若输入x 的值是1−, 则输出的结果y 为( )A .7B .8C .10D .129. 观察1211−=,2213−=,3217−=,42115−=,52131−=,⋯,归纳各计算结果中的个位数字的规律,猜测202221−的个位数字是( )A .1B .3C .7D .510. 计算 1111111111131422363524⎡⎤⎛⎫⎛⎫−+÷÷−⨯+−÷ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的值为( ) A .2514 B .2514− C .114 D .114− 二、填空题(本大题共6小题)11. -56____ -67(填>,<,=) 12. 如果全班某次数学测试的平均成绩为83分,某同学考了85分,记作+2分,得分80分应记作_____13. 数轴上,点A 表示的数是-3,距点A 为4个单位长度的点所表示的数是______.14. 若a 与b 互为相反数,m 与n 互为倒数,则()()220212022b a b mn a ⎛⎫+−+= ⎪⎝⎭ . 15.已知|a |=3,|b |=5,且ab <0,则a +b 的值16. 已知m 、n 两数在数轴上位置如图所示,将m 、n 、﹣m 、﹣n 用“<”连接:____________17.若“!”是一种数学运算符号,并且1!=1,2!=2×1=2,3!=3×2×1=6,4!=4×3×2×1,…,则100!98!的值为 . 18 .若x 是不等于1的实数,我们把11x−称为x 的差倒数, 如2的差倒数是1112=−−,-1的差倒数为()11112=−−, 现已知113x =−,2x 是1x 的差倒数,3x 是2x 的差倒数,4x 是3x 的差倒数,…,依此类推,则2022x = .三、解答题19. 把下列各数填在相应的括号里:﹣8,0.275,227 ,0,﹣1.04,﹣(﹣3),﹣13,|﹣2| 正数集合{ …}负整数集合{ …}分数集合{ …}负数集合{ …}.20 画一条数轴,在数轴上表示下列有理数,并用“<”号把各数连接起来:2.5−,0,-2,-(-4),-3.5,321. (1)(-534)+(+237)+(-114)-(-47) (2)()155********⎛⎫−+−⨯− ⎪⎝⎭ (3)-14+14×[2×(-6)-(-4)2] (4)(-2)3×(-34)+30÷(-5)-│-3│22. 已知a ,b 互为相反数,c ,d 互为倒数,|m |=2,求代数式2m ﹣(a +b ﹣1)+3cd 的值. .23. 已知x 是最小正整数,y ,z 是有理数,且有| y ﹣2|+|z+3|=0,计算:(1)求x ,y ,z 的值.(2)求3x ﹢y ﹣z 的值.24. 某一出租车一天下午以鼓楼为出发点,在东西方向上营运,向东为正,向西为负, 行车依先后次序记录如下:(单位:km )+9,﹣3,﹣5,+4,﹣8,+6,﹣3,﹣6,﹣4,+7(1)将最后一名乘客送到目地,出租车离鼓楼出发点多远?在鼓楼什么方向?(2)若每千米的价格为2.4元,司机一下午的营业额是多少元?25.已知数轴上三点M ,O ,N 对应的数分别为﹣1,0,3,点P 为数轴上任意点,其对应的数为x .(1)MN 的长为 ; (2)如果点P 到点M 、点N 的距离相等,那么x 的值是: ; (3)如果点P 以每分钟2个单位长度的速度从点O 向左运动,同时点M 和点N 分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动. 设t 分钟时点P 到点M 、点N 的距离相等,求t 的值.参 考 解 答:一、选择题1.D . 2 .C 3.D 4.C 5.D 6.B 7.D 8.A . 9 .B . 10..C二、填空题11. > 12 .-3分 13.1或-7 14.0 15.-2或2 16 .m <﹣n <n <﹣m 17.9900 18 .4三、解答题19. 解:正数集合{ 0.275,227,()3−−,2− …};负整数集合{8−…};分数集合{ 0.275, 227, 1.04−,13− …};负数集合{8−, 1.04−,13− …}.20 解:()2.5 2.5,44,−=−−=在数轴上表示各数如下:∴ 3.5−<2−<0< 2.5−<3<()4−−21. 解:(1)(-534)+(+237)+(-114)-(-47)3134=5124477⎡⎤⎛⎫⎛⎫⎛⎫−+−++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦ 734=−+=−(2)()155********⎛⎫−+−⨯− ⎪⎝⎭ ()()()()15573636363629612=⨯−−⨯−+⨯−−⨯− 182030217=−+−+=−(3)-14+14×[2×(-6)-(-4)2] ()1112164=−+⨯−− ()178=−+−=−(4)(-2)3×(-34)+30÷(-5)-│-3│ ()38634⎛⎫=−⨯−+−− ⎪⎝⎭6633=−−=−22. 解:a ,b 互为相反数,c ,d 互为倒数,|m |=2,∴0a b +=,1cd =,2m =±,∴原式=()2201314138⨯−−+⨯=++=或 原式=()()2201314130⨯−−−+⨯=−++=.23. 解:(1)∵x 是最小正整数∴x=1∵|y ﹣2|≥0,|z+3|≥0,且|y ﹣2|+|z+3|=0∴|y ﹣2|=0,|z+3|=0∴y ﹣2=0,z+3=0∴y=2,z=-3.(2)∵x=1,y=2,z=-3∴3x ﹢y ﹣z=3×1+2-(-3)=3+2+3=8.24. 解:(1)9-3-5+4-8+6-3-6-4+7=-3(千米)答:最后出租车离鼓楼出发点3千米,在鼓楼的西方;(2)()9+-3+-5+4+-8++6+-73+6+-4+ 2.4132+−⨯=(元), 答:若每千米的价格为2.4元,司机一个下午的营业额是132元.25.解:(1)MN 的长为3﹣(﹣1)=4.(2)x =(3﹣1)÷2=1;(3)①点P 是点M 和点N 的中点.根据题意得:(3﹣2)t =3﹣1,解得:t =2.②点M 和点N 相遇.根据题意得:(3﹣2)t =3+1,解得:t =4.故t 的值为2或4.故答案为4;1.。
七年级数学上册《第一章-有理数》单元测试题及答案(人教版)

七年级数学上册《第一章有理数》单元测试题及答案(人教版)学校:___________班级:___________姓名:___________考号:___________一、选择题1.我国古代《九章算术》中注有“今两算得失相反,要令正负以名之”.是今有两数若其意义相反,则分别叫做正数与负数,如果向北走5步记作+5步,那么向南走10步记作()A.+10步B.−10步C.+12步D.−2步2.有理数−12,5,0,-(-3),-2,-|-25|中,负数的个数为()A.1B.2C.3D.43.大于-1且小于2的整数有()A.1个B.2个C.3个D.4个4.厂家检测甲、乙、丙、丁四个足球的质量,超过标准质量的克数记为正数,不足标准质量的克数记为负数,结果如图所示,其中最接近标准质量的足球是()A.甲B.乙C.丙D.丁5.有理数a、b、c、d在数轴上的对应点的位置如图所示,则下列结论中正确的为()A.a>b B.a+d>0C.|b|>|c|D.bd>06.某种植物成活的主要条件是该地区的四季温差不得超过30℃,若不考虑其他因素,表中的四个地区中,适合大面积栽培这种植物的地区()地区温度甲地区乙地区丙地区丁地区四季最高气温/℃2524324四季最低气温/℃-7-5-11-28 A.甲B.乙C.丙D.丁7.−12023的倒数是()A .2023B .12023C .−2023D .−120228.已知数a ,b 在数轴上表示的点的位置如图所示,则下列结论正确的是( )A .a +b >0B .a −b >0C .−a >−b >aD .a ⋅b >09. 1千克汽油完全燃烧放出的热量为46000000焦.数据46000000用科学记数法表示为( )A .0.46×107B .4.6×106C .4.6×107D .46.0×10510.祖冲之是我国古代杰出的数学家,他首次将圆周率π精算到小数第七位,即3.1415926<π<3.1415927,则精确到百分位时π的近似值是( ) A .3.1B .3.14C .3.141D .3.142二、填空题11.某单位开展了职工健步走活动,职工每天健步走5000步即为达标.若小夏走了6200步,记为+1200步,小辰走了4800步,记为 步.12.中国人很早就开始使用负数,中国古代数学著作《九章算术》的方程一章,在世界数学史上首次引入负数.下图是小明家长11月份的微信账单,如果收入3377.51元记作+3377.51元,那么支出5333.73元记作 元.13.比较大小:−(13)2 −(12)3(填 > 或者 < 或者 =).14.点A 为数轴上表示−1的点,若将点A 沿数轴一次平移一个单位,平移两次后到达点B ,则点B 表示的数是 .15.若a=4,|b|=3,且ab<0,则a+b= .16.整数a 、b 、c 满足1000|a|+10|b|+|c|=2023,其中|a|>1且abc>1,则a+b+c 的最小值是 .三、计算题17.计算:(1)15+(−13)+18 (2)−10.25×(−4)(3)−12÷4×3(4)−23×3+2×(−3)2四、解答题18.某学校准备在升旗台的台阶上铺设一种红色的地毯(含台阶的最上层),已知这种地毯的批发价为每平方米20元,升旗台的台阶宽为3米,其侧面如图所示,请你帮助测算一下,买地毯至少需要多少元?19.已知下列有理数,在数轴上表示下列各数,并按原数从小到大的顺序用“<”把这些数连接起来.20.若a、b互为相反数,c、d互为倒数,m的绝对值为2.求m+cd+a+bm的值.21.在宇宙之中,光速是目前知道的最快的速度,可以达到3×108m/s,如果我们用光速行驶3.6×103s,请问我们行驶的路程为多少m?22.一天,小明和小红利用温差测量山峰的高度,小明在山顶测得温度是-6℃,小红在同一时刻在山脚测得温度是3℃.已知该地区高度每增加100米气温大约降低0.6℃,这座山峰的高度大约是多少米?参考答案与解析1.【答案】B【解析】解:向北走5步记作+5步,那么向南走10步记作−10步故答案为:B.【分析】正数与负数可以表示一对具有相反意义的量,若规定向北走为正,则向南走为负,据此解答.2.【答案】C【解析】解:−(−3)=3,−|−25|=−25∴有理数−12,5,0,-(-3),-2,-|-25|中是负数的有−12,−2,−|−25|共3个故答案为:C.【分析】首先根据相反数及绝对值的性质将需要化简的数分别化简,再根据小于0的数就是负数即可判断得出答案.3.【答案】B【解析】解:大于-1且小于2的整数有0、1,共2个.故答案为:B.【分析】根据有理数比较大小的方法进行解答.4.【答案】D【解析】|+1.5|=1.5,|﹣3.5|=3.5,|0.7|=0.7,|﹣0.6|=0.60.6<0.7<1.5<3.5最接近标准质量的足球是丁.故答案为:D【分析】根据绝对值最小的最接近标准加以判定。
有理数单元测试卷附答案

第一章有理数单元测试卷(一)附答案(总13页)-CAL-FENGHAI.-(YICAI)-Company One1-CAL-本页仅作为文档封面,使用请直接删除第一章有理数单元测试卷基础卷考试范围:有理数;考试时间:100分钟;命题人:xxx学校:___________姓名:___________班级:___________考号:___________题号一 二 三 总分 得分评卷人得 分 一.选择题(共12小题)1.如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作( )A .3m +B .3m -C .13m +D .5m -2.下列说法正确的有( )①正有理数是正整数和正分数的统称;②整数是正整数和负整数的统称;③有理数是正整数、负整数、正分数、负分数的统称;④0是偶数,但不是自然数;⑤偶数包括正偶数、负偶数和零.A .1个B .2个C .3个D .4个3.有理数a ,b 在数轴上的对应点的位置如图所示,则下列各式成立的是( )A .a b >B .0ab >C .||||a b <D .a b ->4.下列各数中,相反数是12-的是( ) A .12- B .12 C .2- D .25.下列化简错误的是( )A .(2)2--=B .(3)3-+=-C .(4)4+-=-D .|5|5-=6.23-的倒数是( ) A .32 B .32- C .23 D .23- 7.下列四个数中,最大的数是( )A .13-B .0C .2-D .28.我国古代的“九宫格”是由33⨯的方格构成的,每个方格内均有不同的数,每一行、每一列以及每一条对角线上的三个数之和相等.如图给出了“九宫格”的一部分,请你推算x 的值是( )251 x A .3 B .4 C .6 D .89.计算(13)(8)---的结果是( )A .21B .21-C .5D .5-10.下列各式中,正确的是( )A .422--=-B .3(3)0--=C .10(8)2+-=- D .54(4)5----=- 11.有理数a 、b 在数轴上的位置如图所示,下列各式正确的是( )A .0ab >B .0a b +<C .0a b ->D .0b a ->12.已知有理数a ,b 在数轴上表示的点如图所示,则下列式子中正确的是( )A .0a b +>B .0a b ->C .0a b >D .||||a b >评卷人得 分 二.填空题(共6小题)13.如果盈利5千元记作5+千元,那么亏损2千元记作 千元.14.在113,714,1340中不能化成有限小数的是 15.点A 、B 在数轴上对应的数分别为2-和5,则线段AB 的长度为 .16.a 的相反数是710,则a 的倒数是 . 17.已知a 与b 的和为2,b 与c 互为相反数,若||1c =,则a = .18.若a 和b 互为倒数,则ab = .评卷人得 分三.解答题(共8小题)19.股民老宋上周五在股市以收盘价(股市收市时的价格)每股36元购买进某公司股票1000股,周六,周日股市不交易,在接下来的一周交易日内,老宋记下该股票每日收盘价格相比前一天的涨跌情况如表:(单位:元)(1)星期三收盘时,每股是多少元?(2)已知买入股票与卖出股票均需支付成交额的1.5%的手续费,并且卖出股票还要交成交额的1%的交易税,如果股民老宋在周五以收盘价将全部股票卖出,他的收益情况如何?20.对于任意四个有理数a 、b 、c 、d ,可以组成两个有理数对(,)a b 与(,)c d .我们规定:(a ,)(b c ,)d bc ad =-.例如:(1,2)(3,4)23142=⨯-⨯=.根据上述规定解决下列问题:(1)有理数对(3,5)(4-,2)-= ;(2)若有理数对(4-,31)(2x -,1)8x -=,求x 的值;(3)当满足等式(2-,31)(x k -,)5x k k +=+的x 是整数时,求整数k 的值.21.数轴上两点间的距离等于这两个点所对应的数的差的绝对值.例:点A 、B 在数轴上对应的数分别为a 、b ,则A 、B 两点间的距离表示为||AB a b =-.根据以上知识解题:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么AB = .(2)在数轴上表示数a 的点与2-的距离是3,那么a = .(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|a a ++-= .(4)对于任何有理数x ,|3||6|x x -+-是否有最小值?如果有,直接写出最小值.如果没有.请说明理由.22.已知324x +=-与3321y m -=-,且x 、y 互为相反数,求m 的值.23.有理数a 、b 、c 在数轴上的位置如图:(1)判断正负,用“>”或“<”填空:b c - 0,a b + 0,c a - 0.(2)化简:||||||b c a b c a -++--.24.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2.(1)直接写出a b +,cd ,m 的值;(2)求a b m cd m+++的值. 25.画出数轴,并在数轴上画出表示下列各数的点,再按从小到大的顺序用“<”号把这些数连接起来:1-,0,122-,3,1226.七年级二班的几位同学正在一起讨论一个关于数轴上的点表示数的题目:甲说:“这条数轴上的两个点A 、B 表示的数都是绝对值是4的数”;乙说:“点C 表示负整数,点D 表示正整数,且这两个数的差是3”;丙说:“点E 表示的数的相反数是它本身”.(1)请你根据以上三位同学的发言,画出一条数轴,并描出A 、B 、C 、D 、E 五个不同的点,(2)求这五个点表示的数的和.第一章有理数单元测试卷参考答案与试题解析一.选择题(共12小题)【分析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示.【解答】解:如果水库的水位高于正常水位5m 时,记作5m +,那么低于正常水位3m 时,应记作3m -.故选:B .【点评】此题主要考查正负数的意义,关键是掌握正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.【分析】按照有理数的分类对各项进行逐一分析即可.【解答】解:①正有理数是正整数和正分数的统称是正确的;②整数是正整数、0和负整数的统称,原来的说法是错误的;③有理数是正整数、0、负整数、正分数、负分数的统称,原来的说法是错误的; ④0是偶数,也是自然数,原来的说法是错误的;⑤偶数包括正偶数、负偶数和零是正确的.故说法正确的有2个.故选:B .【点评】考查了有理数,认真掌握正数、负数、整数、分数、正有理数、负有理数、非负数的定义与特点.注意整数和正数的区别,注意0是整数,但不是正数.【分析】根据各点在数轴上的位置得出a 、b 两点到原点距离的大小,进而可得出结论.【解答】解:由图可知101a b <-<<<,则0ab <,||||a b >,a b ->.故选:D .【点评】本题考查的是数轴,解答本题的关键在于结合有理数a 、b 在数轴上的对应点的位置进行判断求解.【分析】根据只有符号不同的两个数是互为相反数,求出12-的相反数,然后选择即可. 【解答】解:12的相反数是12-,∴相反数等于12-的是12.故选:B.【点评】本题考查了相反数的定义,熟记定义是解题的关键.【分析】根据相反数的含义和应用,以及绝对值的含义和应用,逐项判断即可.【解答】解:(2)2--=,∴选项A不符合题意;(3)3-+=-,∴选项B不符合题意;(4)4+-=-,∴选项C不符合题意;|5|5-=-,∴选项D符合题意.故选:D.【点评】此题主要考查了相反数的含义和应用,以及绝对值的含义和应用,要熟练掌握,解答此题的关键是要明确:①当a是正有理数时,a的绝对值是它本身a;②当a是负有理数时,a的绝对值是它的相反数a-;③当a是零时,a的绝对值是零.【分析】根据倒数的定义,可得答案.【解答】解:23-的倒数是32-,故选:B.【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数.【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小进行比较即可.【解答】解:12023-<-<<,∴最大的数是2;故选:D.【点评】此题主要考查了实数的大小比较,关键是掌握比较大小的法则.【分析】首先根据三阶幻方的特征,可得:第三行第一列的数是:5228⨯-=;然后根据:第三行的各个数的和53=⨯,求出x 的值是多少即可.【解答】解:第三行第一列的数是:5228⨯-=,53816x =⨯--=.故选:C .【点评】此题主要考查了有理数加法的运算方法,以及幻方的特征和应用,要熟练掌握.【分析】原式利用减法法则变形,计算即可求出值.【解答】解:原式1385=-+=-,故选:D .【点评】此题考查了有理数的减法,熟练掌握运算法则是解本题的关键.【分析】直接利用有理数的混合运算法则计算得出答案.【解答】解:A 、426--=-,故此选项不合题意;B 、3(3)6--=,故此选项不合题意;C 、10(8)2+-=,故此选项不合题意;D 、54(4)5----=-,正确,符合题意.故选:D .【点评】此题主要考查了有理数的混合运算,正确掌握相关运算法则是解题关键.【分析】根据数轴上点的位置确定出a b +,a b -以及ab 的正负即可.【解答】解:由题意:0a <,0b >,||||b a >,0ab ∴<,0a b +>,0a b -<,0b a ->,故选:D .【点评】此题考查了数轴,熟练掌握有理数的运算法则是解本题的关键.【分析】先根据数轴上两数,右边的数总是大于左边的数,即可得到:0b a <<,且||||b a >,再根据有理数的运算法则即可判断.【解答】解:根据数轴可得:0b a <<,且||||b a >.A 、0a b +<,故选项错误;B 、0a b ->,故选项正确;C 、0ab <,故选项错误;D 、||||a b <,故选项错误.【点评】本题主要考查了数轴上两数比较大小的方法以及有理数的运算法则.二.填空题(共6小题)【分析】根据正数与负数的定义即可求出答案.【解答】解:如果盈利5千元记作5+千元,那么亏损2千元记作2-千元,故答案为:2-.【点评】本题考查正数与负数,解题的关键是正确理解正负数的定义,本题属于基础题型.【分析】分别将每个分数化为小数,则有70.514=,130.32540=,141 1.333==,即可求解.【解答】解:70.514=,130.32540=,141 1.333==,113∴不能化成有限小数,故答案为113.【点评】本题考查有理数;能够将分数正确的化为小数是解题的关键.【分析】根据数轴上两点距离公式进行计算即可.【解答】解:|25|7AB=--=,故答案为:7.【点评】考查数轴表示数的意义,点A、B在数轴上表示的数为a、b,则A、B两点之间的距离为||AB a b=-.【分析】利用相反数及倒数的定义计算即可得到结果.【解答】解:a的相反数是710,710a∴=-,则a的倒数为107 -.故答案为:107 -.【点评】此题考查了相反数,以及倒数,熟练掌握各自的定义是解本题的关键.【分析】根据绝对值的定义得出c的值,根据互为相反数的两数相加为0,进而得出b的值,即可得出a的值.【解答】解:||1c=,b与c互为相反数,∴+=,b c∴=-或1,b1a与b的和为2,∴+=,2a b∴=或1.a3故答案为:3或1.【点评】此题主要考查了绝对值、相反数的定义.解题的关键是掌握绝对值、相反数的定义.【分析】根据倒数定义可得答案.【解答】解:a和b互为倒数,1∴=,ab故答案为:1.【点评】此题主要考查了倒数,关键是掌握乘积是1的两数互为倒数.三.解答题(共8小题)【分析】(1)由表格可得:3(0.5)2 4.5++-+=(元),36 4.540.5+=(元),(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:⨯⨯+=(元),总收益:+-=(元),卖出时的花费:401000(1.5%1%)100040.51 1.540-⨯--=(元).(4036)100054010002460【解答】解:(1)3(0.5)2 4.5++-+=(元),∴+=(元),36 4.540.5∴星期三收盘时,每股是元;(2)买入时的花费:361000 1.5%540⨯⨯=(元),周五卖出时股票价格:40.51 1.540+-=(元),卖出时的花费:401000(1.5%1%)1000⨯⨯+=(元),总收益:(4036)100054010002460-⨯--=(元),∴老宋总的收益2460元.【点评】本题考查正数与负数;理解正数与负数在实际问题的意义是解题的关键.【分析】(1)原式利用题中的新定义计算即可求出值;(2)原式利用题中的新定义计算即可求出x 的值;(3)原式利用题中的新定义计算,求出整数k 的值即可.【解答】解:(1)根据题意得:原式20614=-+=-;故答案为:14-;(2)根据题意得:2(31)4(1)8x x -+-=去括号得,62448x x -+-=,移项合并得:26x =,解得:3x =(3)等式(2-,31)(x k -,)5x k k +=+的x 是整数,(31)(2)()5x k x k k ∴---+=+,(32)5k x ∴+=,532x k ∴=+, k 是整数,321k ∴+=±或5±, k 为整数,1k ∴=-,1.【点评】此题考查了解一元一次方程,解方程去分母时注意各项都乘以各分母的最小公倍数.【分析】(1)根据两点的距离公式计算 即可;(2)根据两点的距离公式以及绝对值的意义解答即可;(3)根据两点的距离公式以及绝对值的意义解答即可;(4)结合数轴得出:||3||6|x x -+-表示数x 到3和6两点的距离之和,||3||6|x x -+-有最小值,则x 一定在3和6之间,则最小值为3.【解答】解:(1)点A 在数轴上表示3,点B 在数轴上表示2,那么|32|1AB =-=, 故答案为:1;(2)根据题意得,|2|3a +=,解得1a =或5-.故答案为:1或5-;(3)如果数轴上表示数a 的点位于4-和2之间,那么|4||2|426a a a a ++-=-+++=. 故答案为:6;(4)|3||6|x x -+-表示数x 到3和6两点的距离之和,如果求最小值,则x 一定在3和6之间,则最小值为3.【点评】本题考查了一元一次方程的应用,数轴、绝对值、列代数式,解答本题的关键是明确题意,利用分类讨论的数学思想解答.【分析】求出第一个方程的解,根据两方程解互为相反数求出第二个方程的解,即可求出m 的值.【解答】解:方程324x +=-,解得:2x =-,因为x 、y 互为相反数,所以2y =,把2y =代入第二个方程得:6321m -=-,解得:2m =.【点评】此题考查了一元一次方程的解和解一元一次方程.解题的关键是正确理解一元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.【分析】(1)根据数轴判断出a 、b 、c 的正负情况,然后分别判断即可;(2)去掉绝对值号,然后合并同类项即可.【解答】解:(1)由图可知,0a <,0b >,0c >且||||||b a c <<,所以,0b c -<,0a b +<,0c a ->;故答案为:<,<,>;(2)||||||b c a b c a -++--()()()c b a b c a =-+----c b a b c a =----+2b =-.【点评】本题考查了绝对值的性质,数轴,熟记性质并准确识图观察出a 、b 、c 的正负情况是解题的关键.【分析】(1)根据互为相反数的和为0,互为倒数的积为1,绝对值的意义,即可解答;(2)分两种情况讨论,即可解答.【解答】解:(1)a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,0a b ∴+=,1cd =,2m =±.(2)当2m =时,2103a b m cd m +++=++=; 当2m =-时,2101a b m cd m+++=-++=-. 【点评】本题考查了倒数、相反数、绝对值,解决本题的关键是熟记倒数、相反数、绝对值的意义.【分析】首先根据在数轴上表示数的方法,在数轴上表示出所给的各数;然后根据当数轴方向朝右时,右边的数总比左边的数大,把这些数由小到大用“<”号连接起来即可.【解答】解:,11210322-<-<<<. 【点评】此题主要考查了在数轴上表示数的方法,以及数轴的特征:一般来说,当数轴方向朝右时,右边的数总比左边的数大,要熟练掌握.【分析】(1)根据要求分别表示五个不同的数;(2)相加可得结论.【解答】解:(1)点E 表示的数的相反数是它本身,E ∴表示0,A 、B 表示的数都是绝对值是4的数,A ∴表示4,B 表示4-或A 表示4-,B 表示4,点C 表示负整数,点D 表示正整数,且这两个数的差是3,∴若C 表示1-,则D 表示2;若C 表示2-,则D 表示1,如图所示:(2)440211-+++-=或440121-+++-=-,则这五个点表示的数的和1或1-.【点评】本题考查了数轴的相关概念,解答本题的关键是明确题意,利用数形结合的思想解答..。
第一章-有理数全章综合测试(含答案)

第一章有理数全章综合测试一、选择题:1.下列说法正确的是()A.所有的整数都是正数B.不是正数的数一定是负数C.0 不是最小的有理数D.正有理数包括整数和分数2.12的相反数的绝对值是()A.-12B.2 C.一 2D.123.有理数a、b 在数轴上的位置如图所示,那么下列式子中成立的是()A.a>b B.a <b C.ab>0 D.ab>04.在数轴上,原点及原点右边的点表示的数是()A.正数B.负数C.非正数D.非负数5.如果一个有理数的绝对值是正数,那么这个数必定是()A.是正数B.不是0 C.是负数D.以上都不对6.下列各组数中,不是互为相反意义的量的是()A.收入200 元与支出20 元B.上升l0 米和下降7 米C.超过0.05mm 与不足0.03m D.增大 2 岁与减少 2 升7.下列说法正确的是()A.-a 一定是负数;B. a 定是正数;C. a 一定不是负数;D.-a 一定是负数8.如果一个数的平方等于它的倒数.那么这个数一定是()A.0 B.1 C.-1 D.±19.如果两个有理数的和除以它们的积,所得的商为零,那么,这两个有理数()A.互为相反数但不等于零B.互为倒数C.有一个等于零D.都等于零2 10.若 0<m<1,m、m、1m的大小关系是()2 A.m<m <1m1B. mmC.1m2 D.1<m<mm<m2<m2<m11.4604608 取近似值,保留三个有效数字,结果是()6 B.4600000 C.4.61 ×106 D.4.605 ×106A.4.60 ×10- 1 -A.a+b 一定大于a-b B.若- ab<0,则 a、b 异号3=b3,则 a=b D.若 a2=b2,则 a=b C.若 a13.下列运算正确的是()2÷(一2)2=lB.A.-2 2133=-8127C.-5÷13×35=-25D.314×(-3.25)-634×3.25=-32.5.2,b=(-2×3)14.若 a=-2×3 2,c=-(2×4)2,则下列大小关系中正确的是()A.a>b>0 B.b>c>a C.b>a>c D.c>a>b15.若x =2,y =3,则x y 的值为()A.5 B.-5 C.5 或 1 D.以上都不对二、填空题1.某地气温不稳定,开始是6℃,一会儿升高4℃,再过一会儿又下降1l℃,这时气温是____。
第一章 有理数 综合素质评价(单元测试)(含答案)人教版(2024)数学七年级上册

第一章综合素质评价七年级数学上(R版) 时间:90分钟 满分:120分一、选择题(每题3分,共30分)1.[新考向数学文化2024长春一模]《九章算术》是中国古代第一部数学专著,成书于公元一世纪左右.书中注有“今两算得失相反,要令正负以名之”,意思是:在计算过程中遇到具有相反意义的量,要用正数与负数来区分它们.如果盈利50元记作“+50元”,那么亏损30元记作( )A.+30元B.-50元 C.-30元D.+50元2.-12的相反数是( )A.-2B.-12C.2D.123.在-(-10),0,-|-0.3|,-15中,负数的个数为( )A.2B.3C.4D.14.[新趋势跨学科2024威海环翠区期末]下表是几种液体在标准大气压下的沸点:液体名称液态氧液态氢液态氮液态氦沸点/℃-183-252.78-196-268.9则沸点最低的液体是( )A.液态氧B.液态氢 C.液态氮D.液态氦5.在数轴上表示-2的点与表示3的点之间的距离是( )A.5B.-5C.1D.-16.为响应“双减”政策,开展丰富多彩的课余活动,某中学购买了一批足球,如图,张老师检测了4个足球,其中超过标准质量的克数记为正数,不足标准质量的克数记为负数,从轻重的角度看,最接近标准质量的是( )A B C D7.下列说法中,错误的是( )A.数轴上的每一个点都表示一个有理数B.任意一个有理数都可以用数轴上的点表示C.在数轴上,确定单位长度时可根据需要恰当选取D.在数轴上,与原点的距离是36.8的点有两个8.如图,数轴上的点M表示有理数2,则表示有理数6的点是( )A.A B.B C.C D.D9.下列说法中,错误的有( )①-247是负分数;②1.5不是整数;③非负有理数不包括0;④正整数、负整数统称为有理数;⑤0是最小的有理数;⑥3.14不是有理数.A .1个B .2个C .3个D .4个10.[2024徐州二模]有理数a ,b 在数轴上的对应点的位置如图所示,则下列结论正确的是( )A . a >bB .-a >-bC .|a |>|b |D .|-a |>|-b |二、填空题(每题4分,共24分)11.[真实情境题 航空航天]2024年4月25日,神舟十八号载人飞船发射取得成功,神舟十八号载人飞船与长征二号F 遥十八运载火箭组合体,总重量为400多吨,总高度近60米,数据60的相反数是 ,绝对值是 .12.小明在写作业时不慎将墨水滴在数轴上(如图),根据图中的数据,判断墨迹盖住的整数有 个.13.[2024杭州西湖区月考]比较大小(填“>”“<”或“=”):(1)-715 -|13|;(2)-|-213| -(-213).14.当x = 时,|x -6|+3的值最小.15.[新考法 分类讨论法]如果点M ,N 在数轴上表示的数分别是a ,b ,且|a |=2,|b |=3,那么M ,N 两点之间的距离为 .16.[新考法 分类讨论法 2024 烟台栖霞市月考]点A 为数轴上表示-2的点,当点A 沿数轴以每秒3个单位长度的速度移动4秒到达点B 时,点B 所表示的有理数为 .三、解答题(共66分)17.(6分)把下列各数填在相应的大括号内:15,-12,0.81,-3,14,-3.1,-4,171,0,3.14.正数集合:{ …};负数集合:{ …};正整数集合:{ …};负整数集合:{ …};负分数集合:{ …};有理数集合:{ …}.18.(6分)化简下列各数:(1)-(-68); (2)-(+0.75); (3)-[-(-23)].19.(8分)在数轴上表示下列各数,并用“<”将它们连接起来.,-(-1),0.-4,|-2.5|,-|3|,-11220.(10分)如图,已知数轴的单位长度为1,DE的长度为1个单位长度.(1)如果点A,B表示的数互为相反数,求点C表示的数.(2)如果点B,D表示的数的绝对值相等,求点A表示的数.(3)若点A为原点,在数轴上有一点F,当EF=3时,求点F表示的数.21.(10分)[2024杭州滨江区期末]某班抽查了10名同学的跑步成绩,以30秒为达标线,超出的部分记为正数,不足的部分记为负数,记录的结果如下(单位:秒):+8,-3,+12,-7,-10,-4,-8,+1,0,+10.(1)这10名同学的达标率是多少?(2)这10名同学的平均成绩是多少?22.(12分)如图,一只甲虫在5×5的方格(每小格边长为1)上沿着网格线运动.它从A处出发去看望B,C,D处的其他甲虫,规定:向上向右走为正,向下向左走为负.如果从A 到B记为A→B(+1,+4),从B到A记为B→A(-1,-4),其中第一个数表示左右方向,第二个数表示上下方向,请回答下列问题:(1)A→C( , ),B→C( , ),C→D ( , );(2)若这只甲虫的行走路线为A→B→C→D,请计算该甲虫走过的最短路程;(3)若这只甲虫从A处去甲虫P处的行走路线依次为(+2,+2),(+2,-1),(-2,+3),(-1,-2),请在图中标出点P的位置.23.(14分)已知在纸面上有一数轴,如图,根据给出的数轴,解答下面的问题:(1)请你根据图中A,B两点的位置,分别写出它们所表示的有理数.(2)在数轴上标出与点A的距离为2的点(用不同于A,B的其他字母表示).(3)折叠纸面.若在数轴上表示-1的点与表示5的点重合,回答以下问题:①数轴上表示10的点与表示 的点重合.②若数轴上M,N两点之间的距离为2 024(点M在点N的左侧),且M,N两点经折叠后重合,求M,N两点表示的数分别是多少.参考答案一、1. C 2. D 3. A 4. D 5. A 6. A 7. A 8. D 9. D 10. B二、11.-60;60 12.10 13.(1)< (2)<14.6 15.1或5 16.-14或10三、17.解:正数集合:{15,0.81,14,171,3.14,…};负数集合:{-12,-3,-3.1,-4,…};正整数集合:{15,171,…};负整数集合:{-3,-4,…};负分数集合:{-12,-3.1,…};有理数集合:{15,-12,0.81,-3,14,-3.1,-4,171,0,3.14,…}.18.解:(1)-(-68)=68. (2)-(+0.75)=-0.75. (3)-[-(-23)]=-23.19.解:在数轴上表示各数如图所示:-4<-|3|<-112<0<-(-1)<|-2.5|.20.解:(1)由点A ,B 表示的数互为相反数,可确定数轴原点O 如下图:所以点C 表示的数为5.(2)由点B ,D 表示的数的绝对值相等,可知点B ,D 表示的数互为相反数,从而可确定数轴原点O 如下图:所以点A 表示的数为12.(3)由题意可知点F 在点E 的左边或右边.当点F 在点E 的左边时,如图:所以点F 表示的数为-5;当点F 在点E 的右边时,如图:所以点F 表示的数为1.故当EF =3时,点F 表示的数为-5或1.21.解:(1)因为30秒为达标线,超出的部分记为正数,不足的部分记为负数,10名同学中成绩为非正数的个数为6,所以这10名同学的达标率=6×100%=60%.10(2)这10名同学的平均成绩=[(30+8)+(30-3)+(30+12)+(30-7)+(30-10)+(30-4)+(30-8)+(30+1)+30+(30+10)]÷10=299÷10=29.9(秒).22.解:(1)+3;+4;+2;0;+1;-2(2)1+4+2+1+2=10.所以该甲虫走过的最短路程为10.(3)点P如图所示.23.解:(1)A点表示的数为1,B点表示的数为-3.(2)在数轴上与点A的距离为2的点分别表示3和-1,即数轴上的点C和点D,如图.(3)①-6②易知折痕与数轴的交点表示的数为2.因为M,N两点之间的距离为2 024,且M,N两点经折叠后重合,所以M,N两点与折痕与数轴的交点之间的距离为1×2 024=1 012.2又因为点M在点N的左侧,所以点M表示的数为-1 010,点N表示的数为1 014.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章《有理数》单元综合测试题(附答
案)
1.下列哪个说法正确?
A。
任何负数都小于它的相反数。
B。
零除以任何数都等于零。
C。
若a≠b,则a≠b。
D。
两个负数比较大小,大的反而小。
2.如果一个数的绝对值等于它的相反数,那么这个数是:A。
必为正数。
B。
必为负数。
C。
一定不是正数。
D。
不能确定正负。
3.当a、b互为相反数时,下列各式一定成立的是:
A。
2b/a=-1.
B。
a/b=1.
XXX。
D。
ab=π。
4.3.14-π的计算结果是:
A。
0.
B。
3.14-π。
C。
π-3.14.
D。
-π-3.14.
5.如果a为有理数,则下列各式成立的是:
A。
a>0.
B。
1-a<0.
C。
-(-a)>0.
D。
a+1>0.
6.如果一个数的平方与这个数的绝对值相等,那么这个数是:
A。
0.
B。
1.
C。
-1.
D。
1或-1.
7.若3.0860是四舍五入得到的近似数,则下列说法中正确的是:
A。
它有四个有效数字3,8,6.
B。
它有五个有效数字3,8,6.
C。
它精确到0.001.
D。
它精确到百分位。
8.已知a<0,-1<b<0,则a,ab,ab按从小到大的顺序排列为:
A。
a<ab<ab。
B。
ab<a<ab。
C。
ab<ab<a。
D。
a<ab<ab。
9.下列各组运算中,其值最小的是:
A。
-(-3-2)。
B。
(-3)×(-2)。
C。
(-3)÷(-2)。
D。
(-3)×(-2)。
10.几个同学在日历纵列上圈出了三个数,算出它们的和,其中错误的一个是:
A。
28.
B。
33.
C。
45.
D。
57.
二、填空题(每小题3分,共24分)
11.绝对值小于5的整数共有10个。
12.当a>b>0时,a^2>b^2.
13.如果a与1/a互为相反数,那么a的倒数是-1.
14.在数轴上表示-5的点到原点的距离等于5.
15.如果由四舍五入得到的近似数是35,那么34.49,
34.51,34.99,35.01这四个数中不小于35的数有三个。
B
二、填空题(每小题2分,共16分)
16.-2/3
17.0.<0
18.4.-4
三、解答题(共46分)
19.化简后得2c,即对应点C的坐标。
20.先化简得-36,-3<-36<0,所以-3<
4(2)2(1)3(3)<0,即-3<-35<0.再比较(3)★4与
2★(5)的大小,化简得-7和-15,所以-7>-15.
21.化简得m-4a/2012,代入m=2,a=-b,c=1/a,d=-1/b,得-2/503.
22.
1) -5/2
2) 2/3
3) -16/9
4) 0.009
23.
1) -8/3
2) x=2/3
二、填空题(每小题3分,共24分)
11.2n-1
12.<
13.-
17.>、<
18.-4、4
三、解答题(共52分)
14.5 can be written as a n 5/1 XXX.
15.34.49 XXX 34.50.
16.-2 can be written as a n -2/1 XXX.
19.0 is the only n to the n 3x - 5x + 2x = 0.
20.-4 < (-1)3 < -(-3) < (-2)2 is a true statement.
21.x can be either -4 or 2 for the n x2 - 2x - 8 = 0.
23.(1) x = 21 (2) x = -3 are the ns to the n x2 - 42x + 441 = 0.
24.(1) 11 (2) 2n-1 is the formula for the nth term of the sequence 1.2.4.8.16.。