(品管工具FMEA)FMEA失效分析的思路与诊断

合集下载

fmea失效分析

fmea失效分析

fmea失效分析FMEA(失效模式与影响分析)是一种常用的风险管理工具,用于识别、评估和修复过程或系统中的潜在失效模式及其可能的影响。

它可以帮助组织在设计、生产或运营过程中及时识别和处理潜在的风险,从而提高产品和服务的质量和可靠性。

FMEA方法通常由一系列步骤组成。

首先,将制定一个团队,由跨职能成员组成,以确保各个方面的声音都被听到。

然后,确定需要进行FMEA分析的过程或系统的范围和目标。

接下来,对每个潜在的失效模式进行识别和描述,并确定其可能的原因。

在此过程中,关注可能的失效模式和与之相关的因果关系。

为了识别潜在的失效模式,通常会使用一些常见的技术和工具,如故障树分析、故障模式分析和经验故障数据等。

在描述失效模式时,需要尽量详细和准确,以便后续的分析和预防措施制定。

在识别和描述失效模式之后,FMEA团队需要对每个失效模式进行评估。

评估的目标是确定失效的频率、严重性和检测能力,以便确定每个失效模式的风险优先级。

频率是指失效模式发生的可能性,严重性是指失效模式造成的影响程度,检测能力是指在失效发生之前是否能够有效地检测到失效模式。

根据这些评估结果,将为每个失效模式分配一个风险优先级指数,用于确定哪些失效模式是最重要和最紧急处理的。

在评估失效模式后,FMEA团队需要制定相应的预防和纠正措施来减少风险。

这些措施可以包括改变设计、重新评估过程、加强培训和监督、使用可靠性工程方法等。

在制定措施时,需要考虑成本效益、可行性和实施时间等因素。

此外,还需要制定一套有效的措施跟踪和验证计划,以确保措施的实施和有效性。

FMEA是一个持续改进的过程。

在实施措施之后,团队需要定期回顾和重新评估失效模式,以了解措施的有效性,并及时修订措施和预防措施,以确保风险的持续控制和管理。

总的来说,FMEA是一个有效的工具,可以帮助组织在设计、生产和运营过程中识别和管理潜在的风险。

通过将风险优先级分配给各种失效模式,组织可以有针对性地制定预防措施来降低风险。

{品质管理FMEA}FMEA失效模式和影响分析PPT48页

{品质管理FMEA}FMEA失效模式和影响分析PPT48页
失效(Failure)-由损毀、损耗或
结构不良等所做成的故障,均可称
为失效
失效模式(Failure Mode)-当元件
(元件Eleme失n效t)能用
弹簧
太松、太紧、易断
马达
太快、太慢、噪音大
定义(续)
失效模式(Failure Mode)当系统/产品环境/工序上的
小组人员须确保每项建议行动均可 实施及已记录最新的状态
产品规格、流程图、平面图、QC报告、旧产品的FMEA
一般策略
确定每一会议的具体目标 利用活页纸收集信息,不要
使用FMEA表格 在讨论期间,收集所有讯息
资料,不论有用或无用 记录所有数据资料,然后进
行分类,确定其相关性
小组工作指南和协作技能
制定FMEA需要多长时间
典型的FMEA准备工作根据 产品和制程的复杂性及小组 的知识能力,一般需要:
˃ 了解顾客的要求:
3天
˃ 分析:
3天
˃ 分类:
3天
˃ 回顾现有的运作:
3天
˃ 先知先觉商讨改进工作: 3天
FMEA小组
FMEA的实施,有赖各部门 人员的专业知识和共同合作
筹备过程
组建工作组 确定小组职责 确定工作范围 制定小组策略 安排会议日期、时间及地点 收集可利用的信息
各阶段纠正问题成本
成本$
客户投诉
制造及装配
设计验证
FMEA
产品策划
设计
寻找 方法 及 解决 问题
预防
生产
应用
实施FMEA(续)
在以下的一些情况下,均可 以实施FMEA技术
1. 新设计/技术/工序适用于完成整个设计/技术/工序的分析
2. 改良现有设计/工序应集中于分析改变的地方

FMEA失效模式和效果分析

FMEA失效模式和效果分析

FMEA失效模式和效果分析FMEA(Failure Mode and Effects Analysis,失效模式和效果分析)是一种常用的风险评估工具,用于识别和评估系统、产品或过程中可能出现的失效模式及其可能的后果。

它通过系统地分析和评估潜在的失效模式,帮助组织预测和防范风险,以减少事故和次品的发生。

本文将详细介绍FMEA的定义、步骤和应用。

首先,FMEA的定义是指一种系统性的、分析性的方法,用于识别和评估系统、产品或过程中可能出现的失效模式及其可能的后果。

它通过将失效模式和可能的影响进行系统分析,以确定影响最大的失效模式和可能的原因,并提出预防和纠正措施,从而减少潜在风险的发生。

FMEA的步骤一般包括确定团队、定义过程、识别失效模式、评估失效后果、确定风险等级、制定纠正措施、实施并验证改进措施。

以下是对每个步骤进行详细解读:1.确定团队:确定一个多学科和有代表性的团队,包括设计、工程、制造、质量等各个相关领域的专业人员。

团队成员应具备丰富的经验和专业知识。

2.定义过程:确定要进行FMEA分析的系统、产品或过程。

明确所需评估的范围和目标。

3.识别失效模式:通过团队的讨论和头脑风暴,识别可能存在的失效模式。

失效模式是指系统、产品或过程在特定条件下失效的方式或形式。

4.评估失效后果:对于每个失效模式,评估其可能造成的后果和影响。

这包括安全影响、产品质量、客户满意度等方面的影响。

5.确定风险等级:根据失效模式的后果和可能性,评估其风险等级。

通常使用风险矩阵来划分风险等级,以帮助确定重要性和优先级。

6.制定纠正措施:针对高风险等级的失效模式,制定相应的纠正措施。

这包括预防措施来防止失效的发生,以及纠正措施来解决已经发生的失效。

7.实施并验证改进措施:根据纠正措施的计划,执行相应的改进措施,并进行验证和确认。

确保改进措施的有效性和可行性。

FMEA具有广泛的应用领域。

它可以用于设计过程中的设计FMEA,用于评估产品的可靠性和安全性;也可以用于制造过程中的制造FMEA,用于识别和评估可能导致产品质量问题的制造过程;同时,FMEA还可以用于服务过程中的服务FMEA,用于评估可能影响服务质量和客户满意度的过程。

失效模式与影响分析FMEA

失效模式与影响分析FMEA

失效模式与影响分析FMEA失效模式与影响分析(Failure Mode and Effects Analysis, FMEA)是一种常用的质量管理工具,主要用于识别潜在的失效模式及其对系统、产品或流程性能的影响,以便采取相应的预防和纠正措施,提高质量和可靠性。

FMEA的过程通常包括以下几个步骤:1.确定分析范围:确定需要进行FMEA分析的系统、产品或流程,并明确分析的目标。

2.定义失效模式:识别可能的失效模式,即系统、产品或流程可能出现的各种问题、故障或失效,包括设计失效、制造失效、装配失效等。

3.评估失效影响:对每个失效模式进行评估,分析其对系统、产品或流程性能的影响。

评估可以从多个维度进行,如安全性、可靠性、功能性、经济性等。

4.确定失效原因:确定每个失效模式的潜在原因。

可以使用多种工具和方法,如因果图、5W1H、鱼骨图等,来帮助确定失效的根本原因。

5.评估现有控制措施:评估当前已经实施的控制措施对失效模式的效果。

确定哪些失效模式已经通过其他控制措施得到有效控制,哪些失效模式仍然存在较高的风险。

6.制定改进措施:针对高风险的失效模式,制定相应的改进措施。

改进措施可以包括设计改进、工艺改进、培训和教育、检测和监控等。

7.实施并验证改进措施:将改进措施实施到实际生产或运营中,并验证其效果。

跟踪和监控改进措施的实施情况,并对其效果进行评估。

通过进行FMEA分析,可以帮助组织识别和管理潜在的风险,提前采取预防措施,减少系统、产品或流程的失效概率,以实现质量和可靠性的提升。

FMEA分析可以应用于各个领域,如制造业、医疗设备、航空航天、汽车等。

FMEA的应用具有以下几个特点和优势:1.预防导向:FMEA分析主要关注于预防失效模式的发生,通过分析潜在的失效原因和影响,预测可能的失效模式,制定相应的预防措施,从而避免质量问题的发生。

2.多维度评估:FMEA分析不仅关注失效模式的影响对系统、产品或流程的影响,还可以从多个维度进行评估,如安全性、可靠性、功能性、经济性等,以全面了解失效模式的风险。

FMEA失效模式及后果分析手册精选全文

FMEA失效模式及后果分析手册精选全文

可编辑修改精选全文完整版FM E A 失效模式及后果分析手册FMEA (Failue Mode &Effect Analgsis ) Failue :失效、失败、不良 Mode :模式Effect :后果、效应、影响 Analgsis :分析一、FMEA 思维逻辑方法:D ’FMEA —→分析着重点BOM 表的零件及组装件P ’FMEA —→分析着重点OPC/AC 的零件加工及组装的工艺流程PRN 高风险优先系数 重点管理原则控制重点少数,不重要大多数列为次要管理 轻重缓急,事半功倍类比量产品(模块化) 工艺流程 过程参数/工艺条件 质量特性类比量产品 质量不良履历失败经验产品病历卡预设未来新产品投产后可能/潜在的会出现类似的不良事前 分析原因 整改措施(鱼刺图)先期产品质量策划结果控制计划(欧美) QC 工程表(台/日)新产品投产施工的要求监视和测量(首中末件检查)开发新产品例:有20项不良,前3项不良占70%,对策能解决50%的不良,70%*50%=35%后17项不良占30%,对策能解决100%的不良,30%*100%=30%①质量管理AC 柏拉图分析②物料管理MC 物料ABC法避免待料停工目的降低库存量的成本二、在何种情况下应进行FMEA分析:新产品开发阶段1、RP N≥1002、严重度/发生度/难检度(任一项)≥7;3、严重度≥7,发生度≥3;4、发生度≥5,难检度≥4量产阶段秉持持续改善的精神三、FMEA建立与更新时机1、新产品开发时;2、设计变更时(材质变更,BOM变更);3、工程变更;4、检验方法变更(检验设备/项目/频度)5、定期审查更新(建议每季度修订,至少也要每半年)四、FMEA分析表作成说明35%>30%重效果大,轻效果小活性化文件随时更新有效版本的识别(以修订日期)1、增加零件编号与名称:与BOM 表一致(D ’FMEA 分析,着眼在构成零件及组装件);2、增加工序编号与名称:与OPC/AC 表一致(P ’FMEA 分析,着眼在加工与组装工艺流程,D ’FMEA 可省略)3、功能与要求:已含外观、颜色、尺寸及ES TEST 功能质量要求;4、潜在失效模式:类比量产品质量不良履历(历史档)→产量履历→失效分析累积5、潜在失效效应(后果):万一不良时会造成的后果,如影响安全性/功能性/一般性,必须站在广义的客户中思考,包含: ● 下工程● 直接客户:下购销合同者/客户:如代理商 ● 最终客户:user/消费者6、严重度:参照对照表予以评估,复合型≥7;功能性4~6;一般性<4;7、分类(等级)class :与CC/SC 管制特性计划清单一致,包含符号识别,如FORD ▽,通用,依客户指定或本司对等的符合标注。

FMEA失效分析与失效模式分析全

FMEA失效分析与失效模式分析全
的残留奥氏体、脱碳及偏析)。 由表面淬火引起的缺陷(晶间碳化物、软心、错误的热循环)。 不小心的组装(配合件的错误匹配、带入灰尘或磨料、残余应力、零件
擦伤或损坏)。 由于横向性能差而在锻件中出现分离线的失效现象。
11
在服役条件下由于质量恶化而产生失效的原因包括
过载或未预见的加载条件。 磨损(磨蚀、因过度磨损而咬住、粘住、擦伤、气蚀)。 腐蚀(包括化学接触、应力腐蚀、腐蚀疲劳、脱锌、铸铁石
找出被分析对象的“单点故障”。所谓单点故障是指这种故障单独发 生时,就会导致不可接受的或严重的影响后果。一般说来,如果单点 故障出现概率不是极低的话,则应在设计、工艺、管理等方面采取切 实有效的措施。产品发生单点故障的方式就是产品的单点故障模式。
为制定关键项目清单或关键项目可靠性控制计划提供依据。 为可靠性建模、设计、评定提供信息。 揭示安全性薄弱环节,为安全性设计(特别是载人飞船的应急措施、
16
什么是失效分析?
失效分析:考察失效的构件及失效的情景(模式), 以确定失效的原因。
失效分析的目的:在于明确失效的机理与原因。改 进设计、改进工艺过程、正确地使用维护。
失效分析的主要内容:包括明确分析对象,确定失 效模式,研究失效机理,判定失效原因,提出预防 措施(包括设计改进)。
17
失效分析的要点?
失效模式的判断分为定性和定量分析两个方面。在一般 情况下,对一级失效模式的判断采用定性分析即可。而 对二级甚至三级失效模式的判断,就要采用定性和定量、 宏观和微观相结合的方法。
19
一级失效模式的分类
20 主要失效模式的分类与分级
21
如某型涡轮叶片在第一榫齿处发生断裂,通过断口 的宏观特征可确定一级失效模式为疲劳失效。然后 通过对断口源区和扩展区特征分析和对比,并结合 有限元应力分析等,可作出该叶片的断裂模式为起 始应力较大的高周疲劳断裂的判断,即相当于作出 了三级失效模式的判断。

FMEA第五版教材的潜在失效模式分析方法与步骤详解

FMEA第五版教材的潜在失效模式分析方法与步骤详解

FMEA第五版教材的潜在失效模式分析方法与步骤详解潜在失效模式分析(Failure Mode and Effects Analysis,FMEA)是一种常用的质量管理工具,通过识别潜在的失效模式,分析其潜在的影响,旨在预防或减小潜在的失效对产品、系统或服务质量造成的影响。

FMEA第五版教材提供了一套全面而系统的FMEA分析方法与步骤,本文将对其进行详细解析。

一、FMEA概述FMEA是一种结构化的方法,用于评估、分析产品或流程中可能发生的潜在失效模式,以及这些失效可能会导致的后果。

它通过综合考虑失效的严重性、发生的频率以及发现和控制失效的可能性,确定风险等级,并制定相应的预防和纠正措施。

二、FMEA分析的步骤1. 确定分析的范围和目标:明确需要进行FMEA分析的产品或流程范围,并设定分析的目标和要求。

2. 组织FMEA团队:组建跨职能的团队,包括设计、工艺、质量控制等相关部门的专家和人员。

3. 识别失效模式:通过系统性的分析和讨论,识别可能的失效模式。

可以借助过去的经验、故障数据和专家知识进行辅助。

4. 评估失效的严重性:对每个失效模式进行评估,确定失效对产品、系统或服务的安全性、质量和客户满意度等的影响程度。

5. 分析失效原因:分析导致失效的潜在原因,包括设计、材料、人员、工艺等因素。

6. 评估失效的发生频率:评估每个失效模式的发生频率,考虑使用寿命、工作环境、使用条件等因素。

7. 评估失效的探测能力:评估失效是否能够被及时探测到,包括检测手段、监控系统、操作流程等。

8. 计算风险优先级数(RPN):根据失效的严重性、发生频率和探测能力,计算每个失效模式的风险优先级数。

9. 制定纠正和预防措施:根据风险优先级数,确定相应的纠正和预防措施,包括设计改进、工艺优化、培训措施等。

10. 完成FMEA报告:整理并完善FMEA分析结果,形成FMEA报告,包括失效模式、影响严重性评估、原因分析、风险优先级数和纠正措施等内容。

FMEA失效模式和相应后果分析

FMEA失效模式和相应后果分析

FMEA失效模式和相应后果分析FMEA(Failure Mode and Effects Analysis)是一种系统性的、分析性的过程,用于识别和评估可靠性和可维修性问题。

它主要用于评估系统或过程中的潜在失效模式及其可能的影响,以便能够采取适当的措施来预防或减轻这些失效的后果。

FMEA可以应用于各种不同领域和行业,例如制造业、医疗保健、航空航天、汽车等。

它被广泛用于提高产品或过程的质量和可靠性,并减少可能导致故障或损害的潜在因素。

FMEA的过程可以分为以下几个步骤:1.识别失效模式:通过分析系统或过程的各个组成部分和步骤,识别可能导致失效的模式。

失效模式可以是组件的异常操作、材料的磨损或老化、不正确的装配等。

2.评估失效后果:对于每个失效模式,评估它可能导致的后果。

后果可以是人员伤亡、生产延误、产品质量下降、环境污染等。

3.评估失效频率:评估每个失效模式发生的频率。

频率可以通过历史数据、实验或专家意见进行估算。

4.评估探测和防范控制措施:评估已经存在的或可行的探测和防范措施,以减少失效的可能性或降低其后果。

这些措施可以包括使用更可靠的材料、改进设计、增加监控和检测设备等。

5.重新评估风险优先级:根据探测和防范措施的效果,重新评估每个失效模式的风险优先级。

优先级较高的失效模式可能需要采取更严格的措施来管理和避免。

FMEA的结果通常以表格的形式呈现,每个失效模式都有一个风险优先级,由失效频率、后果严重性和探测和防范控制措施的效果决定。

这些表格可以用于指导制定改进措施、预测潜在问题并制定应对计划。

FMEA的优点在于它能够通过系统性的分析和评估来识别和控制潜在的问题,减少了产品或过程的故障和损害的风险。

它还可以促进跨功能团队的合作,提高团队成员对系统或过程的理解和意识。

然而,FMEA也有一些局限性。

首先,它的结果是基于已有的信息和数据进行估算的,因此可能存在一定的不确定性。

其次,FMEA的结果仅仅是估算的风险优先级,实际的风险可能会因为未知因素而有所变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(品管工具FMEA)FMEA失效分析的思路与
诊断
失效分析的思路和诊断
第二章失效分析的思路
第壹节常用的几种失效分析思路壹、“撤大网”逐个因素排除法
表2-1事故的管理责任
二、以设备制造全过程为壹系统进行分析
任何壹个设备均要经历规划、设计、选材、机械加工(包括铸、锻、焊等工艺)、热处理、二次精加工(研磨、酸洗、电镀)和装配等制作工序,如果失效已确定纯属设备问题,仍可对上述工序逐个进壹步分析,包括以下内容:1.设计不当
(1)开孔位置不当造成应力集中;
(2)缺口或凹倒角半径过小;
(3)高应力区有缺口;
(4)横截面改变太陡;
(5)改变设计,没有相应地改变受力情况;
(6)设计判据不足;
(7)计算中出现过载荷;
(8)焊缝选择位置不当,以及配合不适当等;
(9)对使用条件的环境影响,未做适当考虑;
(10)提高使用材料的受力级别;
(11)刚性和韧性不适当;
(12)材料品种选择错误;
(13)选择标准不当;
(14)材料性能数据不全;
(15)材料韧脆转变温度过高;
(16)对现场调查不充分,认识不足就投入设计;
(17)和用户配合有差错。

2.材料、冶金缺陷
(1)成分不合格;
(2)夹杂物含量及成分不合格;
(3)织组不合格;
(4)各种性能不合格;
(5)各向异性不合格;
(6)断口不合格;
(7)冶金缺陷(缩孔、偏析等);
(8)恶化变质;
(9)混料。

3.锻造等热加工工艺缺陷
(1)折叠、夹砂、夹渣;
(2)裂缝;
(3)锻造鳞皮;
(4)流线分布突变或破坏;
(5)晶粒流变异常;
(6)沿晶氧化(过烧);
(7)氧化皮压入;
(8)分层、疏松;
(9)带状组织;
(10)过热、烧裂;
(11)外来金属夹杂物;
(12)缩孔;
(13)龟裂;
(14)打磨裂纹;
(15)皱纹。

4.机械加工缺陷
(1)未按图纸要求;
(2)表面粗糙度不合格;
(3)倒角尖锐;
(4)磨削裂纹或过烧;
(5)裂纹;
(6)划伤、刀痕;
(7)毛刺;
(8)局部过热;
(9)矫直不当。

5.铸造缺陷
(1)金属突出;
(2)孔穴;
(3)疏松;
(4)不连贯裂纹;
(5)表面缺陷;
(6)浇注不完全;
(7)尺寸和形状不正确;(8)夹砂、夹渣;(9)组织反常;(10)型芯撑、内冷铁。

6.焊接缺陷
(1)错口超标;
(2)咬边超标;
(3)焊肉过凸或过凹;
(4)焊道深沟;
(5)焊趾、焊缝或根部有裂纹;
(6)熔化不全;
(7)打弧;
(8)焊接深度不够,未焊透;
(9)夹渣、夹杂或疏松;
(10)接头尺寸不合格;
(11)热输入不适当;
(12)焊前预热不足;
(13)焊后消除热应力不够或未消除;
(14)显微组织不合格;
(15)焊接裂纹。

7.热处理不当
(1)过热或过烧;
(2)显微组织不合格;
(3)淬火裂纹;
(4)淬火变形、翘曲;
(5)奥氏体化温度不当使晶粒粗大;
(6)脱碳或增碳;
(7)渗氮;
(8)回火脆化;
(9)淬火后未及时回火;
(10)热应力。

8.再加工缺陷
(1)酸洗后或电镀后未除氢或除氢不够;
(2)酸迹清洗未尽;
(3)镀前喷丸清洗不全;
(4)电镀电极打弧引起硬点;
(5)镀Cd、镀Zn的液态金属脆化;
(6)形成金属间化合物致脆;
(7)碰伤、标记压痕过深或位置不当;
(8)校直引起残余应力;
(9)镀铬碎屑划伤;
(10)化学热处理不当;
a.渗层组织反常;
b.力学性能不合格。

9.装配检验中的问题
(1)轴线对中不正;
(2)紧固件松动;
(3)敲打损伤;
(4)装配损伤;
(5)装配不正确;
(6)强迫装配;
(7)装配说明书说明不全或不清楚;
(8)装配马虎大意;
(9)磁粉检查电弧烧伤;
(10)磁化吸住钢屑造成磨损;
(11)漏检。

10.使用和维护不当
(1)超载、超温、超速;
(2)冲撞、热冲击;
(3)振动过大的断续载荷;
(4)操作错误、没按说明书要求做;
(5)每次开车或停车猛烈、突然;
(6)清洗剂不适合;
(7)润滑不当;
(8)疏忽,不按期维护;
(9)没定期检查;
(10)修理不当;
(11)灾害预防措施不完善;
(12)安全措施差;
(13)漏电;
(14)早期疲劳裂纹。

11.环境损伤
(1)腐蚀性气氛介质;
(2)高温或温度陡度过大;
(3)低温;
(4)海洋气氛;
(5)碱性溶液;
(6)氨气氛;
(7)润滑介质不适合;
(8)润滑剂变质或污染;
(9)流体介质中含有磨粒;
(10)控制的或规定的环境不适当。

上面列举了可能引起设备系统失效的壹些主要因素,当然这且非全部因素。

仍应指出,于某壹大方面(如热处理不当)的因素中,有的仍能够往前追查原因,例如对于热处理不当的淬火裂纹,仍可进壹步分析其原因,如表2-2所列举的。

表2-2导致形成淬火裂纹的因素
对于使用中承受交变载荷的部分出现的早期疲劳断裂,也可进壹步分析其失效原因,如表2-3所示:
表2-3金属部件疲劳失效的诱发因素
三、根据部件失效模式分析
机械产品壹旦失效,壹般表现为过量变形、表面损伤、破裂或断裂三种主要形式。

这些类型仍要进壹步按失效模式再细分类。

下面表2-4是按实际观察到的壹些失效模型⑵所作的分类。

表2-4金属零部件的各种失效模式
六、根据部件和设备类别分析
1.轴类零件的失效原因
轴类的失效模式,有以下12种:
(1)单向弯曲疲劳;
(2)双向弯曲疲劳;
(3)旋转弯曲疲劳;
(4)扭转疲劳;
(5)接触疲劳;
(6)微振疲劳;
(7)脆性疲劳;
(8)延性疲劳;
(9)塑性变形;
(10)磨损失效;
(11)蠕变断裂;
(12)腐蚀断裂。

常见的有弯曲疲劳损坏、扭转疲劳损坏、复合的(弯曲和扭转)疲劳损坏、和超载或撞击的延性断裂。

引起轴类失效的原因如表2-8和表2-9所示⑸。

表2-8轴类失效的原因和诱发因素
表2-9联邦德国阿利安茨技术中心1968—1975年间对传动轴和
支承轴失效案例统计⑸
a.包括制订产品规划和设计的失误(结构布局不合理、计算错误、几何形
状不合理、选材不当等)。

制造工艺和处理工艺所造成的缺陷(如焊
接、铸造、热处理、机加工缺陷等),装配或安装造成的缺陷,以及混料、用错料等原因引起的失效。

b.如因振动造成的松动、安全保护装置失灵,伺服设施故障、磨损、腐
蚀、失效老化等引起的失效。

c.如自然灾害、异物侵袭、电网超高压等造成的失效。

2.滑动轴承的失效原因
滑动轴承失效的表现形式,常见的是轴瓦上有磨损沟槽、腐蚀斑块,剥落和麻点。

其原因和诱发因素列于表2-10。

表2-10滑动轴承失效的原因和诱发因素
3.滚动轴承的失效原因
不同的失效原因造成滚动轴承失效的形式也大不相同,说明于表2-11和表2-12。

4.弹簧的失效原因
弹簧失效的主要模式是疲劳断裂和脆性断裂。

其次是腐蚀断裂、应力腐蚀断裂、氢脆、黑脆、松弛、变形和磨损。

现将弹簧脆断和疲劳断裂的原因和影响因素列表于2-13。

至于俩种断裂的特征,横向平断口上无贝壳花样的为脆断;斜断口上有贝壳花样的为疲劳断。

表2-11滚动轴承失效的原因及其对应的损坏形式
表2-12滑动轴承和滚动轴承失效案例原因的统计分布⑸
表2-13弹簧脆性断裂和疲劳断裂的原因
5.齿轮的失效原因
齿轮损伤的模式,主要表现为断齿和齿面损伤。

现将齿轮失效模式和失效原因列表如下。

表2-14齿轮失效的模式、形貌和原因
注:1.上述失效模式中,以疲劳断裂、麻点、磨损和咬接四种最常见。

2.麻点、齿面剥落、磨损、咬接、塑性变形和裂纹均能促进疲劳断裂,其中的后
二种常导致疲劳断裂。

相关文档
最新文档