【全国大学生数学建模竞赛历年国赛评阅要点】2017数学建模A题评阅要点

合集下载

数模国赛2017A题原创优秀论文

数模国赛2017A题原创优秀论文

数模国赛2017A题原创优秀论文三、模型假设1.假设CT光源的旋转中心在探测器的中垂线上。

2.假设X光不会发生衍射等其他影响吸收强度的现象。

四、符号说明五、模型建立与求解1.问题一1.1.建立坐标系椭圆方程较为复杂,为方便分析,选择在椭圆中心建立直角坐标系,可得模板椭圆和圆的方程为:1.2. 增益的确定1.2.1 的模型查阅资料可知X光吸收强度与其穿过的介质长度和密度有关,令模板的密度函数为,可得由于椭圆和圆模板均为均匀介质,可认为为常数,可得可知X光吸收强度和其穿过的介质长度呈正比,令增益,即可得1.2.2 的计算选取中非0数据最多的六列数据,可以有效减小系统误差。

取每一列数据数值最大的几个值,其表示椭圆短轴和圆直径吸收衰减后的X射线能量经增益处理的量值,取六个方向平均值,对应为38;同理选取中非0数据最少的六列数据,此时探测器位于平行于x 轴的位置,两段不为0 数据中的最大值分别表示椭圆长半轴和圆直径吸收衰减后的射线能量增益后的量值,取三个方向平均值分别得,对应的,为80 和8。

对这三组数据用excel进行最小二乘法拟合,得到μ=1.7713。

过程如图所示:1.3 探测器间距离确定通过附件2,可知中每一列非0数据的个数,即为X光源截得相应弦长,对应的探测器的个数。

则当探测器平行于y轴时,探测器的个数最多;平行于x轴时,探测器的个数最少。

将附件2数据,用Matlab可视化,如图可确定在,有最少个数探测器;,有最多个数探测器。

得到当时,之间,有个探测器;当时,之间,有个探测器。

最终可算出取均值得1.4 旋转中心的确定当时,设第行, 使得取到最大值;当时,设第行, 使得取到最大值,。

显然当时,其X射线路径通过原点。

其截得模板的长度分别为椭圆长轴和短轴。

有1.3图像可知:将在这两个位置将椭圆中心即坐标系原点与旋转中心之间的探测器单元数目差值分别确定,找到模板和探测器系统的相对位置,代入d 值,分别求得纵坐标和横坐标。

2009高教社杯全国大学生数学建模竞赛A-B-C-D题评阅要点

2009高教社杯全国大学生数学建模竞赛A-B-C-D题评阅要点

2009高教社杯全国大学生数学建模竞赛A 题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

因为本题涉及到一些重要概念, 所以请各赛区评阅专家在阅卷前务必用比较多的时间来研读本评阅要点. 千万不要简单地以数值结果来评分.评阅时请注意具体情况具体对待, 特别要注意在处理误差分析时有没有闪光点。

这是一个物理模拟问题,模拟的原则是试验台上制动器的制动过程与所设计的路试时车上制动器的制动过程理论上应该一致,所以制动过程中试验台主轴的瞬时转速与车轮的瞬时转速理论上随时一致,制动扭矩也理论上随时一致,另外理论上制动时间也相同。

1. 设前轮的半径为R ,制动时承受的载荷为G ,等效的转动惯量为J ,线速度为v ,角速度为ω,重力加速度为g 。

应该利用能量法得到 222121ωJ v g G =,v = Rω. 从而 J = GR 2/g 。

利用数据计算得到J = 52 kg ·m 2。

(计算结果如不正确适当扣分,但不影响后面的分数。

)2. 记飞轮的外半径为R 1,内半径为R 0,厚度为h ,密度为ρ,则飞轮的惯量为)(24041R R hJ -=πρ,利用数据计算得到三个飞轮的惯量分别为30 kg ·m 2、60 kg ·m 2、120 kg ·m 2,它们和基础惯量一起组成的机械惯量可以有8种情况:10, 40, 70, 100, 130, 160, 190, 220 kg ·m 2。

对于问题1中得到的等效的转动惯量,用电动机补偿能量对应的惯量(简称电机惯量)有两种方案:12 kg ·m 2 或 –18 kg ·m 2。

(写出一个即可,绝对值较小的模拟效果较好。

)3. 导出数学模型的一种方法为: 记需要模拟的单轮的等效的转动惯量为J , 主轴转速为()t ω,机械惯量1J , 则J 关于主轴的制动扭矩()M t 为,dtd Jt M ω=)( (1) J 1关于主轴的扭矩为 1d J dtω (2) 从而电流产生的扭矩()e M t 应为 1()()e d M t J J dtω=- (3) 由于电机的驱动电流0()()e I t k M t =,所以 01()()d I t k J J dt ω=- (4) 控制时可由k ω的测量值差分后得到1k I +.或者由(3)除以(1),得到 1()()e M t J J M t J-=,则有 10()()J J I t k M t J-= (5) 控制时由k M 的测量值得到1k I +. (4)和(5)就是驱动电流依赖于两个可观测量的数学模型。

2017全国大学生数学建模比赛a题国一优秀论文doc

2017全国大学生数学建模比赛a题国一优秀论文doc

2017全国大学生数学建模比赛a题国一优秀论文.doc2017全国大学生数学建模比赛a题国一优秀论文.doc制动器试验台的控制方法分析摘要汽车制动性能的检测是机动车安全技术检验的重要内容之一,制动器的设计也成为车辆设计中重要的环节,在车辆设计阶段需要在制动试验台上对路试制动情况进行模拟,本文主要对制动试验台上的一系列问题进行了研究。

对问题1,我们利用能量守恒定律,把车辆平动时具有的动能等效地转化为试验台上飞轮和主轴等机构转动时具有的转动动能,以此求得等效的转动惯量为。

对问题2,根据刚体转动知识建立了飞轮转动的积分模型,求得3个飞轮的转动惯量,进而可以组合成8种机械惯量。

由电动机补偿惯量的范围及问题1等效的转动惯量,可以计算出需要电动机补偿的惯量为,或,考虑节能时,取补偿惯量为。

对问题3,由机械动力学知识建立刚体转动的微分模型,可以得到电动机驱动电流依赖于可观测量(主轴的扭矩)的数学模型表达式为,代入已知数据可以计算出驱动电流为。

对问题4,通过固定机械惯量与路试时的转动惯量进行比较,确定电惯量的补偿量,进而确立了混合惯量模拟方法,建立微分方程模型,求出主轴扭矩为恒定值,又对实验的数据与理论值进行比较,用隔项逐差法分析了相对误差的大小分别为,可以得知该控制方法是切实可行的。

对问题5,我们可以根据自动控制原理建立单闭环反馈系统,通过传感器检测出主轴的扭矩,通过线性关系建立差分模型,可依据前一时间段观测到的瞬时扭矩,求出前段时间的电流值,并可预测出本时段驱动电流的值。

将能量误差等效为预测电流值与理论值的相对误差,利用问题4的数据,分析处理得到的相对误差为,此控制方法比较合理。

对问题6,我们分析了上个模型在实际模拟时要受到转速的影响,可在模型5的系统上再加上一个转速反馈,建立双闭环反馈系统,反应了转速与扭矩的关系(常数),可预测出下段时间的电流。

由问题4求出扭矩和转速的相对误差的倒数的比重等效为预测的电流、的权重,对其加权求和后计算出与其理论值的相对误差为,此系统的控制方法较问题5更加合理一些。

20XX大学生数学建模竞赛A题评分标准(合集)[修改版]

20XX大学生数学建模竞赛A题评分标准(合集)[修改版]

第一篇:2012大学生数学建模竞赛A题评分标准2012高教社杯全国大学生数学建模竞赛A题评阅要点[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

本题目希望学生利用数学模型和附件1-3中的数据对评酒员的品评结果给出分析,对酿酒葡萄的质量给出评价,并探讨葡萄和葡萄酒的理化指标与酒的质量的关系。

问题1. 附件1中给出的是评酒员对27种红葡萄酒和28种白葡萄酒的两组品评结果。

这两组评酒员各不相同,两组中的每个酒样都取自相同葡萄酒厂家的同一批次的产品。

要求学生给出判断这两组评价结果好坏的原理、模型和方法,给出具体的结果,并对结果进行说明。

好的品评结果应该是对同一酒样评价时这些评酒员之间的差距小、且这些酒样之间的区分度明确(注:一些学生的模型和方法仅考虑评酒员的打分差距)。

参考:红酒中样品23是好酒,样品12是较差的酒。

问题2.给出根据酿酒葡萄的理化指标和葡萄酒的质量对这些酿酒葡萄进行分级的原则、模型、算法和结果。

确定酿酒葡萄质量好坏的主要依据是问题1中评酒员对酒的质量的评价结果,根据这个评价结果和酿酒葡萄的各种理化指标给出确定葡萄质量的模型,由此给出这些酿酒葡萄的分级结果。

参考:分级结果中好的红葡萄应包含样品23,差的应该包含样品12。

问题3. 给出分析酿酒葡萄与葡萄酒的成分之间关系的原理、模型和方法,得到葡萄酒的理化指标是否与葡萄的理化指标相关的结论,相关时给出具体的依赖关系。

求解时最好先对葡萄的理化指标(包括芳香物质)进行分类和筛选,然后进行评价。

注:仅把葡萄的全部理化指标进行简单回归不够完整。

问题4. 建立模型分析酿酒葡萄和葡萄酒的理化指标与葡萄酒质量之间的关系,在模型的基础上给出具体结论,并对结论给出详细的分析说明。

注:评价葡萄酒质量时不一定需要包含所有的理化指标,但根据经验知道花色苷、总酚和单宁是红葡萄酒的重要指标。

附注:学生答卷中应该说明对缺失数据和异常数据的处理方式。

2017全国大学生数学建模竞赛解析演示文档

2017全国大学生数学建模竞赛解析演示文档

巡视,而每名工人的上班时间向后错
下,可以不巡视,但要在相应点
35分钟,即在前一位工人开始巡视的
处休息,休息的时间就是该点的
35分钟之后,再安排另一名工人巡视。 巡视需要的时间。
h
28
问题3 —— 上班时间
因此,得到如下的排班方法:第1
如果第1名工人在第一轮巡视后,
名工人在8:00开始巡视(上班或换
由于每天是24小时,而换班的时
间点,工作7个小时开始换班。
间是7小时,三班下来是21小时,所
例如,第一班工作的4名工人上 以每天的换班时间比前一天提前3小
班的时间分别是8:00、8:35、9:10和 时。
h
31
问题3 —— 换班时间
也就是说,第一班的4名工人在
一周7天,有7个24小时,恰好有
第二天的换班时间分别是5:00、5:35、 8个21小时,所以这种换班方案一周
表12 第5组巡视的时间表(部分,包含进餐时间)
h
25
问题2 —— 进餐时间
表13 第6组(机动)的巡视时间表
h
26
问题3 —— 上班时间
4.问题3的求解
问题3是考虑错时上班能否更省
如果能省,应在哪个地方省;如 果不能省,这个问题也就没有讨论的
人力。
4.1 上班时间
必要了。 每个点的检查时间(共计67分钟)
题(Vehicle Routing Problem, VRP), 没有那糟糕,如果一个人能巡视3~5
而且还是带有时间窗口的车辆路径问 个点的话,一个班也就是 6~9 个人。
题(Vehicle Routing Problem with
因此,只需要启发式算法就可能得到

数学建模竞赛评阅标准

数学建模竞赛评阅标准
• 团队精神和组织协调能力: 三人一队,分工合作、取长 补短、求同存异、相互启发、相互学习、相互争论、同舟 共济
• 文字表达水平: 每队完成一篇用数学建模方法解决实际问题
的完整的科技论文
第20页,本讲稿共89页
竞赛培养综合素质
• 诚信意识和自律精神:开放型竞赛,三天中同学自觉地遵
守竞赛纪律,不得与队外任何人(包括指导教师在内)以任何 方式讨论赛题,公平竞争
• 积极与国际同行交流:国际数学建模教学和应用会议 (ICTMA)
• 英国等国家的专家正在研究我国的大学生数学建模竞赛及 其对教学改革的推动的经验
第28页,本讲稿共89页
简要提纲
• 数学建模的重要性 ----- 数学建模竞赛的起源与发展
具体应用学科
具体应用学科
第6页,本讲稿共89页
数学建模:数学与实际问题的桥梁
Mathematical Modeling
实际问题
数学
• 数学建模: 应用数学知识解决实际问题的第一步 • 数学建模: 通常有本质性的困难和原始性的创新(关键一步) • Pure Math vs Applied Math: Logic vs Problem Driving • “源”(Motivation)远“流”(Impact)长
• 1999年起竞赛分为本科组(甲组)、专科组(乙组)
• 目前参赛同学90%左右来自非数学专业,其中10%左右来自人文 社会科学类专业
• 高校普遍开设数学建模系列课程,举办校内竞赛
• 组织数学建模协会,约1/3被评为校优秀学生社团 • 地区性、行业性的数学建模联赛(或邀请赛)
• 两次全国性的大学生数学建模夏令营(2001; 2006) • 17年来直接参加全国赛的学生超过23万人;至少有200万名学生 在竞赛的各个层面上得到培养锻炼

数学建模竞赛评阅标准---- 模型创新与论文写作

数学建模竞赛评阅标准---- 模型创新与论文写作

简要提纲1. 赛区评阅工作规范2.数模竞赛论文的写作3. CUMCM评阅标准4.推荐教材及网站1. 赛区评阅工作规范专家组成员应该是数学建模方面业务水平高、作风公正的专家除全国组委会和赛区组委会成员外,专家组中来自同一学校的专家数量原则上不得超过2人评阅前,应由赛区组委会负责对论文进行编号,编号后的论文不能有暴露参赛者学校和参赛者身份的任何信息, 并在严格实行回避制度的前提下,按照一定程序将论文分配给评阅专家,使每位专家不能评阅自己所属学校参赛队的论文。

每篇论文应至少被3 位专家评阅。

每位专家应独立评阅分配给自己的论文,不得干扰其他专家的评阅工作。

专家组应采取措施对有作弊或雷同嫌疑的论文进行认定专家组评阅的初步结果应提交给赛区组委会,由赛区组委会最后确定本赛区的获奖结果(包括送全国评阅的论文)。

赛区组委会在确定报送全国评阅论文时,原则上每所学校报送全国评阅论文(包括申报一、二等奖)的数量不能超过10 篇。

赛区组委会报送全国评阅论文的数量不能超过全国组委会分配给赛区的数量上限。

2. 数学建模竞赛论文的写作建模与写论文的关系:建立好的数学模型是论文写作的基础,论文写作是建模的表达,是模型的完善竞赛论文好不好写?很简单,竞赛论文是八股文,按要求写就行了;很不简单,要写成优秀论文就不容易了。

答卷的文章结构摘要1.问题的叙述,问题的分析,背景的分析等2.模型的假设,符号说明(表)3.模型的建立(问题分析,公式推导,基本模型,最终或简化模型等)4.模型的求解5.结果表示、分析与检验,误差分析,模型检验……6.模型评价,特点,优缺点,改进方法,推广…….7.参考文献8.附录摘要写作要求a. 模型的数学归类(在数学上属于什么类型)b. 建模的思想(思路)c . 算法思想(求解思路)d.主要结果(数值结果,结论)▲表述:准确、简明、条理清晰、合乎语法;注1:全国组委会已加大对摘要在评奖中的比重。

注2:摘要通常不超过一页。

全国大学生数学建模竞赛A、B题评阅要点

全国大学生数学建模竞赛A、B题评阅要点

全国大学生数学建模竞赛A、B题评阅要点全国大学生数学建模竞赛A题评阅要点1、目标函数的构成成分主要包括销售额表达式(注意如果作者利用了附录数据说明中的假设,则赢利与销售额等价),可以以课程为单位,也可以以学科为单位;包括由市场信息产生的对于不同课程的调控因子(竞争力系数);由于数据说明中的提示,也应该包括每个课程的申报需求量的“计划准确性因子”(学生用词会不同)。

当然,前两点更重要些。

2、约束条件构成对于出版社来说,所谓产能主要是人力资源,即策划、编辑和版面设计人员的分布形成主要约束;此外,书号总量(500)也应该作为约束条件;同时,在数据说明中指出的“满足申请书号量的一半”也应该以约束方式表达。

3、规划变量可以以每个课程的书号数量,也可以以学科的书号数作为变量,但是得到的结果会有所不同。

实现以上三点,对于问题的理解是比较全面的,应该得到基本分值。

进一步提高的分值来源于实现上述三点的具体模型的考虑和建模水平。

1)如果注意到数据说明中提示的,同一课程的教材在价格和销售量的同一性,销售额表达式是比较容易表示的:构造每个课程的、用书号数表达的销售额,然后将所有书号的销售额的表达式累加,形成总社的销售额的基本表达式,这是目标函数的主体部分。

2)市场信息产生的对于不同课程的调控因子(也称竞争力系数)的表示,是一个信息不足情况下的决策模型。

主要是满意度和市场占有率的恰当表示和计算(由附件2),以及两个指标的联合形成竞争力系数问题,这里既可以使用拟合模型,也可以使用各种多因素分析模型等等,方法不同。

对这个问题解决的优劣,可以导致明显的评分差别。

其中应该特别注意需求信息是否重复使用的问题,也就是说,如果在构造销售额表达式时已经使用了课程的销售数据,则不同课程的支持强度的不同,主。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2017高教社杯全国大学生数学建模竞赛A 题评阅要点
[说明]本要点仅供参考,各赛区评阅组应根据对题目的理解及学生的解答,自主地进行评阅。

CT 系统参数标定及成像
根据图1所示的二维平行光CT 系统成像过程和模板(附件1)及其接收数据(附件2),建立数学模型标定CT 系统的各个参数。

进一步根据标定的系统参数,对附件3和附件4进行成像。

问题1 建立基于正方形托盘下待重建物体与接收信息之间关系的数学模型,并分析在所给模板下接收数据关于系统参数的变化规律。

接收信息与X 射线经过介质的长度成正比,根据附件1中模板介质的吸收率为1,可以得到系统的放大增益。

若仅仅采用CT 相关参考文献给出的通用性的线积分模型,不根据所给模板给出具体的数学模型,仅仅用非线性优化方法对所有参数一起求解,一般不可能得到系统参数中旋转角度的精准标定。

间距0.2768
x
29.6463º y (-9.2663,6.2729)
上图给出了所建立的坐标系和第一个旋转角度的示意图。

旋转中心为( 9.2663, 6.2729),旋转中心到探测器的垂足离探测器左端点的距离为70.7107,探测器单元的间距为0.2768,增益(即信号的放大倍数)为 1.7725。

前几个旋转角度分别为29.6463º,30.9999º,31.5553º,32.6447º,33.6770º,34.6463º,35.6463º;第16个旋转角度为44.7967º;第32个旋转角度为60.5453º;第89个旋转角度为117.4437º;最后两个旋转角度为207.6463º,208.6358º。

探测器的位置大都是在前一个位置的基础上逆时针旋转1º。

问题2根据问题1得到的系统参数,对另外一组接收数据进行重建。

可以采用一般的CT重建模型,但应注意CT的旋转中心不在正方形托盘的中心,需要进行处理。

一般的CT重建模型是求解第一类积分方程,属于近似解法,本题需要针对待重建介质几何形状为椭圆且吸收率为分片常数这种特殊性质,对成像模型和算法进行改进。

也可以使用数学软件中的命令来完成,但此时可能会出现重构图像平移和旋转,应说明如何处理。

重构图像为
各椭圆介质的参数见表1。

表1
10个特征点的吸收率见表2。

表2
问题3由于接收数据含有噪声,对在重建的基础上,加上抑制噪声的模型,应给予较好的评价。

介质的吸收率在[1,9]之间,空气部分的吸收率小于0.1。

重构图像为
10个特征点的吸收率见表3。

表3
问题4这一问题是开放的,可以进行多方面的讨论:能够实现标定的条件(例如需要假设模板在各个角度下的投影值探测器都能接收到、所给的模板能够实现标定的原因、一个椭圆为什么不能等);不同情况下的标定算法性能(最好和最坏的情况分析);测量数据有噪声时对模型和算法的影响。

对能够自行构造数据进行模型检验的论文,应给予较好的评价。

相关文档
最新文档