锂电池常见理论

合集下载

锂电池工作原理和性能指标

锂电池工作原理和性能指标

一、锂电池工作原理与种类1. 锂电池工作原理锂电池是指用两个能可逆的嵌入与脱嵌的锂离子化合物作为正负极构成的二次电池。

锂电池主要由正极板、负极板、电解质、隔膜与外壳组成。

其中,正极板上的活性物质一般选用LiCo02、LiNi02或者LiMn204,负极板上的活性物质一般选择碳材料。

电解质采用LiPF6的乙烯碳酸脂(EC)、丙烯碳酸脂(PC)和低粘度二乙基碳酸脂(DEC)等烷基碳酸脂搭配的混合溶剂体系。

隔膜采用聚烯微多孔膜PE、PP或他们的复合膜。

外壳采用钢或者铝材料。

当电池充电时,锂离子从正极中脱嵌,在负极中嵌入。

当电池放电时,锂离子从负极中脱嵌,在正极中嵌入。

2. 锂电池分类锂离子电池目前有液态锂离子电池(LIB)和聚合物锂离子电池(PLIB)两类,聚合物锂离子电池与液态锂的工作原理相同,主要区别是电解液的不同。

液态锂离子电池采用的是液态电解液,而聚合物锂离子电池主要采用聚合物电解质,这种聚合物可以是干态,也可以是胶态,目前大部分采用聚合物锂离子电池。

由于聚合物锂离子电池使用了胶体电解质,不会像液体电解液一样泄露,所以装配很容易,使得整体电池很轻,很薄。

也不会产生由于漏液与燃料爆炸等安全上的问题,因此可以用铝塑复合薄膜制造电池外壳,从而提高整个电池的比容量;聚合物锂离子电池还可以采用高分子做正极材料,其质量比能量将会比目前的液态锂离子电池提高50%以上。

二、锂电池主要性能指标1. 电压(V)(1)电动势——电池正极负极之间的电位差E。

(2)额定电压——电池在标准规定条件下工作时应达到的电压。

(3)工作电压(负载电压、放电电压)——在电池两端接上负载R后,在放电过程中显示出的电压,等于电池的电动势减去放电电流i在电池内阻r上的电压降,U=E-i*r。

(4)终止电压——电池在一定标准所规定的放电条件下放电时,电池的电压将逐渐降低,当电池再不宜继续放电时,电池的最低工作电压称为终止电压。

当电池的电压下降到终止电压后,再继续使用电池放电,化学“活性物质”会遭到破坏,减少电池寿命。

锂电池基本术语

锂电池基本术语

1、电池的定义:按照学者们的命名“电池”即是“化学电源”,它是一个由化学能直接转换成电能的装置。

称“化学电源”显得更科学一些,称“电池”则更贴近百姓一些。

2、何为“一次电池”和“二次电池”?“一次电池”也被称为“原电池”,它是不可以充电的,当设计的容量用完后要更换新电池,它的优点是使用方便,它的缺点是大量的废弃电池对环境造成一定影响。

“二次电池”也称“蓄电池”,是可充电电池,当电池的电量用到一定程度时可以用规定的充电器充电以恢复电量。

还有一种介于二者之间的“可充电一次电池”,它是一次电池的原理,经改良后也可充电,但充放电深度和循环寿命都不能和“二次电池”同日而语。

3、“公称电压”是怎样确定的?规定它有什么作用?“公称电压”顾名思义是大家公认的电压体系,就像220V是我们国家规定的家用交流电的“公称电压”一样,电池的“公称电压”其值规定在:当电池较小电流放电时的电压平台附近。

所以它低于电池的开路电压,又高于较大电流工作时的负载电压。

它的作用是为用电器的设计提供参考,也为电池使用者更换电池时提供依据。

有关标准规定“每个电池必须标明公称电压和正负极性”。

使用者也应注意:“大小形状即使相同,如公称电压不同的电池不能互换。

”目前市场流行的电池体系及公称电压是:“锌锰”/“碱锰” 1.5V“镍镉”/“镍氢” 1.2V“铅酸”2.0V“锂锰”3.0V“锂硫”2.7V“锂氯”3.6V“锂钴” 3.8V(从资料上看,也有标注3.6V和3.7V的,那是因为随着电池材料的改进,充电电压有所提高,电压平台也有所提高。

规定3.8V是比较合理的。

)4、何为“额定容量”?“额定容量”是电池的设计电容量,有关标准规定:电池的实际容量应大于或等于额定容量,因此只要是负责任的厂家出品的电池,绝大多数电池个体容量均不低于额定容量。

但容量的测定条件在标准中规定得非常严格,一般用户不一定具备,所以通常只是在室温下对电池进行定电流(或定电阻)放电,计算其容量基本附合就可以了。

锂电池常用参数详细解析

锂电池常用参数详细解析

锂电池常用参数详细解析能量密度、放电倍率、荷电状态,电池内阻……这一连串的锂电参数、专有名词,对于很多对电池知识了解不多的朋友来说,值得参考学习。

那么,我们使用电池时,那些比较常见的参数、名词,到底是什么意思,现作详细解析?一.能量密度(Wh/L&Wh/kg)电池能量密度,是单位体积或单位质量电池释放的能量,如果是单位体积,即体积能量密度(Wh/L),很多地方直接简称为能量密度;如果是单位质量,就是质量能量密度(Wh/kg),很多地方也叫比能量。

例如,参考能量密度公式,一节锂电池重300g,额定电压为3.7V,容量为10Ah,则其比能量为123Wh/kg。

体积能量密度(Wh/L)=电池容量(mAh)×3.6(V)/(厚度(cm)*宽度(cm)*长度(cm))质量能量密度(Wh/KG)=电池容量(mAh)×3.6(V)/电池重量二.电池充放电倍率(C)电池充放电倍率是指在规定时间内充进/放出其额定容量(Q)时所需要的电流值,它在数值上等于电池额定容量的倍数。

电池放电倍率的单位一般为C(C-rate的简写),如0.5C,1C,5C等。

电池的充放电倍率,决定了我们可以以多快的速度,将一定的能量存储到电池里面,或者以多快的速度,将电池里面的能量释放出来。

以XTAR 18650 2600mAh的电池为例:以25A放电,其放电倍率约为9.6C,反过来讲9.6C放电,放电电流为25A,0.1h放电完毕;以2.1A充电,其充电倍率约为0.8C,反过来讲0.8C充电,充电电流为2.1A,1.25h充电完毕。

(注:因锂电池采取恒流恒压充电方式,故其实际充满电的时间要比1.25h长)充放电倍率=充放电电流(A)/额定容量(Ah)三.荷电状态(%)SOC,全称是StateofCharge,荷电状态,也叫剩余电量,代表的是电池放电后剩余容量与其完全充电状态容量的比值。

其取值范围为0~1,当SOC=0时表示电池放电完全,当SOC=1时表示电池完全充满。

储能和锂电池基础理论知识

储能和锂电池基础理论知识

储能&锂电池基础理论知识目录CONTENTS认识储能锂电池基础知识关键设备PART ONE 认识储能添加文字内容添加文字内容添加文字内容 储能技术将给电网带来革命性的变化,若电能可以被大量储存,传统电网的传输、调度、营销等概念都将被彻底颠覆,今天就同大家走进储能领域一探究竟。

从广义上讲,储能即能量存储,是指通过一种介质或者设备,把一种能量形式用同一种或者转换成另一种能量形式存储起来,基于未来应用需要以特定能量形式释放出来的循环过程。

从狭义上讲,针对电能的存储,储能是指利用化学或者物理的方法将产生的能量存储起来并在需要时释放的一系列技术和措施。

目前,储能方式主要可以分为4类,分别是:机械储能、化学储能、电磁储能、相变储能。

就目前情况看在电力系统能源管理领域,储能首选技术为抽水蓄能,化学电池中液流可能最先具有商业化条件,其次是锂离子电池,铅酸电池还需在技术上进一步提高性能,而钠硫电池长期被日本垄断,在我国的商业化应用前景存在较大不确定性。

据预测,到2024年,全球储能系统的安装容量大约将达到45GW/81GWh。

虽然与全球发电总装机容量相比,这部分储能容量的规模显得十分微不足道,但电力系统已经因为储能系统的出现而发生了质的变化。

目前来看,电厂级储能容量主要用于置换效率较低的发电容量。

与此同时,快速增长的离网型储能容量,也势必将改变消费者与电厂之间的关系。

相变储能通过相变材料吸收和释电磁储能包括:超导储能、电容放热量完成能量的存与放添加文字内容添加文字内容添加文字内容 抽水蓄能发电利用电网中负荷低谷时的电力,由下水库抽水到上水库蓄能,待电网高峰负荷时,放水回到下水库发电的水电站。

截至2016年年底,全国抽水蓄能电站机组容量为5032.5万千瓦,运行容量2338.5万千瓦,在建容量2694万千瓦,约占全国总装机容量16.5亿千瓦的3%。

(另在建8座,在建容量894万千瓦)。

1.2物理储能之飞轮储能飞轮储能的基本原理是把电能转换成旋转体的动能进行存储。

锂电池的基本原理

锂电池的基本原理

锂电池的基本原理
锂电池是由两个电极组成的一种电池,是由锂金属或锂合金作为正极材料、石墨作为负极材料,采用非水电解质溶液的新型二次电池。

锂电池有以下三个基本特性:
1.能量密度高。

在同等重量下,体积比能量可达到一般镍氢电池的2~3倍。

2.自放电率低。

一般在1%~2%,放电深度越深,自放电率越低。

3.高电压,在2.5V~3.6V之间。

锂电池的电压有3.6V、5V、12V、18V、24V等几种规格,可根据不同应用需要选择不同的电压。

锂电池是一种新型的二次电池,其比能量高,使用寿命长,无污染环境,无记忆效应等优点。

锂离子电池按其电极材料的不同,可分为钴酸锂(LiCoO2)、锰酸锂(LiMn2O4)和三元材料(LiNixCoyMnzO2)等几种类型。

作为锂离子电池负极材料的是金属锂。

以其为正极的锂离子电池工作原理如下:
在正极材料中,有一种单质金属锂(Li)与一种电解质溶液(电解液)相连。

金属锂是一个非常活泼的金属元素,它在空气中极易氧化形成锂氧化物而失去金属属性。

—— 1 —1 —。

锂电池基础知识讲解

锂电池基础知识讲解

锂电池基础知识讲解理想的锂离子电池,除了锂离子在正负极之间嵌入和脱出外,不发生其他副反应,不出现锂离子的不可逆消耗。

实际的锂离子电池,每时每刻都有副反应存在,也有不可逆的消耗,如电解液分解,活性物质溶解,金属锂沉积等,只不过程度不同而己。

实际电池系统,每次循环中,任何能够产生或消耗锂离子或电子的副反应,都可能导致电池容量平衡的改变。

一旦电池的容量平衡发生改变,这种改变就是不可逆的,并且可以通过多次循环进行累积,对电池性能产生严重影响。

⑴正极材料的溶解尖晶石LiMn2O4中Mn的溶解是引起LiMn2O4可逆容量衰减的主要原因,对于Mn的溶解机理,一般有两种解释:氧化还原机制和离子交换机制。

氧化还原机制是指放电末期Mn3+的浓度高,在LiMn2O4表面的Mn+会发生歧化反应: 2Mn3+(固)Mn4+(固)+Mn2+(液)歧化反应生成的二价锰离子溶于电解液。

离子交换机制是指Li+和H+在尖晶石表面进行交换,最终形成没有电化学活性的HMn2O4.Xia等的研究表明,锰的溶解所引起的容量损失占整个电池容量损失的比例随着温度的升高而明显增大(由常温下的23%增大到55℃时的34%)[14]。

⑵正极材料的相变革[15]锂离子电池中的相变有两类:一是锂离子正常脱嵌时电极材料发生的相变;二是过充电或过放电时电极材料发生的相变。

对于第一类相变,一般认为锂离子的正常脱嵌反应总是伴随着宿主结构摩尔体积的变化,同时在材料内部产生应力,从而引起宿主晶格发生变化,这些变化减少了颗粒间以及颗粒与电极间的电化学接触。

第二类相变是XXX-Teller效应。

Jahn-Teller效应是指由于锂离子的反复嵌入与脱嵌引起结构的膨胀与收缩,导致氧八面体偏离球对称性并成为变形的八面体构型。

由于Jahn-Teller 效应所导致的尖晶石结构不可逆转变,也是LiMn2O4容量衰减的主要原因之一。

在深度放电时,Mn的平均化合价低于3.5V,尖晶石的结构由立方晶相向四方晶相转变。

锂聚合物(锂电)电池基本原理讲解

锂聚合物(锂电)电池基本原理讲解

1、基本工作原理1)、正极反应: LiCoO2 ===== Li1-xCoO2 + x Li+ + xe-2)、负极反应: 6C + x Li+ + xe- ===== LixC63)、电池反应:LiCoO2 + 6C ====== Li1-xCoO2 + LixC64)、电池的电动势:(1)、定义:在没有电流的情况下,电池正、负极两端的电位差。

(2)、影响因素:由电极材料决定,不受其它任何辅助材料影响。

2、电压特性1)、开路电压:用电压表直接测量的正、负极两端的电压。

E = V – I R2)、工作电压范围:2.75 ~ 4.2 volt。

3)、额定电压:3.6 volt。

4)、平均工作电压: 3.72 volt。

5)、影响电压特性的基本因素(1)、电极材料;(2)、电极配方;(3)、电池设计;4、工作电流:1)、电极的极化:由于电池电极上有电流通过,导致电极电位偏离平衡状态。

a、欧姆极化:电池材料的电阻影响。

b、电化学极化:得失电子的难易,导致电极电位偏离平衡状态。

c、浓差极化:由于离子迁移速度慢,导致电极电位偏离平衡状态。

2)、极化与电流的关系:ie < ir < ic2)、工作电流的确定:《 ic; 2-3 mA/cm2;3)、影响工作电流的因素(1)、电极配方,导电材料性能、用量、粘合剂用量。

(2)、极片的面积;(3)、极片压实密度;(4)、钝化膜的厚度;化学电源在实现能量的转换过程中,必须具有两个必要的条件:一. 组成化学电源的两个电极上进行的氧化还原过程,必须分别在两个分开的区域进行,这一点区别于一般的氧化还原反应。

二. 两电极的活性物质进行氧化还原反应时所需电子必须由外线路传递,这一点区别于金属腐蚀过程的微电池反应。

为了满足以上的条件,任何一种化学电源均由以下四部分组成:1、电极电池的核心部分,它是由活性物质和导电骨架所组成。

活性物质是指正、负极中参加成流反应的物质,是化学电源产生电能的源泉,是决定化学电源基本特性的重要部分。

弄懂锂电池浆料必须了解的理论知识

弄懂锂电池浆料必须了解的理论知识

弄懂锂电池浆料必须了解的理论知识一、胶体理论导致胶体粒子团聚的主要作用,是来自粒子间的范德华力,若要增加胶体粒子稳定性,则由两个途径,一是增加胶体粒子间的静电排斥力,二为使粉体间产生空间位阻,以这两种方式阻绝粉体的团聚。

最简单的胶体系统系由一分散相与一相分散媒介所构成,其中分散相尺度范围于10-9~10-6m间。

胶体内的物质存在于系统内需具有一定程度以上的分散能力。

根据溶剂与分散相的不同而可产生多种不同的胶体型态,如:雾气即为液滴分散于气体中之气胶、牙膏即固态高分子微粒分散在液体中的溶胶。

胶体的应用在生活中比比皆是,而胶体的物理特性需视分散相与分散介质的不同而有所差异。

从微观角度观察胶体,胶体粒子并非处于恒定状态,而是在介质内随机运动,这便是我们所称的布朗运动(Brownian motion)。

绝对零度以上,胶体粒子均会因热运动而发生布朗运动,这便是微观胶体的动力学特性。

胶体粒子因布朗运动而产生碰撞,是为团聚(aggregate)发生的契机,而胶体粒子在热力学上处于不稳定状态,因而粒子间的交互作用力为分散的关键因素之一。

1-1,胶体动力学性质布朗运动起始自19 世纪初,植物学家布朗由显微镜观察到花粉粒子在水中的不规则运动得名。

粒子因温度而造成布朗运动后将产生碰撞行为,由粒子表面的范德华力引起团聚现象。

胶体的凝聚速率与以下两者有密切的关系:1)胶体粒子间彼此碰撞的频率,2)粒子经碰撞后,产生的热能是否足以克服胶体间的排斥能量。

Smoluchowski 提出胶体快速凝聚理论,是由浓度差造成扩散速率所控制。

胶体粒子团聚的速率为:(1)n表示在时间t时,单位体积溶液所含的胶体粒子数,k2为二次反应速率常数(second-order rate constant)。

由于团聚使得溶液中的胶体粒子浓度减少,因此以表示为负号。

当t=0,n=n0, 积分上式可得:(2)胶体部分团聚后,由于排斥能障将随粒子的粒径增加而成长,溶液将达到平衡,使得凝聚速率下降。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、锂电池与锂离子电池锂电池的特点1、具有更高的能量重量比、能量体积比;2、电压高,单节锂电池电压为3.6V,等于3只镍镉或镍氢充电电池的串联电压;3、自放电小可长时间存放,这是该电池最突出的优越性;4、无记忆效应。

锂电池不存在镍镉电池的所谓记忆效应,所以锂电池充电前无需放电;5、寿命长。

正常工作条件下,锂电池充/放电循环次数远大于500次;&可以快速充电。

锂电池通常可以采用 0.5〜1倍容量的电流充电,使充电时间缩短至1〜2小时;7、可以随意并联使用;8、由于电池中不含镉、铅、汞等重金属元素,对环境无污染,是当代最先进的绿色电池;锂离子电池具有以下优点:1、电压高,单体电池的工作电压高达 3.6-3.9V,是Ni-Cd、Ni-H电池的3倍2、比能量大,目前能达到的实际比能量为 100-125Wh/kg和240-300Wh/L (2倍于Ni-Cd,1.5倍于Ni-MH ),未来随着技术发展,比能量可高达150Wh/kg和400 Wh/L3、循环寿命长,一般均可达到500次以上,甚至1000次以上.对于小电流放电的电器,电池的使用期限将倍增电器的竞争力.4、安全性能好,无公害,无记忆效应.作为Li-ion前身的锂电池,因金属锂易形成枝晶发生短路,缩减了其应用领域:Li-ion中不含镉、铅、汞等对环境有污染的元素:部分工艺(如烧结式)的Ni-Cd电池存在的一大弊病为记忆效应”严重束缚电池的使用,但Li-ion根本不存在这方面的问题。

5、自放电小,室温下充满电的Li-ion储存1个月后的自放电率为10%左右,大大低于Ni-Cd 的 25-30%, Ni、MH 的 30-35%。

6可快速充放电,1C充电是容量可以达到标称容量的 80%以上。

7、工作温度范围高,工作温度为-25~45 °,随着电解质和正极的改进,期望能扩宽到-40~70°。

锂离子电池也存在着一定的缺点,如:1、电池成本较高。

主要表现在正极材料 LiCoO2的价格高(Co的资源较少),电解质体系提纯困难。

2、不能大电流放电。

由于有机电解质体系等原因,电池内阻相对其他类电池大。

故要求较小的放电电流密度,一般放电电流在 0.5C以下,只适合于中小电流的电器使用。

3、需要保护线路控制。

A、过充保护:电池过充将破坏正极结构而影响性能和寿命;同时过充电使电解液分解,内部压力过高而导致漏液等问题;故必须在 4.1V-4.2V的恒压下充电;B、过放保护:过放会导致活性物质的恢复困难,故也需要有保护线路控制。

摘要:综述了锂离子电池的发展趋势,简述了锂离子电池的充放电机理理论研究状况,总结归纳了作为核心技术的锂电池正负电极材料的现有的制备理论和近来发展动态,评述了正极材料和负极材料的各种制备方法和发展前景,重点介绍了目前该领域的问题和改进发展情况。

成本高。

与其它可充电池相比,锂电池价格较贵。

二、锂离子电池相关参数1容量这是大家比较关心的一个参数。

智能手机早已普及,我们在使用智能手机的时候,最为担心的就是电量不足,需要频繁充电,有时还找不到地方充电。

早期的功能机,正常使用情况下,满充的电池可以待机3~5天,一些产品甚至可以待机7天以上。

可是到了智能机时代,待机时间就显得惨不忍睹了。

这里面很重要的一个原因,就是手机的功耗越来越大,而电池的容量却没有同比例的增长。

容量的单位一般为“mAh毫安时)或“Ah”安时),在使用时又有额定容量和实际容量的区别。

额定容量是指满充的锂离子电池在实验室条件下(比较理想的温湿度环境),以某一特定的放电倍率(C-rate)放电到截止电压时,所能够提供的总的电量。

实际容量一般都不等于额定容量,它与温度、湿度、充放电倍率等直接相关。

一般情况下,实际容量比额定容量偏小一些,有时甚至比额定容量小很多,比如北方的冬季,如果在室外使用手机,电池容量会迅速下降。

2•能量密度能量密度,指的是单位体积或单位重量的电池,能够存储和释放的电量,其单位有两种:Wh/kg,Wh/L,分别代表重量比能量和体积比能量。

这里的电量,是上面提到的容量(Ah)与工作电压(V)的积分。

在应用的时候,能量密度这个指标比容量更具有指导性意义。

基于当前的锂离子电池技术,能够达到的能量密度水平大约在 100~200Wh/kg,这一数值还是比较低的,在许多场合都成为锂离子电池应用的瓶颈。

这一问题同样出现在电动汽车领域,在体积和重量都受到严格限制的情况下,电池的能量密度决定了电动汽车的单次最大行驶里程,于是出现了里程焦虑症”这一特有的名词。

如果要使得电动汽车的单次行驶里程达到 500公里(与传统燃油车相当),电池单体的能量密度必须达到 300Wh/kg以上。

锂离子电池能量密度的提升,是一个缓慢的过程,远低于集成电路产业的摩尔定律,这就造成了电子产品的性能提升与电池的能量密度提升之间存在一个剪刀差,并且随着时间不断扩大。

3.充放电倍率这个指标会影响锂离子电池工作时的连续电流和峰值电流,其单位一般为C(C-rate的简写),如1/10C,1/5C, 1C, 5C,10C等。

举个例子来阐述倍率指标的具体含义,某电池的额定容量是10Ah,如果其额定充放电倍率是1C,那么就意味着这个型号的电池,可以以 10A的电流,进行反复的充放电,一直到充电或放电的截止电压。

如果其最大放电倍率是 10C@10s,最大充电倍率5C@10s, 那么该电池可以以100A的电流进行持续10秒的放电,以50A的电流进行持续 10秒的充电。

充放电倍率对应的电流值乘以工作电压,就可以得出锂离子电池的连续功率和峰值功率指标。

充放电倍率指标定义的越详细,对于使用时的指导意义越大。

尤其是作为电动交通工具动力源的锂离子电池,需要规定不同温度条件下的连续和脉冲倍率指标,以确保锂离子电池使用在合理的范围之内。

4.电压锂离子电池的电压,有开路电压、工作电压、充电截止电压、放电截止电压等一些参数,本文不再分开一一论述,而是集中做个解释。

开路电压,顾名思义,就是电池外部不接任何负载或电源,测量电池正负极之间的电位差,此即为电池的开路电压。

工作电压,就是电池外接负载或电源,处在工作状态,有电流流过时,测量所得的正负极之间的电位差。

一般来说,由于电池内阻的存在,放电状态时的工作电压低于开路电压,充电时的工作电压高于开路电压。

充/放电截止电压,是指电池允许达到的最高和最低工作电压。

超过了这一限值,会对电池产生一些不可逆的损害,导致电池性能的降低,严重时甚至造成起火、爆炸等安全事故。

电池的开路电压和工作电压,与电池的容量存在一定的对应关系。

5.寿命锂离子电池的寿命会随着使用和存储而逐步衰减,并且会有较为明显的表现。

仍然以智能手机为例,使用过一段时间的手机,可以很明显的感觉到手机电池不耐用”了,刚开始可能一天只充一次,后面可能需要一天充电两次,这就是电池寿命不断衰减的体现。

锂离子电池的寿命分为循环寿命和日历寿命两个参数。

循环寿命一般以次数为单位,表征电池可以循环充放电的次数。

当然这里也是有条件的,一般是在理想的温湿度下,以额定的充放电电流进行深度的充放电(100% DOD或者80%DOD),计算电池容量衰减到额定容量的 80%时,所经历的循环次数。

日历寿命的定义则比较复杂,电池不可能一直在充放电,有存储和搁置,也不可能一直处于理想环境条件,会经历各种温湿度条件,充放电的倍率也是时刻在变化的,所以实际的使用寿命就需要模拟和测试。

简单的说,日历寿命就是电池在使用环境条件下,经过特定的使用工况,达到寿命终止条件(比如容量衰减到80%)的时间跨度。

日历寿命与具体的使用要求是紧密结合的,通常需要规定具体的使用工况,环境条件,存储间隔等。

日历寿命比循环寿命更具有实际意义,但由于日历寿命的测算非常复杂,而且耗时太长,所以一般电池厂家只给出循环寿命的数据。

如需要获得日历寿命的数据,通常要额外付费,且要等待很长时间。

6.内阻锂离子电池的内阻是指电池在工作时,电流流过电池内部所受到的阻力,它包括欧姆内阻和极化内阻,极化内阻又包括电化学极化内阻和浓差极化内阻。

欧姆内阻由电极材料、电解质、隔膜电阻及各部分零件的接触电阻组成。

极化内阻是指电化学反应时由极化引起的电阻,包括电化学极极化和浓差极化引起的电阻。

内阻的单位一般是毫欧姆(mQ)内阻大的电池,在充放电的时候,内部功耗大,发热严重,会造成锂离子电池的加速老化和寿命衰减,同时也会限制大倍率的充放电应用。

所以,内阻做的越小,锂离子电池的寿命和倍率性能就会越好。

7•自放电电池在放置的时候,其容量是在不断下降的,容量下降的速率称为自放电率,通常以百分数表示:%/月。

自放电是我们不希望看到的,一个充满电的电池,放个几个月,电量就会少很多,所以我们希望锂离子电池的自放电率越低越好。

这里需要特别注意,一旦锂离子电池的自放电导致电池过放,其造成的影响通常是不可逆的,即使再充电,电池的可用容量也会有很大损失,寿命会快速衰减。

所以长期放置不用的锂离子电池,一定要记得定期充电,避免因为自放电导致过放,性能受到很大影响。

8.工作温度范围由于锂离子电池内部化学材料的特性,锂离子电池有一个合理的工作温度范围(常见的数据在-40C~60C之间),如果超出了合理的范围使用,会对锂离子电池的性能造成较大的影响。

不同材料的锂离子电池,其工作温度范围也是不一样的,有些具有良好的高温性能,有些则能够适应低温条件。

锂离子电池的工作电压、容量、充放电倍率等参数都会随着温度的变化而发生非常显著的变化。

长时间的高温或低温使用,也会使得锂离子电池的寿命加速衰减。

因此,努力创造一个适宜的工作温度范围,才能够最大限度的提升锂离子电池的性能。

除了工作温度有限制之外,锂离子电池的存储温度也是有严格约束的,长期高温或低温存储,都会对电池性能造成不可逆的影响。

二、锂离子电池的正负极材料我们经常会看到磷酸铁锂,三元等专业的锂离子电池术语,这些都是根据锂离子电池正极材料来区分锂离子电池的类型。

相对来讲,锂离子电池的正、负极材料对电池性能的影响比较大,是大家比较关心的方面。

那么,当前市场上都有哪些常见的正负极材料呢?用他们做锂离子电池,又有哪些优缺点?1•正极材料首先,我们来看看正极材料,正极材料的选择,主要基于以下几个因素考虑:1)具有较高的氧化还原反应电位,使锂离子电池达到较高的输出电压;2)锂元素含量高,材料堆积密度高,使得锂离子电池具有较高的能量密度;3)化学反应过程中的结构稳定性要好,使得锂离子电池具有长循环寿命;4)电导率要高,使得锂离子电池具有良好的充放电倍率性能;5)化学稳定性和热稳定性要好,不易分解和发热,使得锂离子电池具有良好的安全性;6)价格便宜,使得锂离子电池的成本足够低;7)制造工艺相对简单,便于大规模生产;8)对环境的污染低,易于回收利用。

相关文档
最新文档