有理数单元检测题10套附答案
第一章 有理数单元检测卷(解析版)

第1章《有理数》一、选择题(共36分)1.2023的相反数是( )A .12023B .2023-C .2023D .12023-【答案】B【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:2023的相反数是2023-,故选:B .【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.中国是最早采用正负数表示相反意义的量、并进行负数运算的国家.若收入500元记作500+元,则支出237元记作( )A .237+元B .237-元C .0元D .474-元【答案】B【分析】根据相反意义的量的意义解答即可.【详解】∵收入500元记作500+元,∴支出237元记作237-元,故选B .【点睛】本题考查了相反意义的量,正确理解定义是解题的关键.3.2022年河南省凭借6.13万亿元的经济总量占据全国各省份第五位,占全国的5.0%,将数据“6.13万亿”用科学记数法表示为( )A .86.1310´B .106.1310´C .126.1310´D .146.1310´【答案】C【分析】科学记数法的表示形式为10n a ´的形式,其110a £<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.【详解】解:将数据“6.13万亿”用科学记数法表示为126.1310´.故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为10n a ´的形式,其中110a £<,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.下列说法正确的是( )A .0既是正数又是负数B .0是最小的正数C .0既不是正数也不是负数D .0是最大的负数【答案】C【分析】根据有理数的分类判断即可.【详解】∵0既不是正数也不是负数,故选C.【点睛】本题考查了零的属性,熟练掌握0既不是正数也不是负数是解题的关键.5.点A 为数轴上表示3的点,将点A 向左移动9个单位长度到B ,点B 表示的数是( )A .2B .−6C .2或−6D .以上都不对【答案】B【分析】根据数轴上的平移规律即可解答【详解】解:∵点A 是数轴上表示3的点,将点A 向左移9个单位长度到B ,∴点B 表示的数是:396-=-,故选B .【点睛】本题主要考查了数轴及有理数减法法则,掌握数轴上的点左移减,右移加是解题关键.6.哈尔滨市2023年元旦的最高气温为2℃,最低气温为8-℃,那么这天的最高气温比最低气温高( )A .10-℃B .6-℃C .6℃D .10℃【答案】D【分析】用最高温度减去最低温度,然后根据减去一个数等于加上这个数的相反数进行计算即可.【详解】解:根据题意,得:()282810--=+=,\这天的最高气温比最低气温高10℃,故选:D .【点睛】本题考查了有理数的减法的应用,是基础题,熟记减去一个数等于加上这个数的相反数是解题的关键.7.把()()()()8452--++---写成省略加号的形式是( )A .8452-+-+B .8452---+C .8452--++D .8452--+【答案】B 【分析】观察所给的式子,要写成省略加号的形式,即是将式子中的括号去掉即可.【详解】解:根据有理数的加减混合运算的符号省略法则化简,得,()()()()28452845---+---=--++.故选:B .【点睛】本题考查有理数的加减混合运算,熟练掌握去括号的法则:括号前是正号,去括号时,括号里面的各项都不改变符号;括号前是负号,去括号时,括号里面的各项都要改变符号是解题的关键.8.下列各对数中,不相等的一对数是( )A .()33-与33-B .33-与33C .()43-与43-D .()23-与23【答案】C【分析】根据有理数的乘方和绝对值的概念,逐一计算即可.【详解】解:()3327-=-,3327-=-,2727-=-,故A 不符合题意;3327-=,3327=,2727=,故B 不符合题意;()4381-=,4381-=-,8181¹-,故C 符合题意;()239-=,239=,99=,故D 不符合题意,故选:C .【点睛】本题考查了有理数的乘方和绝对值的概念,熟练掌握计算法则是解题的关键.9.用四舍五入法按要求对0.30628分别取近似值,其中错误的是( )A .0.3(精确到0.1)B .0.31(精确到0.01)C .0.307(精确到0.001)D .0.3063(精确到0.0001)【答案】C【分析】根据近似数的精确度对各选项进行判断即可.【详解】解:0.30628精确到0.1是0.3,A 选项正确,不符合题意;0.30628精确到0.01是0.31,B 选项正确,不符合题意;0.30628精确到0.001是0.306,C 选项错误,符合题意;0.30628精确到0.0001是0.3063,D 选项正确,不符合题意.【点睛】本题考查了近似数的精确度,熟练掌握四舍五入法及精确度的概念是解题的关键.10.若计算式子1(27)()3-W V 的结果为最大,则应分别在 ,△中填入下列选项中的( )A .+,-B .´,-C .¸,-D .-,¸【答案】D【分析】将四个选项中的运算符号分别代入式子中进行运算,通过比较结果即可得出结论.【详解】解:当选取A 选项的符号时,111(27)()99333+--=+=;当选取B 选项的符号时,111(27)()1414333´--=+=;当选取C 选项的符号时,12113(27)()37321¸--=+=;当选取D 选项的符号时,1(27)()5(3)153-¸-=-´-=,∵1113151493321>>>,当选取D 选项的符号时,计算式子1(27)(3-W V 的结果最大,故选:D .【点睛】本题主要考查了有理数的混合运算,熟练掌握有理数的混合运算法则是解题的关键.11.如图,点A 、B 均在数轴上,且点,A B 所对应的实数分别为a 、b ,若0a b +>,则下列结论一定正确的是( )A .0ab >B .0a b ->C .0a b >D .0b >【答案】B【分析】根据0a b +>,可知,a b 可能同号,也可能异号,而a b >恒成立,即可求解.【详解】∵0a b +>,∴a b >-,即在数轴上,b -在a 的左侧,∴0b b a <<-<或0b b a -<<<,∴,a b 可能同号,也可能异号,而a b >恒成立,∴0a b ->一定正确,【点睛】本题考查了数轴上点的位置及其大小关系,熟练掌握数轴上右边的数总比左边的数大是解题的关键.12.若a 、b 互为相反数,c 、d 互为倒数,m 的倒数是它本身,则232cd m a b m+++的值为A .5B .5或2C .5或1-D .不确定【答案】C 【分析】根据相反数,倒数的性质,可得0,1a b cd +== ,1m =± ,再代入,即可求解.【详解】解:∵a 、b 互为相反数,c 、d 互为倒数,∴0,1a b cd +== ,∵m 的倒数是它本身,∴1m =± ,∴21m = ,当1m = 时,2331221051cd m a b m ´+++=´++=,当1m =- 时,2331221011cd m a b m ´+++=´++=--,∴232cd m a b m+++的值为5或1-.故选:C【点睛】本题主要考查了相反数,倒数的性质,熟练掌握一对互为相反数的和等于0,互为倒数的两个数的乘积为1是解题的关键.二、填空题(共18分)13.6-等于_____.【答案】6【分析】根据绝对值的定义进行求解即可.【详解】解:66-=,故答案为:6.【点睛】本题主要考查了求一个数的绝对值,熟知正数和0的绝对值是它本身,负数的绝对值是它的相反数是解题的关键.14.某种试剂的说明书上标明保存温度是(102)±℃,请你写出一个适合该试剂保存的温度:___________℃.【答案】10(答案不唯一)【分析】根据正数和负数的定义即可解答.【详解】解:由题意,可知适合该试剂的保存温度为8~12℃,在此温度范围内均满足条件.故答案为10(答案不唯一).【点睛】本题考查正负数在实际生活中的应用,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.15.把2.674精确到百分位约等于______.【答案】2.67【分析】把千分位上的数字进行四舍五入即可.【详解】解:2.674 2.67».故答案为:2.67.【点睛】本题主要考查了近似数,解题的关键是熟练掌握定义,经过四舍五入得到的数叫近似数.16.计算:()14877-¸´=_____________.【答案】4849-【分析】根据有理数的乘除运算法则,从左往右依次计算即可.【详解】解:()111484874877749-¸´=-´´=-,故答案为:4849-.【点睛】本题考查了有理数的乘除运算.解题的关键在于明确运算顺序.易错点是先计算乘法然后计算除法.17.已知实数m ,n 在数轴上的对应点的位置如图所示,则m _______n .(填“<”、“>”或“=”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解: m Q 在n 的左边,m n \<,故答案为:<.【点睛】此题考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.18.若()2180x y ++-=,则x y -的值为______.【答案】9-【分析】利用非负数的性质得出x y ,的值,代入计算得出答案.【详解】解:()2180x y ++-=Q ,1080x y \+=-=,,解得:18x y =-=,,189x y \-=--=-,故答案为:9-.【点睛】本题考查了非负数的性质,掌握非负数的意义和性质是正确解答的关键.三、解答题(共66分)19.(6分)计算:(1)23(22)(21)+---;(2)(3)(2)16(8)-´-+¸-.【答案】(1)22(2)4【分析】(1)利用加法的运算律进行求解即可;(2)先计算乘除,再计算加减即可求解.【详解】(1)解:23(22)(21)+---232221=-+22=;(2)解:(3)(2)16(8)-´-+¸-()62=+-4=.【点睛】本题考查了有理数的混合运算,解题的关键是掌握相应的运算法则.20.(6分)将下列各数在数轴上表示出来,并用“<”连接.2153,|3|,2,0,,(222----+【答案】详见解析,25312()0|3|222-<-<-+<<<-【分析】由绝对值,相反数,有理数的乘方的概念,找到各数在数轴上对应点的位置即可.【详解】解:25312(0|3|222-<-<-+<<<-.【点睛】本题考查数轴的概念,相反数,绝对值,有理数的乘方的概念,关键是准确确定各数在数轴上对应点的位置.21.(6分)计算:()()21125|2|953--´--+-¸.【答案】26-【分析】原式先算乘方及绝对值,再算乘除,最后算加减即可得到结果.【详解】解:()()21125|2|953--´--+-¸41227=---26=-.【点睛】此题考查了有理数的混合运算,其运算顺序为:先乘方,再乘除,最后加减,有括号先算括号里边的,同级运算从左到右依次进行,熟练掌握运算法则是解题关键.22.(6分)数学老师布置了一道思考题:115626æöæö-¸-ç÷ç÷èøèø,小明仔细思考了一番,用了一种不同方法解决了这个问题,小明解法如下:原式的倒数为()151156226626æöæöæö-¸-=-´-=ç÷ç÷ç÷èøèøèø,所以11516262æöæö-¸-=ç÷ç÷èøèø.(1)请你判断小明的解答是否正确(2)请你运用小明的解法解答下面的问题计算:111112346æöæö-¸-+ç÷ç÷èøèø【答案】(1)小明的解答正确(2)13-【分析】(1)正确,利用倒数的定义判断即可;(2)求出原式的倒数,即可确定出原式的值.【详解】(1)解:小明的解答正确,理由为:一个数的倒数的倒数等于原数;(2)解:111134612æöæö-+¸-ç÷ç÷èøèø()11112346æö=-+´-ç÷èø()()()111121212346=´--´-+´-432=-+-3=-,∴11111123463æöæö-¸-+=-ç÷ç÷èøèø.【点睛】本题主要考查了有理数乘法和除法计算,熟练掌握相关计算法则是解题的关键.23.(6分)如果a ,b ,c 是非零有理数,求式子222||||||||a b c abc a b c abc -+++的所有可能的值.【答案】3±或5±【分析】根据绝对值的性质和有理数的除法法则分情况讨论即可.【详解】解:根据题意,当000a b c >>>,,时,22222215||||||||a b c abc a b c abc -+++=++-=;当000a b c >><,,时,22222213||||||||a b c abc a b c abc -+++=+-+=;当000a b c ><>,,时,22222213||||||||a b c abc a b c abc -+++=-++=;当000a b c <>>,,时,22222213||||||||a b c abc a b c abc -+++=-+++=;当000a b c <<>,,时,22222213||||||||a b c abc a b c abc -+++=--+-=-;当000a b c ><<,,时,22222213||||||||a b c abc a b c abc -+++=---=-;当000a b c <><,,时,22222213||||||||a b c abc a b c abc -+++=-+--=-;当000a b c <<<,,时,22222215||||||||a b c abc a b c abc -+++=---+=-;综上所述,式子222||||||||a b c abc a b c abc -+++的所有可能的值为3±或5±.【点睛】本题考查了有理数的乘法和绝对值的性质,熟练掌握绝对值的性质以及有理数的除法法则是解题的关键.24.(8分)某工厂一周内,计划每天生产自行车100辆,实际每天生产量如下表(以计划量为标准,增加的车辆记为正数,减少的车辆记为负数):星期周一周二周三周四周五周六周日增减(辆)1-+32-+4+75-10-(1)生产量最多的一天比最少的一天多生产多少辆?(2)本周一共生产了多少辆自行车?【答案】(1)17辆;(2)696辆.【分析】(1)由表可知,生产最多的一天为()1007+辆,最少的一天为()10010-,两者相减即可;(2)先用100乘以7,再将多生产或少生产的数量相加,两者相加即可.【详解】(1)()()10071001071017+--=+=(辆)∴生产量最多的一天比最少的一天多生产17辆;(2)()100713247510´+-+-++--7004=-696=(辆)∴本周一共生产了696辆自行车.【点睛】本题考查了正数和负数、有理数的四则运算在实际问题中的应用,根据表中数据正确列式,是解题的关键.25.(8分)如图,在数轴上有A、B、C三个点,请回答下列问题.(1)A、B两点间距离是,B、C两点间距离是,A、C两点间距离是.(2)若将点A向右移动5个单位到点D,B、C、D这三点所表示的数哪个最大?最大数比最小数大多少?【答案】(1)3 ;4;7(2)C点表示的数最大,最大数比最小数大4【分析】(1)根据数轴上两点之间的距离公式进行解答即可;(2)求出点D表示的数,然后再进行比较即可.【详解】(1)解:点A表示的数为4-,点B表示的数为1-,点C表示是数为3,则()AB=---=-+=,14143()31314BC=--=+=,()AC=--=+=,34347故答案为:3;4;7.-+=,点B表示的数为1-,点C表示(2)解:将点A向右移动5个单位到点D,则点D表示是数为451是数为3,>>-,∵311∴表示最大数的是点C,表示最小数的是点B()--=+=,31314∴最大数比最小数大4.【点睛】本题主要考查了用数轴上点表示有理数,数轴上两点之间的距离,解题的关键是数形结合找出点A、B、C在数轴上所表示的有理数.26.(10分)数学实验室:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离=-.AB a b利用数形结合思想回答下列问题:(1)数轴上表示2和6两点之间的距离是 ,数轴上表示1和4-的两点之间的距离是 .(2)数轴上表示x 和3-的两点之间的距离表示为 .数轴上表示x 和6的两点之间的距离表示为 .(3)若x 表示一个有理数,则14x x -++的最小值= .(4)若x 表示一个有理数,且134x x ++-=,则满足条件的所有整数x 的是 .(5)若x 表示一个有理数,当x 为 ,式子234x x x ++-+-有最小值为 .【答案】(1)4,5(2)3x +,6x -(3)5(4)1-或0或1或2或3(5)3,6【分析】(1)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(2)根据数轴上A 、B 两点之间的距离AB a b =-列式计算即可;(3)根据数轴上两点之间的距离的意义可知x 在4-与1之间时,14x x -++有最小值5;(4)根据数轴上两点之间的距离的意义可知当x 在1-与3之间时(包含1-和3),134x x ++-=,然后可得满足条件的所有整数x 的值;(5)根据数轴上两点之间的距离的意义可知当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,然后可得答案.【详解】(1)解:数轴上表示2和6两点之间的距离是264-=,数轴上表示1和4-的两点之间的距离是()145--=,故答案为:4,5;(2)解:数轴上表示x 和3-的两点之间的距离表示为()33x x --=+,数轴上表示x 和6的两点之间的距离表示为6x -;故答案为:3x +,6x -;(3)解:根据数轴上两点之间的距离的意义可知:14x x -++可表示为点x 到1与4-两点距离之和,∴当x 在4-与1之间时,14x x -++有最小值5,故答案为:5;(4)解:根据数轴上两点之间的距离的意义可知:134x x ++-=表示为点x 到1-与3两点距离之和为4,∴当x 在1-与3之间时(包含1-和3),134x x ++-=,∴满足条件的所有整数x 的是1-或0或1或2或3;故答案为:1-或0或1或2或3;(5)解:根据数轴上两点之间的距离的意义可知:234x x x ++-+-可看作是数轴上表示x 的点到2-、3、4三点的距离之和,∴当3x =时,234x x x ++-+-有最小值,最小值为2-到4的距离,即246--=,故答案为:3,6.【点睛】本题考查了数轴上两点之间的距离公式,绝对值的几何意义,正确理解数轴上两点之间的距离以及绝对值的几何意义是解题的关键.27.(10分)【概念学习】规定:求若干个相同的有理数(均不等0)的除法运算叫做除方,如333¸¸,()()()()2222-¸-¸-¸-等.类比有理数的乘方,我们把333¸¸记作3③,读作“3的圈3次方”,()()()()2222-¸-¸-¸-记作()2-④,读作“2-的圈4次方”.一般地,把()0n aa a a a ¸¸¸××׸¹1442443个记作,读作“a 的圈n 次方”.【初步探究】(1)直接写出计算结果:4=③______,412æö-=ç÷èø______.【深入思考】我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?(此处不用作答)(2)试一试:仿照上面的算式,将下列运算结果直接写成乘方幂的形式()3-=④______;5=⑥______;12æö=ç÷èø⑤______.(3)想一想:将一个非零有理数a 的圈n 次方写成乘方幂的形式等于______.(4)比较:()9-⑤______()3-⑦(填“>”“<”或“=”)【灵活应用】(5)算一算:211334æöæö-¸-´-ç÷ç÷èøèø⑤④.【答案】(1)14,4;(2)213æö-ç÷èø,415æöç÷èø,32;(3)21n a -æöç÷èø;(4)>;(5)163【分析】(1)根据题目给出的定义,进行计算即可;(2)将有理数除法转化为乘法,再写成幂的形式即可;(3)从(2)中总结归纳相关规律即可;(4)将两数变形,求出具体值,再比较大小即可;(5)先将除方转化为乘方,再运用有理数混合运算的方法进行计算即可.【详解】解:(1)144444=¸¸=③,411111422222æöæöæöæöæö-=-¸-¸-¸-=ç÷ç÷ç÷ç÷ç÷èøèøèøèøèø,故答案为:14,4;(2)()()()()()21333333æö--¸-¸-¸-=-è=ç÷ø④;4155555555æö=¸¸¸¸¸=ç÷èø⑥31111112222222æö=¸¸¸¸=ç÷èø⑤;故答案为:213æö-ç÷èø,415æöç÷èø,32;(3)a 的圈n 次方为:21...n n a a a a a a -æö¸¸¸¸=ç÷èø1442443个;(4)()31172999æö-=-=-ç÷èø⑤,()51124333æö-=-=-ç÷èø⑦,∵729243>,∴11729243->-,∴()9-⑤>()3-⑦,故答案为:>;(5)211334æöæö-¸-´-ç÷ç÷èøèø⑤④()232334=-¸-´()92716=-¸-´163=.【点睛】本题考查了有理数的除法运算,乘方运算,以及有理数混合运算,正确理解相关运算法则是解题的关键.。
人教版(2024)数学七年级上册第二章 有理数的运算 单元测试(含答案)

第二章 有理数的运算一、单选题1.徐州地铁1号线全长31900米,将31900用科学记数法表示为( )A .3.19×102B .0.319×103C .3.19×104D .0.319×1052.计算(−2)3+23等于( )A .0B .16C .32D .−323.武汉市某天凌晨的气温是−3℃,中午比凌晨上升了8℃,中午的气温是( )A .2℃B .3℃C .7℃D .5℃4.下列各对数中,数值相等的是( )A .−23与(−2)3B .−32与(−3)2C .(−1)2023与(−1)2024D .(−2)3与(−3)2 5.下列问题情境,不能用加法算式−2+8表示的是( )A .某日最低气温为−2℃,温差为8℃,该日最高气温B .用8元纸币购买2元文具后找回的零钱C .数轴上表示−2与8的两个点之间的距离D .水位先下降2cm ,再上升8cm 后的水位变化情况6.某粮店出售的三种品牌的面粉袋上分别标有质量为(50±0.2)kg ,(50±0.3)kg ,(50±0.4)kg 的字样,从中任意拿出两袋,则这两袋的质量最多相差与最少相差分别为( )A .0.8kg 和0.4kgB .0.6kg 和0.4kgC .0.8kg 和0kgD .0.8kg 和0.6kg 7.在简便运算时,把12×(−9991112)变形成最合适的形式是( ) A .12×(−1000+112)B .12×(−1000−112)C .12×(−999−1112)D .12×(−999+1112)8.在1,2,−2这三个数中,任意两数之商的最小值是( )A .12B .−12C .−1D .−29.规定a △b =a −2b ,则3△(−2)的值为( )A .7B .−5C .1D .−110.a ,b 两数在一条隐去原点的数轴上的位置如图所示,下列5个式子:℃a −b <0,℃a +b <0,℃ab <0,℃(a +1)(b +1)<0,℃(a −1)(b +1)<0中一定成立的有( )A.2个B.3个C.4个D.5个二、填空题11.将式子(−20)+(+3)−(−5)−(+7)省略括号和加号后变形正确的是.12.将13.549精确到十分位得.13.一潜艇所在的高度是−50m,一条鲨鱼在潜艇的上方20m处,那么鲨鱼所在的高度为m.14.在某地区,夏季高山上的温度从山脚起每升高100米平均降低0.8℃,已知山脚的温度是24℃,山顶的温度是4℃,试问这座山的高度是米.15.如果x、y都是不为0的有理数且xy<0,则代数式x|x|+|y|y的值是.16.如图所示是计算机某计算程序,若开始输入x=2,则最后输出的结果是.17.设非零数a是平方等于它本身的数,b是相反数等于它本身的数,c是绝对值最小的数,则a+b+c=.18.你喜欢吃拉面吗?拉面馆的师傅,用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根很粗的面条拉成了许多细的面条,如下面草图所示.这样捏合到第次后可拉出2048根细面条.三、解答题19.计算.(1)12−(−6)+(−5)−15;(2)−113÷(−3)×(−13);(3)(−23+58−16)×(−24);(4)−14+16÷(−2)3×|−3−1|.20.阅读下面的解题过程:计算:(−15)÷(13−112−3)×6.解:原式=(−15)÷(−256)×6(第一步)=(−15)÷(−25)(第二步)=−35(第三步)回答:(1)上面解题过程中有两个错误,两处错误分别是第______,______步.(2)请写出正确的计算过程.21.有8筐白菜,以每筐25千克为标准,超过的千克数记作正数,不足的千克数记作负数,称后的记录如下:(1)与标准重量比较,8筐白菜总计超过或不足多少千克?(2)若白菜每千克售价2元,则出售这8筐白菜可卖多少元?22.出租车司机小李某天上午的营运都是在一条东西走向的大道上,规定向东为正,向西为负,这天上午小李的行车路程(单位:千米)如下:+3,−2,+15,−1,+12,−3,−2,−23.(1)当小李将最后一名乘客送到目的地时,车距出发地的距离是多少千米?在什么方向?(2)若每千米的营运额为7元,则小李这天上午的总营运额为多少元?(3)在(2)的条件下,如果营运成本为1.5元/千米,那么这天上午小李盈利多少元?参考答案:1.C2.A3.D4.A5.C6.C7.A8.D9.A10.C11.−20+3+5−712.13.513.−3014.250015.016.1817.118.1119.(1)−2(2)−427(3)5(4)−920.(1)二,三(2)108521.(1)不足5.5千克(2)389元22.(1)车在出发地西1千米处(2)427元(3)335.5元。
人教版七年级上册数学《第一章 有理数》单元测试卷及答案(共九套)

人教版七年级上册数学《第一章 有理数》单元检测试卷《第一章 有理数》单元检测(一) 时间:60分钟 总分:100分 得分:______一、选择题(本大题共10小题,每小题3分,共30分.在每小题的4个选项中,只有一项是符合题目要求的,请将正确答案的代号填在题后括号内) 1.下列说法中不正确的是( ). A .-3.14既是负数,分数,也是有理数 B .0既不是正数,也不是负数,但是整数 C .-2 000既是负数,也是整数,但不是有理数 D .0是正数和负数的分界 2.-2的相反数的倒数是( ). A .2B .C .D .-23.比-7.1大,而比1小的整数的个数是( ). A .6B .7C .8D .94.如果一个数的平方与这个数的差等于0,那么这个数只能是( ). A .0B .-1C .1D .0或15.我国最长的河流长江全长约为6 300千米,用科学记数法表示为( ). A .63×102千米 B .6.3×102千米 C .6.3×104千米D .6.3×103千米6.有理数a ,b 在数轴上的位置如图所示,下列各式正确的是( ).A .a >0B .b <0C .a >bD .a <b7.下列各组数中,相等的是( ). A .32与23B .-22与(-2)2C .-|-3|与|-3|D .-23与(-2)312128.在-5,,-3.5,-0.01,-2,-212各数中,最大的数是( ). A .-12B .C .-0.01D .-59.如果a +b <0,并且ab >0,那么( ). A .a <0,b <0 B .a >0,b >0 C .a <0,b >0D .a >0,b <010.若a 表示有理数,则|a |-a 的值是( ). A .0B .非负数C .非正数D .正数二、填空题(本大题共8小题,每小题3分,共24分.把答案填在题中横线上)11.的倒数是________,的相反数是______,的绝对值是________.12.在数轴上,与表示-5的点距离为4的点所表示的数是____________. 13.计算:-|-5|+3=__________. 所以-5+3=-2.14.观察下面一列数,根据规律写出横线上的数1,,,…,第2 013个数是________.15.比大而比小的所有整数的和为________.16.若|x -2|与(y +3)2互为相反数,则x +y =__________. 17.近似数2.35万精确到__________位. 18.对于任意非零有理数a ,b ,定义运算如下:a b =(a -b )÷(a +b ),那么(-3)5的值是__________.三、解答题(本大题共4小题,共46分) 19.计算:(每小题4分,共20分) (1)-20+(-14)-(-18)-13;(2)×÷(-9+19);110-110-123-123-123-12-1314-132-123172314(3)-24×;(4)(-81)÷+÷(-16);(5)(-1)3-÷3×[3-(-3)2].20.(8分)把下列各数分别填入相应的集合里.-4,,0,,-3.14,2 006,-(+5),+1.88(1)正数集合:{ …}; (2)负数集合:{ …}; (3)整数集合:{ …}; (4)分数集合{ …}.21.(8分)“十一”黄金周期间,南京市中山陵风景区在7天假期中每天旅游的人数变化如下表(正数表示比前一天多的人数,负数表示比前一天少的人数,单位:万人).(2)若9月30日的游客人数为2万人,求这7天的游客总人数是多少万人? 22.(10分)出租司机沿东西向公路送旅客,如果约定向东为正,向西为负,当天的行驶记录如下(单位:千米)+17,-9,+7,-15,-3,+11,-6,-8,+5,+16. (1)出租司机最后到达的地方在出发点的哪个方向?距出发点多远? (2)出租司机最远处离出发点有多远?(3)若汽车耗油量为0.08升/千米,则这天共耗油多少升?参考答案1答案:C 点拨:A 中-3.14不是-π,是负分数,C 选项中-2 000是负整数,更是有理数,所以说法错误.故选C.131243⎛⎫-+- ⎪⎝⎭12449112⎛⎫- ⎪⎝⎭43--2272答案:B3答案:C 点拨:比-7.1大,而比1小的整数有―7,―6,―5,―4,―3,―2,―1,0共8个,故选C.4答案:D 点拨:一个数的平方与这个数的差等于0,说明这个数的平方是它本身,所以只有0和1,故选D.5答案:D 点拨:A 中科学记数法表示为2位数错,B 、C 中10的指数错,只有D 正确,故选D.6答案:D 点拨:a 在原点左侧为负数,b 在原点右侧为正数,所以A 、B 、C 均错,只有D 正确.7答案:D 点拨:32=9,23=8,故A 错;-22=-4,(-2)2=4,所以B 错,-|-3|=-3,|-3|=3,所以C 错;-23=-8,(-2)3=-8,相等,故选D. 8答案:C 点拨:都是负数,-0.01的绝对值最小,所以-0.01最大.故选C.9答案:A 点拨:a +b <0,所以a ,b 中一定至少有一个负数,且负数的绝对值较大.又因为ab >0,所以a ,b 同号,且同为负号.10答案:B 点拨:可以用特殊值法求解,当a =2时,|a |-a =|2|-2=0;当a =0时,|a |-a =|0|-0=0;当a =-2时,|a |-a =|2|-(-2)=4,故选B.11答案: 点拨:根据概念分别写出.12答案:-9或-1 点拨:在表示-5的点的左右各有一个点到它的距离是4.从数值上看就是-5-4和-5+4,所以是-9和-1. 13答案:-2 点拨:-|-5|=-5, 14答案:点拨:这列数的排列规律是分母数与顺序数相同,偶数顺序号上的数是负数,奇数顺序号上的数为正数,所以第2 013个数是. 15答案:-3 点拨:比大而比小的整数是―3,―2,―1,0,1,2,它们的和是-3.16答案:-1 点拨:|x -2|与(y +3)2互为相反数, 所以|x -2|+(y +3)2=0,37-1231231201312013132-123所以x -2=0,y +3=0,所以x =2,y =-3,所以x +y =-1. 17答案:百18答案:-4 点拨:根据定义中规定的计算式子可知:(-3)5=(-3-5)÷(-3+5)=-8÷2=-4. 19解:(1)―20+(―14)―(―18)―13 =-20-14+18-13 =-20-14-13+18 =-47+18=-29;(2)×÷(-9+19)=; (3)-24×=12-18+8=2;(4)(-81)÷+÷(-16)=(-81)×+× =-36-=;(5)(-1)3-÷3×[3―(―3)2]=-1-÷3×(3―9) =-1-××(-6) =-1+1=0.点拨:有理数混合运算法则是先算乘方,再算乘除,最后算加减,有括号的先算括号里的,所以要注意运算顺序.20解:(1)正数集合:;1723141571571211024241016⨯÷=⨯⨯=131243⎛⎫-+- ⎪⎝⎭124494949116⎛⎫- ⎪⎝⎭13613636-112⎛⎫- ⎪⎝⎭12121322,2006, 1.88,7⎧⎫+⋅⋅⋅⎨⎬⎩⎭(2)负数集合:;(3)整数集合:{-4,-(+5),2006,0,…};(4)分数集合:.点拨:注意小数是分数;因分类不同,各数处于不同集合中,但不能漏. 21解:(1)人数最多的是3日,最少的是7日.解法一:设原来有a 人,它们相差:(a +1.6+0.8+0.4)-(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)=a +1.6+0.8+0.4-a -1.6-0.8-0.4+0.4+0.8-0.2+1.2=2.2(万人);解法二:3日时人数比原来增加1.6+0.8+0.4=2.8(万人),7日时比原来增加:1.6+0.8+0.4-0.4-0.8+0.2-1.2=0.6(万人), 所以3日比7日多2.8-0.6=2.2(万人).(2)这7天游客的总人数为:2×7+(1.6+0.8+0.4-0.4-0.8+0.2-1.2)=14+0.6=14.6(万人).答:这7天的游客总人数是14.6万人.点拨:(1)理解时要注意,表中人数是比前一日增加或减少的人数,可设原来有a 人,所以到3日时的人数是(a +1.6+0.8+0.4)万人,到7日时降到最少,这天的人数是(a +1.6+0.8+0.4-0.4-0.8+0.2-1.2)万人.人数相差就是求3日人数减去7日人数.(2)变化量是在9月30日,两万人的基础上变化的,所以每天的人数在前一日变化基础上还要加上2万人.22解:(1)+17-9+7-15-3+11-6-8+5+16 =+17+7+5+16+11-15-3-6-8-9 =56-41 =+15(千米).答:出租司机最后到达的地方在出发点的正东方向,距出发点15千米. (2)出租司机最远处离出发点有17千米. (3)56+|-41|=97(千米), 0.08×97=7.76(升).44,, 3.14,(5),3⎧⎫-----+⋅⋅⋅⎨⎬⎩⎭422, 3.14,, 1.88,37⎧⎫---+⋅⋅⋅⎨⎬⎩⎭答:这天共耗油7.76升.《第一章 有理数》单元检测(二) 七年级( )班 姓名: 分数:一、选择题(3分×12分=36分)1、下表是我国几个城市某年一月份的平均气温,其中气温最低的城市是( ). A 、北京 B 、武汉 C 、广州 D 、哈尔滨2、在有理数-21,+7,-5.3,10%,0,-32中自然数有m 个,分数有n 个,负有理数有p 个,比较m, n ,p 的大小得( ).A 、m 最小B 、n 最小C 、p 最小D 、m, n, p 三个一样大 3、有理数-3的倒数是( ).A 、-31B 、31C 、-3D 、34、质量检测中抽取标准为100克的袋装牛奶,结果如下(超过标准的质量记为正数)其是最合乎标准的一袋是( ). A 、② B 、③ C 、④ D 、⑤5、在算式 1○(-3)<-2中的○中填入一种运算符号可使不等关系成立,则这个运算符号是( ).A 、+B 、-C 、×D 、÷ 6、两个有理数a ,b 式子中运算结果为正数的式子是( ). A 、a+b B 、a -b C 、ab D 、ba7、计算(1-2)(3-4)(5-6)……(9-10)的结果是( ). A 、-1 B 、1 C 、-5 D 、108、下列计算中正确的是( ).A 、-9÷2 ×21 =-9, B 、6÷(31-21)=-1C 、141-141÷65=0,D 、-21÷41÷41=-89、国家游泳中心—“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积为260 000平方米,将260 000用科学记数法表示为( ). A 、0.26×106 B 、26×104 C 、2.6×106 D 、2.6×105 10、按括号内的要求用四舍五入法对1022.0099的近似值,其中错误..的是( ). A 、1022.01(精确到0.01)B 、1.0×103(保留2个有效数字)C 、1020(精确到十位)D 、1022.010(精确到千分位)11、已知|ab |=-ab ≠0 且|a |=|b |,则下列式子中运算结果不正确...的是( ).A 、a+b=0B 、011=+ba C 、022=+b a D 、033=+b a 12、甲、乙、丙三只电子跳蚤在数轴上分别以每秒9个、7个、6.5个单位长度的速度向右移动开始时乙在甲、丙两者之间,且丙在甲右边(如图),当x 秒后三只跳蚤的位置变为甲在乙丙之间则x 值可能是下列数中的( ).A 、11B 、14C 、17D 、20 二、填空题(3分×4=12分)13、已知两个有理数相加,和小于每一个加数,请写出满足上述条件的一个算式: . 14、一列等式如下排列:-2+52=-4÷221,-3+103=-9÷331,-4+174=-16÷441,……,根据观察得到的规律,写出第五个等式: . 15、已知|x |=3,()412=+y , 且xy <0 则x -y 的值是16、如图是一个正方体的平面展开图,每一个面 上写有一个整数并且每两个对面所写数的和都相等。
七年级上册数学人教版(2024)第一章 有理数 单元质检卷(含详解)

第一章有理数—七年级上册数学人教版(2024)单元质检卷【满分:120】一、选择题:(本大题共10小题,每小题4分,共40分,给出的四个选项中,只有一项是符合题目要求的)1.2023年第31届世界水日宣传语为:珍惜每滴清水,拥有美好明天.世界水日提醒我们节约用水要从生活中的点点滴滴做起.小丽将节约用水3立方米记作3+立方米,那么浪费用水2立方米记作()A.2-立方米B.2+立方米C.3-立方米D.3+立方米2.-5的相反数是()A.15- B.15C.5D.-53.下列数227, 3.17-,5-,0.4-,0.7中,正有理数的个数是()A.2B.3C.4D.54.如图所画数轴正确的个数为()A.0个B.1个C.2个D.3个5.对于6.4,-3,-0.6,23,0,2021,下列说法中正确的是()A.有理数有5个B.-0.6是负数但不是负整数C.非正数有2个D.有4个正数6.如图,数轴上有A、B、C、D四个点,其中绝对值最小的数对应的点是()A.点AB.点BC.点CD.点D7.如图,数轴上表示数 1.5-的点所在的线段是()A.ABB.BOC.OCD.CD8.手机信号的强弱通常采用负数来表示,绝对值越小表示信号越强(单位:dBm ),则下列信号最强的是()A.80- B.60- C.50- D.30-9.下列各组数中,互为相反数的是()A.23-与23⎛⎫-- ⎪⎝⎭ B.23-与32-- C.23-与23⎛⎫+- ⎪⎝⎭ D.23-与32-10.下列各组有理数的大小比较中,错误的是()A.3355⎛⎫-->- ⎪⎝⎭B.333344⎛⎫⎛⎫-->-+ ⎪ ⎪⎝⎭⎝⎭C.()1313+->-- D.()0.10+-<11.比较大小(填“>”、“<”或“=”)0_____1-;34-_____34;18-_____()10--.12.如图,点A 表示的数的相反数是______.13.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有_______个.14.如图所示数轴,则数a ,b ,a -,-b 中最小的是_________.15.已知A 和B 都在同一条数轴上,点A 表示2-,点B 和点A 相距5个单位长度,则点B 表示的数是_________.三、解答题(本大题共6小题,共计60分,解答题应写出演算步骤或证明过程)16.(8分)把下列各数填入表示它所在的数集的大括号:(2)把以上各数用“>”连接起来.请回答下列问题:(1)如果点A,B表示的数互为相反数,那么点C表示的数是多少?(2)如果点D,B表示的数互为相反数,那么点C,D表示的数是多少?21.(12分)已知数a,b表示的点在数轴上的位置如图所示.(1)在数轴上表示出a,b的相反数的位置,并将这四个数从小到大排列;(2)若数b与其相反数相距16个单位长度,则b表示的数是多少?(3)在(2)的条件下,若数a与数b的相反数表示的点相距4个单位长度,则a表示的数是多少?答案以及解析1.答案:A解析:如果节约用水3立方米记作3+立方米,那么浪费用水2立方米记作2-立方米.故选:A.2.答案:C解析:-5的相反数是5.故选C.3.答案:A解析: 3.17-、5-和0.4-都是负数,则正有理数有227,0.7,共2个,故选:A.4.答案:B解析:①单位长度不统一,故本选项错误;②不符合数轴右边的数总比左边的数大的特点,故本选项错误;③不符合数轴右边的数总比左边的数大的特点,故本选项错误;④符合数轴的特点,故本选项正确.故选:B.5.答案:B解析:有理数有6个,故A 选项错误;-0.6是负数但不是负整数,故B 选项正确;非正数有-3,-0.6,0,有3个,故C 选项错误;正数有6.4,23,2021,有3个,故D 选项错误.故选:B.6.答案:B解析:数轴上点A ,B ,C ,D 在数轴上表示的数距离原点越近,其绝对值越小,∴绝对值最小的数对应的点是B .故答案选B.7.答案:A解析:由数轴可知,数轴上表示数 1.5-的点所在的线段是AB ,故选:A.8.答案:D 解析:30506080-<-<-<- ,则信号最强的是30-,故选:D.9.答案:C解析:A 选项,2233-=,2233⎛⎫--= ⎪⎝⎭,两数相等,不互为相反数,此选项错误;B 选项,2233-=,3322--=-,两数不互为相反数,此选项错误;C 选项,2233-=,2233⎛⎫+-=- ⎪⎝⎭,两数互为相反数,此选项正确;D 选项,2233-=,3322-=,两数不互为相反数,此选项错误.故选C.解析: 点A在数轴上表示的数是2,∴点A表示的数的相反数是-2.故答案为:-2.13.答案:3解析:根据数轴的画法可知盖住的为0,1,2三个整数.-:当点B在点A右侧时,点B表示的数是3.解析:当点B在点A左侧时,点B表示的数是7-.故答案为3或7(2)由各数在数轴上的位置可知,5⎛->-⎝19.答案:(1)1.5--=.(5)()11在数轴上表示如图,>>>->-.由数轴可知1.5101 2.520.答案:(1)-1(2)0.5,-4.5解析:(1)因为点A,B表示的数互为相反数,所以原点的位置如图1中的点O所示,所以点C表示的数是-1.(2)因为点D,B表示的数互为相反数,所以原点的位置如图2中的点O所示,所以点C表示的数是0.5,点D表示的数是-4.5.b a a b21.答案:(1)数轴见解析,<-<<-(2)-8(3)4解析:(1)a,b的相反数的位置表示如图:b a a b;∴<-<<-(2) 数b与其相反数相距16个单位长度,则b表示的点到原点的距离为8,∴b表示的数是-8;(3) -b表示的点到原点的距离为8,而数a表示的点与数b的相反数表示的点相距4个单位长度,-=,∴a表示的点到原点的距离为844∴a表示的数是4.。
人教版七年级数学上册第一章 有理数单元测试卷(含答案)

人教版七年级数学上册第一章有理数一、选择题1.在−π3,3.1415,0,−0.333…,−227,2.010010001…中,非负数的个数( )A .2个B .3个C .4个D .5个2.长江干流上的葛洲坝、三峡向家坝、溪洛渡、白鹤滩、乌东德6座巨型梯级水电站,共同构成目前世界上最大的清洁能源走廊,总装机容量71695000千瓦,将71695000用科学记数法表示为( )A .7.1695×107B .716.95×105C .7.1695×106D .71.695×1063.生产厂家检测4个篮球的质量,结果如图所示,超过标准质量的克数记为正数,不足标准质量的克数记为负数,其中最接近标准质量的篮球是( )A .B .C .D .4.下列说法正确的是( )A .1是最小的自然数B .平方等于它本身的数只有1C .任何有理数都有倒数D .绝对值最小的数是05.计算 3−(−3) 的结果是( )A .6B .3C .0D .-66.下列说法:①有理数与数轴上的点一一对应;②1的平方根是它本身;③立方根是它本身的数是0,1;④对于任意一个实数a ,都可以用1a表示它的倒数.⑤任何无理数都是无限不循环小数.正确的有( )个.A .0B .1C .2D .37.把数轴上表示数2的点移动3个单位后,表示的数为( )A .5B .1C .5或-1D .5或18.如果|a|=−a ,那么a 一定是( )A .正数B .负数C .非正数D .非负数9.法国的“小九九”从“一 一得一”到“五五二十五”和我国的“小九九”是一样的,后面的就改用手势了.下面两个图框是用法国“小九九”计算7×8和8×9的两个示例,且左手伸出的手指数不大于右手伸出的手指数.若用法国的“小九九”计算7×9,左、右手依次伸出手指的个数是( )7×8=?8×9=?因为两手伸出的手指数的和为5,未伸出的手指数的积为6,所以7×8=56.7×8=10×(2+3)+3×2=56因为两手伸出的手指数的和为7,未伸出的手指数的积为2,所以8×9=72.8×9=10×(3+4)+2×1=72A .2,4B .1,4C .3,4D .3,110.如图是节选课本110页上的阅读材料,请根据材料提供的方法求和:11×2+12×3+13×4+⋅⋅⋅+12020×2021,它的值是( )上题是利用一系列等式相加消去项达到求和,这种方法不仅限于整数求和,如1−12=11×2①12−13=12×3②13−14=13×4③14−15=14×5④ ……继续写出上述第n 个算式,并把这些算式两边分别相加,会得到:11×2+12×3+13×4+⋅⋅⋅+1n ×(n +1).A .1B .20202021C .20192020D .12021二、填空题11.12的相反数是 . 12.-2的绝对值是 13.定义一种新运算“⊗”,规则如下:a ⊗b =a 2−ab ,例如:3⊗1=32−3×1=6,则4⊗[2⊗(−5)]的值为 .14.如图所示的运算程序中,若开始输入的值为−2,则输出的结果为 .15.若a−2+|3−b |=0,则3a +2b = .16.若a ,b ,c 都不为0,则 a |a|+b |b|+c |c|+abc|abc|的值可能是 .三、解答题17.把下列各数在数轴上表示出来,并用“<”号把它们连接起来.−3,|−3|,32,(−2)2,−(−2)18.将有理数−2.5,0,212,2023,−35%,0.6分别填在相应的大括号里.整数:{ …};负数:{ …};正分数:{ …}19.小明有5张写着不同数字的卡片,完成下列各问题:(1)把卡片上的5个数在数轴上表示出来;(2)从中取出3张卡片,将这3张卡片上的数字相乘,乘积的最大值为 ;(3)从中取出2张卡片,将这2张卡片上的数字相除,商的最小值为 20.把相同的瓷碗按如图方式整齐地叠放在一起.叠放4个时,测量的高度为9.5cm;叠放6个时,测量的高度为12.5cm.(1)根据题意,可知每增加一个瓷碗,高度增加 cm;(2)求碗高;(3)若叠放10个瓷碗,高度为 cm.21.若a,b互为相反数,c,d互为倒数,m的绝对值为2.(1)直接写出a+b=______,cd=____,m=____.(2)求m−cd+3a+3bm的值.22.我们知道,|a|可以理解为|a−0|,它表示:数轴上表示数a的点到原点的距离,这是绝对值的几何意义.进一步地,数轴上的两个点A,B,分别用数a,b表示,那么A,B两点之间的距离为AB=|a−b|,反过来,式子|a−b|的几何意义是:数轴上表示数a的点和表示数b的点之间的距离,利用此结论,回答以下问题:(1)数轴上表示数8的点和表示数3的点之间的距离是_________,数轴上表示数−1的点和表示数−3的点之间的距离是_________.(2)数轴上点A用数a表示,则①若|a−3|=5,那么a的值是_________.②|a−3|+|a+6|有最小值,最小值是_________;③求|a+1|+|a+2|+|a+3|+⋯+|a+2021|+|a+2022|+|a+2023|的最小值.23.数轴上点A表示的数为10,点M,N分别以每秒a个单位长度,每秒b个单位长度的速度沿数轴运动,a,b满足|a-5|+(b-6)2=0.(1)请直接与出a= ,b= ;(2)如图1,点M从A出发沿数轴向左运动,到达原点后立即返回向右运动:同时点N从原点0出发沿数轴向左运动,运动时间为t,点P为线段ON的中点若MP=MA,求t的值:(3)如图2,若点M从原点向右运动,同时点N从原点向左运动,运动时间为t时M运动到点A的右侧,若此时以M,N,O,A为端点的所有线段的长度和为142,求此时点M对应的数.答案解析部分1.【答案】B 2.【答案】A 3.【答案】B 4.【答案】D 5.【答案】A 6.【答案】B 7.【答案】C 8.【答案】C 9.【答案】A 10.【答案】B 11.【答案】﹣ 1212.【答案】213.【答案】−4014.【答案】815.【答案】1216.【答案】0或4或﹣417.【答案】图见解答,−3<32<−(−2)<|−3|<(−2)218.【答案】解:整数:0,2023;负数:−2.5,−35%;正分数:212,0.6.19.【答案】(1)解:如图所示(2)50(3)-820.【答案】(1)1.5(2)解:设碗高为xcm ,根据题意得x+1.5×3=9.5.解方程得,x=5 .答:碗高为5cm.(3)18.521.【答案】(1)0,1,±2;(2)1或−322.【答案】(1)5,2(2)①8或−2;②9;③1023132 23.【答案】(1)5;6(2)解:①点M未到达O时(0<t≤2时),NP=OP=3t,AM=5t,OM=10-5t,MP=3t+10-5t即3t+10-5t=5t,解得t=10 7,②点M到达O返回,未到达A点或刚到达A点时,即当(2<t≤4时),OM=5t-10,AM=20-5t,MP=3t+5t-10即3t+5t-10=20-5t,解得t=30 13③点M到达O返回时,在A点右侧,即t>4时OM=5t-10,AM=5t-20,MP=3t+5t-10,即3t+5t-10=5t-20,解得t=−103(不符合题意舍去).综上t=107或t=3013;(3)解:如下图:根据题意:NO=6t,OM=5t,所以MN=6t+5t=11t依题意:NO+OA+AM+AN+OM+MN=MN+MN+OA+MN=33t+10=142,解得t=4.此时M对应的数为20.。
有理数测试题及答案

有理数测试题及答案一、选择题1. 下列哪个数是有理数?A. √2B. πC. 1/3D. 0.8080080008…(每两个8之间依次增加一个0)答案:C2. 有理数的英文是什么?A. Rational numberB. Irrational numberC. Real numberD. Complex number答案:A3. 若a和b是有理数,且a/b ≠ 0,那么a和b至少有一个数是?A. 正数B. 负数C. 零D. 整数答案:D4. 两个有理数相加,结果必然是?A. 有理数B. 无理数C. 整数D. 零答案:A5. 以下哪个操作不会改变一个有理数的值?A. 乘以一个非零有理数B. 加上一个无理数C. 除以一个非零有理数D. 减去一个相同的有理数答案:D二、填空题1. 请写出一个有理数的例子:__________。
答案:2/32. 有理数可以表示为两个整数的比,即 a/b,其中a和b都是__________。
答案:整数3. 若一个有理数的分母为零,则该有理数是__________。
答案:未定义4. 一个有理数可以是__________或__________。
答案:正数负数5. 请写出一个无限循环小数的有理数例子:__________。
答案:1/3 = 0.33333…三、简答题1. 请简述什么是有理数。
答案:有理数是可以表示为两个整数的比的数,其中分母不为零。
这包括有限小数、无限循环小数以及整数。
2. 有理数和无理数有什么区别?答案:有理数可以表示为两个整数的比,而无理数则不能。
有理数可以是有限小数或无限循环小数,而无理数则是无限不循环小数。
3. 如何判断一个数是否是有理数?答案:如果一个数可以表示为两个整数的比,并且分母不为零,那么这个数就是有理数。
例如,所有整数、分数和无限循环小数都是有理数。
4. 请举例说明有理数的加法和减法。
答案:例如,1/2 + 1/3 = 5/6,这是一个有理数的加法例子。
有理数单元测试及答案

有理数单元测试及答案有理数单元检测试题一、填空题(本题共有9个小题,每小题2分,共18分)1、一幢大楼地面上有12层,还有地下室2层,如果把地面上的第一层作为基准,记为0,规定向上为正,那么惯上将2楼记为1;地下第一层记作-1;数-2的实际意义为地下第三层,数+9的实际意义为地面上的第十层。
2、如果数轴上的点A对应有理数为-2,那么与A点相距3个单位长度的点所对应的有理数为-5.3、某数的绝对值是5,那么这个数是-5或5.(保留四个有效数字)4、(4/3)²=16/9,(-4/3)²=16/9.5、数轴上和原点的距离等于3的点表示的有理数是-3或3.6、计算:(-1)+(-1)=-2.7、如果a、b互为倒数,c、d互为相反数,且m=-1,则代数式2ab-(c+d)+m=-1.8、(+5.7)的相反数与(-7.1)的绝对值的和是12.8.9、已知每辆汽车要装4个轮胎,则51只轮胎至多能装配12辆汽车。
二、选择题(本题共有10个小题,每小题都有A、B、C、D四个选项,请你把你认为适当的选项前的代号填入题后的括号中,每题2分,共20分)10、下列说法正确的是(C)。
A。
整数就是正整数和负整数B。
负整数的相反数就是非负整数C。
有理数中不是负数就是正数D。
零是自然数,但不是正整数11、下列各对数中,数值相等的是(A)。
A。
-2与(-2)B。
-3与(-3)C。
-3×2与-3×2D。
-( -3)与-( -2)12、在-5,-9,-3.5,-0.01,-2,-212各数中,最大的数是(D)。
A。
-12B。
-9C。
-0.01D。
-213、如果一个数的平方与这个数的差等于1,那么这个数只能是(B)。
A。
-1B。
1C。
0D。
或114、绝对值大于或等于1,而小于4的所有的正整数的和是(C)。
A。
8B。
7C。
6D。
515、计算:(-2)+(-2)的是(D)。
A。
2B。
-1C。
-2D。
有理数单元测试题及答案

有理数单元测试题及答案一、选择题(每题2分,共10分)1. 下列哪个数是有理数?A. πB. √2C. 1/3D. 0.33333(无限循环)答案:C2. 如果a和b都是有理数,且a > b,那么下列哪个选项是正确的?A. a + b > 0B. a - b > 0C. a × b > 0D. a ÷ b > 0答案:B3. 两个负有理数相加的结果是什么?A. 正数B. 负数C. 零D. 无法确定答案:B4. 下列哪个数是无理数?A. 0.5B. √3C. 1/7D. 3.1415答案:B5. 有理数a和b的绝对值相等,且a < b,那么a和b的和是多少?A. aB. bC. 0D. -2a答案:D二、填空题(每题2分,共10分)6. 如果一个有理数的绝对值是5,那么这个数可以是______或______。
答案:5,-57. 两个有理数相除,如果商是正数,那么这两个数的符号必须______。
答案:相同8. 如果一个有理数的平方是9,那么这个数可以是______或______。
答案:3,-39. 有理数的加法运算满足交换律,即a + b = ______ + a。
答案:b10. 有理数的乘法运算满足结合律,即(a × b) × c = a ×(______ × c)。
答案:b三、计算题(每题5分,共15分)11. 计算下列表达式的值:(-3) × 2 + 4 × (-2) - 6。
答案:原式 = -6 - 8 - 6 = -2012. 计算下列表达式的值:(-4)² - 3 × 2 - 5。
答案:原式 = 16 - 6 - 5 = 513. 计算下列表达式的值:(-2)³ + 3 × (-1/3) - 1。
答案:原式 = -8 - 1 - 1 = -10四、解答题(每题10分,共20分)14. 某商店在一天内卖出了10件商品,每件商品的售价为x元,成本为y元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1有理数单元检测001有理数及其运算(综合)(测试5)一、境空题(每空2分,共28分)1、31-的倒数是____;321的相反数是____. 2、比–3小9的数是____;最小的正整数是____. 3、计算:._____59____;2123=--=+-4、在数轴上,点A 所表示的数为2,那么到点A 的距离等于3个单位长度 的点所表示的数是5、两个有理数的和为5,其中一个加数是–7,那么另一个加数是____.6、某旅游景点11月5日的最低气温为2-,最高气温为8℃,那么该景点 这天的温差是____.C7、计算:.______)1()1(101100=-+-8、平方得412的数是____;立方得–64的数是____. 9、用计算器计算:._________95=10、观察下面一列数的规律并填空:0,3,8,15,24,_______.二、选择题(每小题3分,共24分)11、–5的绝对值是( ) A 、5 B 、–5 C 、51 D 、51- 12、在–2,+3.5,0,32-,–0.7,11中.负分数有( ) A 、l 个 B 、2个 C 、3个 D 、4个 13、下列算式中,积为负数的是( )A 、)5(0-⨯B 、)10()5.0(4-⨯⨯C 、)2()5.1(-⨯D 、)32()51()2(-⨯-⨯-14、下列各组数中,相等的是( )A 、–1与(–4)+(–3)B 、3-与–(–3)C 、432与169 D 、2)4(-与–1615、小明近期几次数学测试成绩如下:第一次85分,第二次比第一次高8分,第三次比第二次低12分,第四次又比第三次高10分.那么小明第 四次测验的成绩是…………( )A 、90分B 、75分C 、91分D 、81分16、l 米长的小棒,第1次截止一半,第2次截去剩下的一半,如此下去, 第6次后剩下的小棒长为( )A 、121 B 、321C 、641D 、128117、不超过3)23(-的最大整数是( )A 、–4B –3C 、3D 、418、一家商店一月份把某种商品按进货价提高60%出售,到三月份再声称 以8折(80%)大拍卖,那么该商品三月份的价格比进货价( ) A 、高12.8% B 、低12.8% C 、高40% D 、高28% 三、解答题(共48分) 19、(4分)把下面的直线补充成一条数轴,然后在数轴上标出下列各数: –3,+l ,212,-l.5,6.20、七年级一班某次数学测验的平均成绩为80分,数学老师以平均成绩为基准,记作0,把小龙、小聪、小梅、小莉、小刚这五位同学的成绩简 记为+10,–15,0,+20,–2.问这五位同学的实际成绩分别是多少分?221、(8分)比较下列各对数的大小. (1)54-与43- (2)54+-与54+-(3)25与52 (4)232⨯与2)32(⨯ 22、(8分)计算.(1)15783--+- (2))6141(21--(3))4(2)3(623-⨯+-⨯- (4)61)3161(1⨯-÷ 23、(12分)计算. (l )51)2(423⨯-÷- (2)75.04.34353.075.053.1⨯-⨯+⨯-(3)[]2)4(231)5.01(-+⨯÷--(4))411()2(32)53()5(23-⨯-÷+-⨯-24、(4分)已知水结成冰的温度是0C ,酒精冻结的温度是–117℃。
现有一杯酒精的温度为12℃,放在一个制冷装置里、每分钟温度可降低1.6℃,要使这杯酒精冻结,需要几分钟? (精确到0.1分钟)25、(4分)某商店营业员每月的基本工资为300元,奖金制度是:每月完成规定指标10000元营业额的,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%,该商店的一名营业员九月份完成营业额13200元,问他九月份的收入为多少元?26、观察数表.根据其中的规律,在数表中的方框内填入适当的数.34有理数单元检测002一、填空题(每小题2分,共28分) 1. 在数+8.3、 4-、8.0-、 51-、 0、 90、 334-、|24|--中,________________是正数,____________________________不是整数。
2.+2与2-是一对相反数,请赋予它实际的意义:___________________。
3.35-的倒数的绝对值是___________。
4.用“>”、“<”、“=”号填空:(1)1___02.0-; (2)43___54; (3)][)75.0(___)43(-+---;(4)14.3___722--。
5.绝对值大于1而小于4的整数有____________,其和为_________。
6.用科学记数法表示13 040 000,应记作_____________________。
7.若a 、b 互为相反数,c 、d 互为倒数,则 (a + b)33-(cd)4 =__________。
8.123456-+-+-+…20012002+-的值是__________________。
9.大肠杆菌每过20分便由1个分裂成2个,经过3小时后这种大肠杆菌由1个分裂成__________个。
10.数轴上表示数5-和表示14-的两点之间的距离是__________。
11.若0|2|)1(2=++-b a ,则b a +=_________。
12.平方等于它本身的有理数是_____________, 立方等于它本身的有理数是______________。
13.在数5-、 1、 3-、 5、 2-中任取三个数相乘,其中最大的积是___________,最小的积是____________。
14.第十四届亚运会体操比赛中,十名裁判为某体操运动员打分如下:10、 9.7、 9.85、 9.93、 9.6、 9.8、 9.9、 9.95、 9.87、 9.6,去掉一个最高分,去掉一个最低分,其余8个分数的平均分记为该运动员的得分,则此运动员的得分是_________。
二、选择题(每小题3分,共21分)15.两个非零有理数的和为零,则它们的商是( ) A .0 B .1- C .+1 D .不能确定16.一个数和它的倒数相等,则这个数是( ) A .1 B .1- C .±1 D .±1和0 17.如果a a -=||,下列成立的是( )A .0>aB .0<aC .0≥aD .0≤a18.用四舍五入法按要求对0.05019分别取近似值,其中错误的是( ) A .0.1(精确到0.1) B .0.05(精确到百分位)C .0.05(保留两个有效数字)D .0.0502(精确到0.0001) 19.计算1011)2()2(-+-的值是( ) A .2- B .21)2(- C .0 D .102- 20.有理数a 、b 在数轴上的对应的位置如图所示: 则( ) 0-11abA .a + b <0B .a + b >0;C .a -b = 0D .a -b >021.下列各式中正确的是( )A .22)(a a -=B .33)(a a -=;C .|| 22a a -=-D .|| 33a a = 三、计算(每小题5分,共35分) 26.)1279543(+--÷361; 27.|97|-÷2)4(31)5132(-⨯-- 28.322)43(6)12(7311-⨯⎥⎦⎤⎢⎣⎡÷-+--5四、解答题(每小题8分,共16分)29.某一出租车一天下午以鼓楼为出发地在东西方向营运,向东为正,向西为负,行车里程(单位:km )依先后次序记录如下:+9、 -3、 -5、 +4、 -8、 +6、 -3、-6、 -4、 +10。
(1)将最后一名乘客送到目的地,出租车离鼓楼出发点多远?在鼓楼的什么方向?(2)若每千米的价格为2.4元,司机一个下午的营业额是多少?30.某食品厂从生产的袋装食品中抽出样品20袋,检测每袋的质量是否符合标准,超过或不足的部分分别用正、负数来表示,记录如下表:这批样品的平均质量比标准质量多还是少?多或少几克?若每袋标准质量为450克,则抽样检测的总质量是多少?五、附加题(每小题5分,共10分)1.如果规定符号“﹡”的意义是a ﹡b =aba b+,求2﹡(3)-﹡4的值。
2.已知|1|x += 4,2(2)4y +=,求x y +的值。
3. 同学们都知道,|5-(-2)|表示5与-2之差的绝对值,实际上也可理解为5与-2两数在数轴上所对的两点之间的距离。
试探索: (1)求|5-(-2)|=______。
(2)找出所有符合条件的整数x ,使得|x+5|+|x-2|=7这样的整数是_____。
(3)由以上探索猜想对于任何有理数x ,|x -3|+|x -6|是否有最小值?如果有写出最小值如果没有说明理由。
(8分)4、若a 、b 、c 均为整数,且∣a -b ∣3+∣c -a ∣2=1,求∣a -c ∣+∣c -b ∣+∣b -a ∣的值(8分) 7.如下图,一个点从数轴上的原点开始,先向右移动了3个单位长度,再向左移动5个单位 长度,可以看到终点表示的数是-2,已知点A 、B 是数轴上的点,完成下列各题:(1)如果点A 表示数-3,将点A 向右移动7个单位长度,那么终点B 表示的数是_________,A 、B 两点间的距离是________。
(2)如果点A 表示数是3,将点A 向左移动7个单位长度,再向右移动5个单位长度,那么终点B 表示的数是_______,A 、B 两点间的距离是________。
一般地,如果点A 表示数为a ,将点A 向右移动b 个单位长度,再向左移动c 个单位长度,那么请你猜想终点B 表示的数是________,A 、B 两点间的距离是______2.读一读:式子“1+2+3+4+5+…+100”表示1开始的100个连续自然数的和.•由于上述式子比较长,书写也不方便,为了简便起见,我们可以将“1+2+3+4+5+•…+100”表示为1001n n =∑,这里“∑”是求和符号.例如:1+3+5+7+9+…+99,即从1开始的100以内的连续奇数的和,可表示为501n =∑(2n-1);又如13+23+33+43+53+63+73+83+93+103可表示为101n =∑n 3. 通过对上以材料的阅读,请解答下列问题.(1)2+4+6+8+10+…+100(即从2开始的100以内的连续偶数的和)用求和符合可表示为_________________; (2)计算51n =∑(n 2-1)=________________.(填写最后的计算结果)6参考答案1.+8.3、90; +8.3、8.0-、51-、334-。