可生物降解材料
可生物降解高分子材料的分类及应用

可生物降解高分子材料的分类及应用随着环保意识的提高,生物降解高分子材料的应用越来越广泛。
生物降解高分子材料是指由生物物质以及化学合成物分子构成的材料,通过生物分解、水解、微生物的代谢等方式最终转化为自然界中的水、二氧化碳和有机物等形式。
根据来源、降解方式的不同,生物降解高分子材料可以分为多种类型,下面将分别进行介绍。
1. 生物来源降解高分子材料生物来源降解高分子材料是指从天然植物、微生物或动物中提取、在化学反应中合成的具有生物降解性能的高分子材料。
这种高分子材料具有良好的生物相容性,能够与人体或其他生物环境兼容,并且在自然界中容易被降解,不会对环境造成污染。
常见的生物来源降解高分子材料包括纤维素、淀粉、蛋白质等。
应用:可制成一次性生物降解口罩、生物降解餐具、生物降解包装等。
2. 环境友好型聚合物环境友好型聚合物是指可以在自然界中容易被降解的高分子材料。
它们是通过聚合反应制备的合成材料,通过简单的物理和化学反应可以分解成小分子,微生物也可以分解这些分子。
3. 水溶性聚合物水溶性聚合物是指可溶于水的高分子材料。
它们通常是由含有水溶性基团的聚合物合成的。
由于这些高分子材料可以在水中溶解,所以它们可以轻易地通过水处理系统进行处理,不会造成环境存在的问题。
应用:可制成水溶性包装、水溶性垃圾袋、水溶性农用膜等。
微生物来源高分子材料是指通过微生物代谢过程制备的高分子材料。
这些高分子材料尤其适合于用于环保和生物医学应用的材料。
总之,生物降解高分子材料具有天然的可降解性和环保性,可以有效降低固体废弃物对环境的污染。
因此,其在生物医学、环保、包装等领域的应用前景广阔。
生物降解材料全文

第11章环境中可生物降解新材料11.1 可生物降解新材料发展背景塑料是应用最广泛的材料,按体积计算已居世界首位,1998年世界塑料产量约为1.5亿吨。
但庞大难降解的“白色污染”物严重污染环境;另外石油资源越用越少,有报道全世界的石油储量只能用10年,姑且不论其正确与否,石油总会有用完的一天,因而就世界而言,寻找新的对环境友好(未改动)塑料原料,发展非石油基聚合物迫在眉睫。
为了解决塑料污染问题,70年代科学家提出了降解塑料的概念,按降解机理可将其大致分为光降解和生物降解塑料两大类。
就生物降解塑料而言,英国科学家G.J.L.Griffin提出惰性聚合物中加入廉价的可生物降解性天然淀粉作为填充剂的观点并发表了第一个淀粉填充聚乙烯塑料的专利,引起了人们对生物降解塑料的关注,从而进入了以淀粉基塑料研究与开发为主的热潮,相继发表的专利与文献很多,并推出了系列产品,80年代末期有些已实现食品化。
80年代开发降解塑料呼声最高的是美国,有11个州颁布了相关法规。
美国发展淀粉塑料不仅为了解决塑料严重污染,而且也希望开辟玉米淀粉的应用途径以减少对进口石油的依赖和节省石油。
美国Agti-Tech公司在1988年投资1亿美元建设了一个以玉米淀粉为基料的生产降解垃圾袋的生产线。
欧洲塑料制造协会、日本、英国、意大利和俄罗斯也积极研制,日本还由64家公司联合成立了“生物降解塑料研究会”。
我国塑料工业起步比较晚但发展迅速,1998年塑料制品总产量已接近千万吨,包装材料和农用地膜约占塑料制品总量的35%,达350万吨,因此“白色污染”也很严重,其中一次性塑料用品和地膜每年约有200万吨作为垃圾抛弃。
据报道,我国七大水系均受到塑料废弃物不同程度的污染,如长江上漂浮的垃圾就令人触目惊心,例如包括发泡餐具和废弃塑料的垃圾阻塞使葛洲坝水力发电厂的落差减少,有时还要停机清淤,每天要少发200万kW·h。
因此我国也需要大力研究和发展降解塑料11.2 可生物降解材料分类及开发现状11.2.1 可生物降解材料的分类生物降解塑料至今尚无明确的定义,一般认为,它是在一定条件下,能在分泌酵素的微生物(如细菌、真菌)的作用下导致生物降解的材料。
微生物作用下土壤中数月内降解的材料

微生物作用下土壤中数月内降解的材料
微生物在土壤中扮演着重要的角色,参与分解和降解各种有机和无机物质。
以下是一些在土壤中可能会被微生物降解的材料,其降解速度可能在数月内:
1.天然有机物:微生物可以降解天然有机物,如植物残渣、木质
纤维、藻类等。
这些材料通常在土壤中较快地被微生物分解,特别是在温暖湿润的环境中。
2.淀粉和纸张:微生物可以分解淀粉,因此淀粉基的材料,如食
物残渣中的淀粉、纸张等,可能在数月内被降解。
3.天然纤维素:微生物能够分解天然纤维素,因此纤维素含量高
的材料,如木材、植物纤维等,在适宜的条件下也可能在数月内被微生物分解。
4.生物降解塑料:一些生物降解塑料(如某些淀粉基塑料或聚乳
酸塑料)设计成更容易在土壤中被微生物分解,因此它们的降解速度可能相对较快。
5.有机废物:有机废物,如食品废弃物、植物残渣等,通常含有
易于微生物分解的有机物,因此在合适的环境中,它们可能在数月内被降解。
请注意,实际的降解速度受到多种因素的影响,包括土壤类型、湿度、温度、微生物活动水平等。
在一些情况下,例如在干燥或寒冷的环境中,降解速度可能较慢。
生物可降解材料

⽣物可降解材料可⽣物降解的材料有天然⾼分⼦、⽣物合成⾼分⼦、⼈⼯合成⾼分⼦、⽣物活性玻璃、磷酸三钙等。
天然⾼分⼦均为亲⽔性材料,如胶原、明胶、甲壳素、淀粉、纤维素、透明质酸等,它们在⼈体内的降解速度与材料在⼈体⽣理环境下的溶解特性有关。
例如明胶分⼦能够溶于与体液相似pH 值为714 的⽣理盐⽔中,因⽽必须先进⾏交联才能作为材料在⼈体中使⽤[4~6 ] ,其交联产物在⼈体内降解2溶解的速度很快,⼏天内就可被⼈体完全吸收。
与此相对应,在正常⽣理环境下不溶解的天然⾼分⼦,如甲壳素(在酸性环境下溶解) [7 ] ,其降解速率就要慢得多。
磷酸三钙具有良好的⽣物相容性、⽣物活性以及⽣物降解性,是理想的⼈体硬组织修复和替代材料,在⽣物医学⼯程学领域⼀直受到⼈们的密切关注。
医学上通常使⽤的是磷酸三钙的⼀种特殊形态—β-磷酸三钙。
β-磷酸三钙主要是由钙、磷组成,其成分与⾻基质的⽆机成分相似,与⾻结合好。
动物或⼈体细胞可以在β-磷酸三钙材料上正常⽣长,分化和繁殖。
通过⼤量实验研究证明:β-磷酸三钙对⾻髓造⾎机能⽆不良反应,⽆排异反应,⽆急性毒性反应,不致癌变,⽆过敏现象。
因此β-磷酸三钙可⼴泛应⽤于关节与脊柱融合、四肢创伤、⼝腔颌⾯的外科、⼼⾎管外科,以及填补⽛周的空洞等⽅⾯。
随着⼈们对β-磷酸三钙研究的不断深⼊,其应⽤形式也出现了多样化,幵在临床医学中体现了较好的性能。
梁⼽等通过实验发现其溶⾎程度<5%,当β-磷酸三钙被植⼊⼈体内后,其在体液中能发⽣降解和吸收,钙、磷被体液吸收后进⼊⼈体循环系统,⼀定时间后植⼊⼈体的β-磷酸三钙逐渐溶解消失,形成新⾻。
Arai等利⽤β-磷酸三钙多孔陶瓷填充8~15cm 的腓⾻节段缺损,获得了腓⾻再⽣。
平均术后2个⽉即可达到重建。
不会发⽣踝关节及胫⾻的移位。
郑承泽等将β-磷酸三钙与⾃体⾻髓复合应⽤于临床,修复包括肿瘤性⾻缺损和陈旧性⾻折⾻缺损,经术后调查,结果显⽰植⼊材料的成⾻作⽤明显,说明β-磷酸三钙与⾃体⾻髓复合是⼀种治疗⾻缺损理想的⽅法。
生物可降解材料的新进展

生物可降解材料的新进展随着全球环境问题的不断加剧,尤其是塑料污染的日益严重,各国科研机构和企业都在积极寻找解决方案。
生物可降解材料因其能在自然环境中被微生物分解而受到广泛关注。
这种材料不仅能够有效减少废弃物对环境的影响,还能在一定程度上缓解资源枯竭的问题。
因此,生物可降解材料的研究与发展成为了当今材料科学领域的重要课题。
生物可降解材料的定义与分类生物可降解材料是指那些能够在自然环境中,经过微生物作用,被分解成水、二氧化碳和生物质的材料。
根据其来源和性质,这些材料可以分为以下几类:天然生物可降解材料:包括纤维素、淀粉、蛋白质等天然高分子材料。
这类材料取材自自然界, biodegradation 过程相对简单,且具有良好的生态兼容性。
合成生物可降解材料:通常是通过合成或改性天然聚合物,或者完全合成的新型聚合物,如聚乳酸(PLA)、聚羟基脂肪酸酯(PHA)等。
这些材料往往具有更优越的机械性能和加工性能。
复合生物可降解材料:通过将不同的生物基材料进行复合,以改善其力学性能、热稳定性等。
这类材料可以结合多种优点,满足不同领域的需求。
生物可降解材料的应用领域包装行业包装行业是生物可降解材料应用最广泛的领域之一。
由于传统塑料包装在自然界中难以降解,其对环境造成的压力日益增加,因此采用生物可降解的包装材料成为可行之策。
这些包装材料不仅能满足产品保护的需求,还能在使用后周期内分解,降低环境负担。
例如,PLA薄膜被广泛应用于食品包装,它在保障食品安全和新鲜度的同时,也能减少塑料废弃物。
医疗行业医疗领域对生物可降解材料的需求也日益增长。
用于制造医疗器械、药品递送系统及组织工程支架等方面,生物可降解材料以其良好的生物相容性和优越的机械强度,成为研究热点。
一些新型 PHA 材料已经被用于制备缝合线和药物输送载体,有助于提高医疗效果并减少术后感染风险。
纺织行业纺织品是另一个潜在机会领域。
采用天然或合成生物可降解纤维,不仅可以生产出更加环保的服装,还能实现衣服穿用后的无害分解。
生物可降解高分子材料

生物可降解高分子材料
生物可降解高分子材料是一种在多年的发展中被越来越多地采用的材料,它具有良好
的可降解性能,而且没有环境污染。
生物可降解材料一般都是指通过有机物质,如细菌、
酵母等,用生物酶受体产生和降解可生物降解的高分子材料。
生物可降解高分子材料的主要原料可以分为葡萄糖类和植物油脂类两大类,葡萄糖类
材料主要来源于玉米、大豆等蛋白质类植物,如羟基玉米淀粉;植物油脂类材料主要来源
于油料豆类植物,如棉籽、玉米籽等。
生物可降解高分子材料可以通过有机物质,如细菌、酵母等,催化发生降解,产生CO2和H2O,不会产生废料污染环境。
今天,生物可降解高分子材料主要应用于食品包装、医疗、地膜、种植培养板、耕作
层及各种收集装置。
聚乳酸(PLA)是一种绿色、可降解和可生物降解的高分子材料,是
生物可降解高分子材料中最经典的材料之一。
同时,由于它具有乳白色、柔软的性能、抗
静电的性能以及耐温性,因此也可以用于汽车内饰,电子产品和家具等方面的应用。
总之,随着我们对环境及社会的日益重视,生物可降解高分子材料的使用将越来越多,取得越来越好的结果。
它可以有效地帮助我们去减少环境污染,保护我们的环境,提高我
们生活的品质。
生物可降解材料的研究及应用

生物可降解材料的研究及应用第一章:引言生物可降解材料是指在自然环境中被微生物分解并最终转化成水和二氧化碳等无害物质的材料。
这种材料广泛应用于生活、医疗、农业、环保等领域,并且具有环保、可持续发展等多种优点。
本文将对生物可降解材料的研究和应用进行综述。
第二章:生物可降解材料的类型和性质生物可降解材料可以分为天然生物可降解材料和人工合成生物可降解材料两类。
1. 天然生物可降解材料。
包括淀粉类、蛋白质类、植物纤维素类等。
这些材料本身即具有生物降解性,同时具有优良的生物学性能。
2. 人工合成生物可降解材料。
根据原料和制备方法的不同,可以分为聚醚类、聚酯类、聚酰胺类、聚糖类等。
这些材料通常由可再生资源制备而成,具有良好的成型性和加工性能,同时也具有生物降解性。
生物可降解材料具有良好的可降解性、可吸湿性、生物相容性、低毒性等优良特性。
其中,可降解性是最主要的特性,基本上所有的生物可降解材料都具备这一特性。
同时,这种材料与生物体内的组织兼容性强,不会污染环境和危害人体健康。
第三章:生物可降解材料的制备方法生物可降解材料的制备方法包括物理化学法、生物法和辅助加工法。
1. 物理化学法。
包括溶液共混、熔融共混、溶胶凝胶法、沉淀聚合法等。
这些方法基本上都是通过化学反应或物理相互作用来完成原料的共混和聚合等过程。
2. 生物法。
生物法主要利用微生物或其代谢产物来制备生物可降解材料。
3. 辅助加工法。
辅助加工法则是在已有生物聚合体的基础上,通过加工扩散、拉伸等手段来增强其性能。
第四章:生物可降解材料的应用1. 生活用品。
目前市场上常见的生活用品中不乏生物可降解材料制成的产品,如环保购物袋、生物可降解垃圾袋、生物可降解餐具等。
2. 基础设施。
生物可降解材料也被广泛应用于建筑材料中,如使用废旧木料制成的生物可降解门窗、木质地板等。
3. 医疗器械。
在医疗领域中,生物可降解材料原理被广泛运用于人工心脏瓣膜、诊断试剂、医用缝合线等。
《生物可降解材料》课件

3
同时,随着生产成本的降低和性能的提高,生物 可降解材料将有可能替代传统塑料,成为主流的 包装和建筑材料。
04 生物可降解材料的研究进 展
生物可降解材料的制备技术
生物可降解材料的合成方 法
包括化学合成、微生物发酵和酶促合成等, 这些方法能够生产出具有优异性能的生物可 降解材料。
生物可降解材料的加工技术
05 生物可降解材料面临的挑 战与解决方案
生物可降解材料的生产成本问题
总结词
生产成本高昂
详细描述
生物可降解材料的生产过程中需要使用昂贵的原材料和复杂的生产工艺,导致其成本远高于传统塑料 。
生物可降解材料的性能稳定性问题
总结词
性能不稳定
详细描述
部分生物可降解材料在自然环境中的降解速率较慢,且在降解过程中可能产生有毒物质,对环境造成二次污染。
生物可降解材料在医疗领域的应用
由于传统医用材料对患者的伤害和对环境的污染,生物可降解材料在医疗领域的应用越来越广泛。这些材料可以用于 制造手术缝合线、药物载体等。
生物可降解材料在其他领域的应用
除了包装和医疗领域,生物可降解材料还可以应用于农业、建筑、纺织等领域。这些材料可以用于制造 农用地膜、建筑材料和服装等。
生物可降解材料的推广应用问题
总结词
应用范围有限
详细描述
目前生物可降解材料的应用领域相对 狭窄,主要集中在包装、餐饮等少数 行业,未能大规模取代传统塑料。
06 结论与展望
总结生物可降解材料的优势与不足
总结词
生物可降解材料在环境保护和可持续发展方面具有显著优势,但也存在一些不足之处。
详细描述
生物可降解材料能够有效地减少塑料垃圾的产生,降低环境污染,同时可降解材料在特 定环境条件下可被微生物分解为水和二氧化碳,实现材料的循环利用。然而,生物可降
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
CONTENT 01 什么是生物可降解材料? 02 降解机理是什么?
03 可生物降解材料的分类
04 影响降解性能的主要
05
因素 国内国外发展现状
什么是生物可降解材料呢?
所谓生物降解材料, 又被称为“绿色生态材料”,指 的是在土壤微生物和酶的作用 下能降解的材料。具体地讲,就 是指在一定条件下,能在细菌、 霉菌、藻类等自然界的微生物 作用下,导致生物降解的高分子 材料。
pH值
微生物只有在 最适pH值条件 下时才会生长 迅速,代谢旺盛, 发育良好。
土壤成分
土壤的成分主 要包括黏土、 沙土、腐植土 和活性污泥。 不同的土壤成 分所含有的微 生物种类是不 [1]侯红江,陈复生,郭东权,王 玲.可生物降解材料的研究进展[J]. 食品与机械 2009 25(2) 152~156 [2]宇恒星.聚乳酸聚合及降解的动力学研究[D].东华大学 2002
06
可生物降解材料的分类
掺混型生物降解材料
指将两种或两种以上高分子物(其 中至少有一种组分具有生物可降性)共 混复合制得的生物降解高分子材料。 选用的生物降解组分大多采用淀粉、 纤维素、木粉等天然高分子,其中又以 淀粉居多。。
化学合成型生物降解材料
指利用化学方法合成制造的生物 降解材料。此类高分子材料大多是在 分子结构中引入具有酯基结构的脂肪 族(共)聚酯,在自然界中酯基容易被微 生物或酶分解。
07
影响降解性能的主要因素
材料的组成及 结构
材料的化学组 成、主侧链和 端基结构、空 间位阻的有无 是影响其降解 性能的重要因 素。
材料的结晶 状态
结晶状态对材 料的降解性能 有着重要的影 响,材料的必要 条件。
环境的温度 和湿度
在一定的温度 范围内,随着温 度的上升,微生 物的代谢活动 逐渐旺盛,生长 加快,对材料的 降解效果明显。
10
感谢各位聆听
某某某
某某某大学
Thanks for Listening 某某某学院Biblioteka 04降解机理是什么?
生物的物理作用: 由于生物细胞的增 长而使材料发生机 械性毁坏。
生物的生化作用: 微生物对材料作 用而产生新的物 质。
酶的直接作用: 微生物侵蚀材料 制品部分成分进 而导致材料分解 或氧化崩溃。
05
降解过程
• 首先,微生物向体外分泌水 解酶与材料表面结合,通过 水解切断表面的高分子链, 生成小分子量的化合物, • 然后降解的生成物被微生 物摄入体内,经过种种代谢 路线,合成微生物体物或转 化为微生物活动的能量,最 终转化成CO2和H2O。
根据来 源划分
天然高分子型生物降解材料
利用生物可降解的天然高分子如 植物来源的生物物质和动物来源的甲 壳质等为基材制造的材料,植物来源的 纤维素、半纤维素等,动物来源主要 是虾、螃蟹等。
微生物合成型生物降解材料
指以有机物为碳源,通过微生物的 发酵而得到的生物降解材料,主要包括 微生物聚酯和和微生物多糖,其中微生 物聚酯方面的研究较多