MATLAB中聚类分类算法中距离计算方法

合集下载

MATLAB中的时间序列聚类分析方法

MATLAB中的时间序列聚类分析方法

MATLAB中的时间序列聚类分析方法时间序列聚类分析是一种统计学方法,它可以对时间序列数据进行分类和分组。

在许多领域,如金融、气象、医疗等,时间序列数据广泛存在,并且对于了解其内在模式和趋势至关重要。

MATLAB作为一种强大的数学建模和计算工具,提供了丰富的时间序列分析工具和函数,使得时间序列聚类分析成为可能。

在MATLAB中,时间序列聚类分析可以通过多种方法实现。

下面将介绍几种常用的方法和算法。

一、基于距离的时间序列聚类分析1. 动态时间规整(DTW)DTW是一种基于距离的时间序列相似性度量方法,它通过在时间序列中找到最佳对应点的方式,将两个时间序列进行规整(即拉伸或压缩),从而计算它们之间的距离。

MATLAB提供了dtw函数,可以方便地计算两个时间序列之间的DTW 距离。

2. 基于相似性矩阵的聚类在时间序列聚类中,可以先计算相似性矩阵,然后使用聚类算法对其进行聚类。

常用的相似性度量方法有欧氏距离、余弦相似度等。

MATLAB中可以利用pdist函数计算时间序列数据的相似性矩阵,并使用linkage函数进行层次聚类。

二、基于模型的时间序列聚类分析1. 自回归移动平均模型(ARMA)ARMA模型是一种常用的时间序列建模方法,其拟合了时间序列的自相关和滑动平均关系。

MATLAB中提供了armax和arima函数,可以用于估计ARMA模型的参数,并根据模型进行聚类分析。

2. 隐马尔可夫模型(HMM)HMM是一种统计模型,用于描述由隐藏状态和观测状态组成的随机过程。

在时间序列聚类中,可以使用HMM模型对时间序列的隐藏状态进行建模,然后对隐藏状态进行聚类分析。

MATLAB中提供了hmmtrain和hmmdecode函数,可以用于HMM模型的训练和预测。

三、基于频域的时间序列聚类分析1. 快速傅里叶变换(FFT)FFT是一种高效的频域分析方法,可以将时间序列信号转化为频域信号。

在时间序列聚类分析中,通过对时间序列进行FFT变换,可以得到其频率成分,进而进行聚类分析。

kmeans和cmeans matlab代码

kmeans和cmeans matlab代码

K-means和c-means算法是聚类分析中常用的两种算法,在MATLAB软件中可以通过编写相应的代码来实现这两种算法。

下面将分别介绍K-means算法和c-means算法的原理以及在MATLAB中的实现代码。

一、K-means算法原理及MATLAB代码实现K-means算法是一种基于距离的聚类算法,其原理主要包括初始化聚类中心、计算样本点到各个聚类中心的距离、更新聚类中心和迭代等步骤。

以下是K-means算法在MATLAB中的实现代码:1. 初始化聚类中心```matlabfunction [centers] = initCenters(data, k)centers = data(randperm(size(data, 1), k), :);end```2. 计算样本点到各个聚类中心的距离```matlabfunction [distances] = calculateDistances(data, centers)distances = pdist2(data, centers, 'euclidean');end```3. 更新聚类中心```matlabfunction [newCenters] = updateCenters(data, labels, k) newCenters = zeros(k, size(data, 2));for i = 1:knewCenters(i, :) = mean(data(labels == i, :));endend```4. 迭代```matlabfunction [labels, centers] = kMeans(data, k, maxIter) centers = initCenters(data, k);for iter = 1:maxIterdistances = calculateDistances(data, centers);[~, labels] = min(distances, [], 2);newCenters = updateCenters(data, labels, k);if isequal(newCenters, centers)break;endcenters = newCenters;endend```以上即是K-means算法在MATLAB中的实现代码,可以根据实际需求调用相应的函数来进行聚类分析。

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1(含聚类图-含距离计算)

最短距离聚类的matlab实现-1【2013-5-21更新】说明:正文中命令部分可以直接在Matlab中运行,作者(Yangfd09)于2013-5-21 19:15:50在MATLAB R2009a(7.8.0.347)中运行通过%最短距离聚类(含距离计算,含聚类图)%说明:此程序的优点在于每一步都是自己编写的,很少用matlab现成的指令,%所以更适合于初学者,有助于理解各种标准化方法和距离计算方法。

%程序包含了极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化等标准化方法,%以及绝对值距离、欧氏距离、明科夫斯基距离和切比雪夫距离等距离计算方法。

%==========================>>导入数据<<============================== %变量名为test(新建一个以test变量,双击进入Variable Editor界面,将数据复制进去即可)%数据要求:m行n列,m为要素个数,n为区域个数(待聚类变量)。

% 具体参见末页测试数据。

testdata=test;%============================>>标准化<<=============================== %变量初始化,m用来寻找每行的最大值,n找最小值,s记录每行数据的和[M,N]=size(testdata);m=zeros(1,M);n=9999*ones(1,M);s=zeros(1,M);eq=zeros(1,M);%为m、n和s赋值for i=1:Mfor j=1:Nif testdata(i,j)>=m(i)m(i)=testdata(i,j);endif testdata(i,j)<=n(i)n(i)=testdata(i,j);ends(i)=s(i)+testdata(i,j);endeq(i)=s(i)/N;end%sigma0是离差平方和,sigma是标准差sigma0=zeros(M);for i=1:Mfor j=1:Nsigma0(i)=sigma0(i)+(testdata(i,j)-eq(i))^2;endendsigma=sqrt(sigma0/N);jicha=m-n;%极差标准化(两种方法)、中心化、标准差标准化、总和标准化和极大值标准化。

matlab做聚类分析

matlab做聚类分析

matlab做聚类分析Matlab提供了两种方法进行聚类分析。

一种是利用 clusterdata函数对样本数据进行一次聚类,其缺点为可供用户选择的面较窄,不能更改距离的计算方法;另一种是分步聚类:(1)找到数据集合中变量两两之间的相似性和非相似性,用pdist函数计算变量之间的距离;(2)用 linkage函数定义变量之间的连接;(3)用 cophenetic函数评价聚类信息;(4)用cluster函数创建聚类。

1.Matlab中相关函数介绍1.1 pdist函数调用格式:Y=pdist(X,’metric’)说明:用‘metric’指定的方法计算 X 数据矩阵中对象之间的距离。

’X:一个m×n的矩阵,它是由m个对象组成的数据集,每个对象的大小为n。

metric’取值如下:‘euclidean’:欧氏距离(默认);‘seuclidean’:标准化欧氏距离;‘mahalanobis’:马氏距离;‘cityblock’:布洛克距离;‘minkowski’:明可夫斯基距离;‘cosine’:‘correlation’:‘hamming’:‘jaccard’:‘chebychev’:Chebychev距离。

1.2 squareform函数调用格式:Z=squareform(Y,..)说明:强制将距离矩阵从上三角形式转化为方阵形式,或从方阵形式转化为上三角形式。

1.3 linkage函数调用格式:Z=linkage(Y,’method’)说明:用‘method’参数指定的算法计算系统聚类树。

Y:pdist函数返回的距离向量;method:可取值如下:‘single’:最短距离法(默认);‘complete’:最长距离法;‘average’:未加权平均距离法;‘weighted’:加权平均法;‘centroid’:质心距离法;‘median’:加权质心距离法;‘ward’:内平方距离法(最小方差算法)返回:Z为一个包含聚类树信息的(m-1)×3的矩阵。

Matlab中的聚类分析与分类算法实现

Matlab中的聚类分析与分类算法实现

Matlab中的聚类分析与分类算法实现导语:在数据科学和机器学习领域,聚类分析和分类算法是两个重要的主题。

数据的聚类能够将数据集中相似的观测值归为一类,而分类算法则是用于预测未知样本的类别标签。

在Matlab这一强大的数学计算工具中,我们可以利用其丰富的函数库和灵活的编程环境来实现聚类分析和分类算法。

一、聚类分析算法的实现1. K-means聚类算法K-means是最常用的聚类算法之一,它将数据集划分为k个簇,使得同一个簇内的数据点之间的距离最小化,并且不同簇之间的距离最大化。

在Matlab中,我们可以使用kmeans函数来实现K-means聚类算法。

该函数需要输入样本数据矩阵和簇数k,然后返回每个样本点所属的簇标签。

2. 层次聚类算法层次聚类是一种基于距离度量的聚类算法,它将样本逐步合并成越来越大的簇,直到所有样本都被分为一个簇。

在Matlab中,我们可以使用linkage函数来计算样本之间的距离,然后使用cluster函数进行层次聚类。

该函数可以根据指定的距离度量方法(如欧氏距离或曼哈顿距离)和链接方法(如单链接、完全链接或平均链接)对样本进行聚类。

3. DBSCAN聚类算法DBSCAN是一种基于密度的聚类算法,它可以发现任意形状的簇,并且对噪声数据有较高的鲁棒性。

在Matlab中,我们可以使用DBSCAN函数来实现DBSCAN聚类算法。

该函数需要输入样本数据矩阵、密度阈值和邻近距离等参数,然后返回每个样本点所属的簇标签。

二、分类算法的实现1. 决策树分类算法决策树是一种基于判断树结构的分类算法,它通过一系列的决策节点将样本逐步分类到不同的叶节点中。

在Matlab中,我们可以使用fitctree函数来建立决策树分类模型。

该函数需要输入训练数据矩阵和对应的类别标签,然后返回一个可以用于预测的决策树模型。

2. 支持向量机分类算法支持向量机是一种基于间隔最大化的分类算法,它通过在特征空间中找到一个最优超平面来进行分类。

聚类算法中的距离度量方法

聚类算法中的距离度量方法

聚类算法中的距离度量方法聚类算法是一种将数据点分成不同集合的无监督学习方法。

在聚类过程中,其中一个最为重要的环节就是距离度量方法。

距离度量方法根据数据点之间的距离来衡量它们之间的相似程度,并根据此将它们分成不同的类别。

1. 欧式距离欧式距离,也称为L2范数,是最常用的距离度量方法之一。

欧式距离的计算公式为:$d(\boldsymbol{x},\boldsymbol{y})=\sqrt{\sum\limits_{i=1}^{n}( x_i-y_i)^2}$其中,$\boldsymbol{x}$和$\boldsymbol{y}$是两个点的n维特征向量。

欧式距离常常用于连续数据的聚类,如图像处理和数据挖掘中的图像和文本数据降维。

2. 曼哈顿距离曼哈顿距离也称为L1范数,它是指两个点在坐标系中沿着网格线移动所需的距离。

曼哈顿距离的计算公式为:$d(\boldsymbol{x},\boldsymbol{y})=\sum\limits_{i=1}^{n}\mid x_i-y_i\mid$曼哈顿距离常用于聚类分析中对分类特征的距离计算。

3. 余弦相似度余弦相似度是根据两个向量的夹角来测量它们的相似程度。

余弦相似度的计算公式为:$cos\theta=\frac{\boldsymbol{x}\cdot\boldsymbol{y}}{||\boldsymbol{x}||\cdot ||\boldsymbol{y}||}$其中,$\boldsymbol{x}$和$\boldsymbol{y}$是两个向量,$\boldsymbol{x}\cdot \boldsymbol{y}$是它们的点积。

余弦相似度通常用于文本聚类,因为在文本聚类中,每个文档可以表示为一个向量,使得在向量空间中,文档之间的夹角越小,它们之间越相似。

4. 编辑距离编辑距离是指从一个字符串转换成另一个字符串所需的最少操作次数。

编辑距离通常用于对字符串数据进行分类,例如对DNA序列进行分类。

MATLAB中聚类分类算法中距离计算方法

MATLAB中聚类分类算法中距离计算方法

样本之间的距离计算方法:给定m*n阶数据矩阵X, xs和xt之间的各种距离定义如下:1、欧氏距离(euclidean ):2、标准欧氏距离(seuclidear):£ =比~x t Y其中,V是n*n阶对角矩阵,第j个元素是s(j)2,S是标准偏差向量3、马氏距离(mahalanobi9 :其中,C是X中样品的协方差4、绝对值距离(cityblock):必厂工应-叼|5、闵科夫斯基距离(minkowski):P=1时,是绝对值距离;p=2时,是欧氏距离,p “:时是契比雪夫距离。

6、契比雪夫距离(chebychev):7、余弦距离(cosine):8 相关性距离(correlation ): (斗—召)(岂二◎)* J (叫—耳)(斗更J J(叫—耳)(辛-耳)d sf = (#( “斯工 Xfj )/n )10、 Jaccard 距离(jaccard ):桦[(呵 * 切)c (( w 盜 °)5呵 *°))] " 町(切北。

)5切*°)]11、 斯皮尔曼距离(spearmar ):■吊)匕一耳)‘J (二焉)(%二并耳)(叫-耳)MATLAB 中通过pdist 函数计算样本点两两之间的距离, 在该函数中 可指定距离的计算方法类之间距离的计算方法:注:类r 是由类p 和类q 合并而来,n r 是类r 中样品的 个其中, 9、 海明距离(hamming ):其中,数,Xri是类r中的第i个样品1、单链(single):也叫最短距离法,定义类与类之间的距离为两类最近样品的距离,即db\s) = »S Z e (i,…,斤厂)./亡(1、…,珥)2、全链(complete):也叫最长距离法,类与类之间的距离为两类最远样本间的距离,即d(r,s) = max(<7fsi(x r/,x^ (1 .. 尺尸),j c3、组平均(average):定义为两类中所有样品对的平均距离,即1 告令t/(/\s) = ----- V" V* distix^)Wi=l>=14、重心法(centroid):定义为两类重心之间的欧氏距离,即其中,5、中间距离(median):定义为两类加权重心之间的欧氏距离,即rf(r,s) = ||i r-x s|l?^0!其中,其中,X r , X s分别是类「和类S之间的加权重心,如果类r是由类p和类q合并而来,那么定义为6、离差法(ward):定义为两类合并时导致的类内平方和的增量,类内平方和定义为类内所有样本点与类重心之间的距离的平方和,平方和的测量等价于下边的距离公式:其中,是欧氏距离,X r,X s是类r和类s的重心,n r,n s是类r和类s的元素个数。

MATLAB中的数据聚类方法介绍

MATLAB中的数据聚类方法介绍

MATLAB中的数据聚类方法介绍在数据分析和机器学习领域,数据聚类是一种常见的技术,它可以将数据集中的对象分成不同的组或簇。

在实际应用中,数据聚类可以用于市场分析、图像处理、社交网络分析等方面。

而MATLAB是一种功能强大的数学软件,提供了多种数据聚类方法的实现。

一、K-means聚类算法K-means是一种常见且简单的聚类算法。

它的基本思想是将数据集分成K个簇,每个簇内的对象之间的相似度较高,而不同簇之间的相似度较低。

该算法的具体步骤如下:1. 随机选取K个点作为初始的簇中心。

2. 根据欧氏距离计算每个点与簇中心的距离,将每个点分到距离最近的簇中心所在的簇。

3. 更新簇中心,计算每个簇中点的平均值,将其作为新的簇中心。

4. 重复步骤2和步骤3,直到簇中心不再改变或达到预定的迭代次数。

二、层次聚类方法层次聚类是一种基于对象之间相似性的层次划分方法。

它不需要预先指定簇的个数,而是通过计算对象之间的相似度来构建聚类树或者聚类图。

在MATLAB中,层次聚类可以通过自顶向下或者自底向上的方式进行。

1. 自顶向下聚类(Divisive clustering)是一种自上而下分解数据集的方法。

它首先将整个数据集作为一个簇,然后通过分裂簇来构建聚类树。

分裂过程是通过计算簇内对象之间的相似度得到的。

在MATLAB中,可以使用函数"clusterdata"来实现自顶向下聚类。

2. 自底向上聚类(Agglomerative clustering)是一种自底而上聚合簇的方法。

它首先将每个数据点视为一个独立的簇,然后不断合并相似度最高的簇,直到达到预定的聚类数目为止。

在MATLAB中,可以使用函数"linkage"和"cluster"来实现自底向上聚类。

三、密度聚类算法密度聚类算法将数据点分配到具有高密度的区域,并且在不同的密度之间形成分界点。

常见的密度聚类算法包括DBSCAN和OPTICS。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

样本之间的距离计算方法:
给定m*n阶数据矩阵X,xs和xt之间的各种距离定义如下:
1、欧氏距离(euclidean):
2、标准欧氏距离(seuclidean):
其中,V是n*n阶对角矩阵,第j个元素是2
S j,S是标准偏差向量。

()
3、马氏距离(mahalanobis):
其中,C是X中样品的协方差
4、绝对值距离(cityblock):
5、闵科夫斯基距离(minkowski):
P=1时,是绝对值距离;p=2时,是欧氏距离,p=∞时是契比雪夫距离。

6、契比雪夫距离(chebychev):
7、余弦距离(cosine):
8、相关性距离(correlation):
其中,
9、海明距离(hamming):
10、Jaccard距离(jaccard):
11、斯皮尔曼距离(spearman):
其中,
MATLAB中通过pdist函数计算样本点两两之间的距离,在该函数中可指定距离的计算方法
类之间距离的计算方法:
注:类r是由类p和类q合并而来,r n是类r中样品的个数,ri x是类r中的第i个样品
1、单链(single):也叫最短距离法,定义类与类之间的距离为两类最近样品的距离,即
2、全链(complete):也叫最长距离法,类与类之间的距离为两类最远样本间的距离,即
3、组平均(average):定义为两类中所有样品对的平均距离,即
4、重心法(centroid):定义为两类重心之间的欧氏距离,即
其中,
5、中间距离(median):定义为两类加权重心之间的欧氏距离,即
其中,其中, r x , s
x 分别是类r 和类s 之间的加权重心,如果类r 是由类p 和类q 合并而来,那么定义为
6、离差法(ward):定义为两类合并时导致的类内平方和的增量,类内平方和定义为类内所有样本点与类重心之间的距离的平方和,平方和的测量等价于下边的距离公式:
其中,是欧氏距离, r x , s
x 是类r 和类s 的重心,r n ,s n 是类r 和类s 的元素个数。

在一些参考书中,离差法没有用到r s n n 的2倍,在以上距离中用
到使得两个单独的类之间的距离等于欧氏距离。

7、加权平均法(weighted average):在两类之间应用递归定义,如果类r 是由类p 和类q 合并得到的,那么类r 与另一个类s 的距离定义为类p 与类s 距离和类q 和类s 的距离的平均
以上七种距离中,使用重心距离和中间距离产生的聚类树可能不具有单调性,这种情况发生在类r 和类s 合并后与第三个类的距离小于类r 与类s 的距离。

为了避免这种情况,可以使用其他方法。

MATLAB中,通过linkage函数得到凝聚层次聚类树,其中类与类之间距离的计算方法可通过参数指定。

相关文档
最新文档