模电课程设计(电压频率转换电路)
模拟电子技术课程设计——频率、电压转换电路的设计

淮海工学院课程设计报告书课程名称:模拟电子技术课程设计题目:频率/电压转换电路的设计系(院):电子工程学院学期:12-13-1专业班级:电子112姓名:冒佳卫学号:20111206491 引言本设计实验要求对函数发生器、比较器、F/V变换器LM331、反相器和反相加法器的主要性能和应用有所了解,要能掌握其使用方法。
同时要了解它们的设计原理。
本设计实验要求我们要灵活运用所学知识,对设计电路的理论值进行计算得到理论数据,在与实验结果进行比较。
1.1 设计目的当正弦波信号的频率f i在200Hz~2kHz范围内变化时,对应输出的直流电压V i在1~5V范围内线形变化。
1.2 设计内容设计一个频率/电压转换电路,将给定的正弦波信号的频率转化成相对应的直流电压。
设计的各部分包括:比较器、F/V转换器、反相器、反相加法器。
1.3 主要技术要求(1)输入为正弦波频率200—2000Hz; 输出为电压1—5V;(2)正弦波信号源采用函数波形发生器的输出;(3)采用±12V电源供电。
2 频率/电压转换器的总体框图设计=1~5V函数波形发生器输出的正弦波比较器变换成方波。
方波经F/V变换器变换成直流电压。
直流正电压经反相器变成负电压,再与参考电压V R通过反相加法器得到V o3 频率/电压转换器的功能模块设计3.1 函数信号发生器ICL8038芯片介绍3.1.1 ICL8038作用ICL 8038 是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部元件就能产生从 0.001HZ~300kHz的低失真正弦波、三角波、矩形波等脉冲信号。
输出波形的频率和占空比还可以由电流或电阻控制。
另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。
3.1.2 ICL8038管脚介绍图 2 ICL8038表1 引脚功能介绍3.2 比较器电路的设计过零比较器的原理过零比较器被用于检测一个输入值是否是零。
电压频率转换课程设计

目录第一章设计指标 (1)设计指标 (1)第二章设计方案及方案确定 (1)2.1设计思想 (1)2.2各功能的组成及原理分析 (1)2.3总体工作过程................................................,,,,,,,,,,,,, 13 第三章电路的组构与调试. (15)3.1 遇到的主要问题 (15)3.2 现象记录及原因分析 (15)3.3 解决措施........... .. (16)3.4 电路的检测 (16)第四章结束语 (17)心得与体会 (17)参考文献 (19)器件表 (19)附图(电路总图) (20)小信号(100mv)电压/频率变换第一章设计指标【设计指标】1.设计内容:小信号(100mv)v/f变换2.设计要求:1)输入0~100mv小信号电压线性变换成0~10KHz频率输出;2)设计精度1‰,既误差不超过10Hz;3)输出波形(脉冲波),脉冲宽度tw=20~40μs。
第二章设计方案及方案确定2.1设计思想输入为0~100mv的小信号线性转换成0~10KHz的输出频率,可先将0~100mv的小信号电压线性转换成0~10v的电压输出,然后再将其转换成0~10KHz的频率输出。
2.2各功能的组成及原理分析1. 0~100mv电压输出电源电压输出为12V,要产生0~100mv的电压,需要一个有固定阻值的电阻和一个滑动变阻器进行分压以调节电压输出。
通过调节滑动变阻器的阻值来改变输出电压(滑动变阻器两端的电压)。
当滑动变阻器的阻值为0Ω时,滑动变阻器两端的电压为0V,当滑动变阻器的阻值为1KΩ时,滑动变阻器两端的电压为100mv。
电阻选择:110KΩ电阻一个,9.1KΩ电阻一个,1KΩ滑动变阻器一个。
滑动变阻器两端电压为输出电压。
电路连接如图一所示。
110k9.1k_LIN50%图1 分压电路产生0~100mv电压2.电压放大1)仪表放大器的特点在测量系统中,通常被测物理量均通过传感器转换为电信号,然后进行放大。
频率电压转换电路设计讲解

Vo=-(Rf/R1 Vs1+Rf/R2 Vs2)
当R1=R2=R的时候:
Vo=-Rf/R(Vs1+Vs2)
式中的负号是因反相输入端所引起的
2.5.2 反相加法器的参数设定
用反相加法器是因为它便于调整—--可以独立调节两个信号源的输出电压而不会相互影响
已知Vo3= -Vo2= -fi×10-3V
2.3.4 LM331用作FVC时的原理框
脚是输出端(恒流源输出), 脚为输入端(输入脉冲链), 脚接比较电平.
工作过程波形如下:
当输入负脉冲到达时,由于 脚电平低于 脚电平,所以S=1(高电平), =0(低电平)。此时放电管T截止,于是Ct由VCC经Rt充电,其上电压VCt按指数规律增大。与此同时,电流开关S使恒流源I与 脚接通,使CL充电,VCL按线性增大(因为是恒流源对CL充电)。经过1.1RtCt的时间,VCt增大到2/3VCC时,则R有效(R=1,S=0), =0,Ct、CL再次充电。然后,又经过1.1RtCt的时间返回到Ct、CL放电。
设计总体框图如下,可供选择的方案有两种,它们是:
用通用型运算放大器构成微分器,其输出与输入的正弦信号频率成正比.
直接应用F/V变换器LM331,其输出与输入的脉冲信号重复频率成正比.
2、设计过程
2.1 函数信号发生器ICL8038芯片介绍
2.1.1 ICL8038作用
ICL 8038 是一种具有多种波形输出的精密振荡集成电路, 只需调整个别的外部元件就能产生从 0.001HZ~300kHz的低失真正弦波、三角波、矩形波等脉冲信号。输出波形的频率和占空比还可以由电流或电阻控制。另外由于该芯片具有调频信号输入端, 所以可以用来对低频信号进行频率调制。
电压频率和频率电压转换电路的设计讲解

设计一个V/F 转换器,研究其产生的输出电压的频率随输入电压幅度的变化关系。
1绪论(1)电压/ 频率转换即v/f 转换,是将一定的输入信号按线性的比例关系转换成频率信号,当输入电压变化时,输出频率也响应变化。
它的功能是将输入直流电压转换频率与其数值成正比的输出电压,故也称电压控制振荡电路。
如果任何一个物理量通过传感器转换成电信号后,以预处理变换为合适的电压信号,然后去控制压控振荡电路,再用压控振荡电路的输出驱动计数器,使之在一定时间间隔内记录矩形波个数,并用数码显示,那么可以得到该物理量的数字式测量仪表。
图 1 数字测量仪表电压/ 频率电路是一种模/ 数转换电路,它应用于模/数转换,调频,遥控遥测等各种设备。
(2)F/V 转换电路F/V 转换电路的任务是把频率变化信号转换成按比例变化的电压信号。
这种电路主要包括电平比较器、单稳态触发器、低通滤波器等电路。
它有通用运放F/V 转换电路和集成F/V 转换器两种类型。
1.1设计要求设计一个将直流电压转换成给定频率的矩形波的电路, 要求包括:积分器;电压比较器和一个将给定频率的矩形波转换为直流电压的电路,要求包括:过零比较器、单稳态触发器、低通滤波器等。
1.2设计指标(1 )输入为直流电压0-10V,输出为f=0-500Hz 的矩形波。
(2)输入ui 是0~10KHZ的峰-峰值为5V的方波,输出uo为0~10V的直流电压。
2设计内容总体框图设计2.1 V/F 转换电路的设计2.1.1工作原理及过程积分器和滞回比较器首尾相接形成正反馈闭环系统,如图2 所示,比较器输出的矩形波经积分器积分可得到三角波,三角波又触发比较器自动翻转形成矩形波,这样便可构成三角波,矩形波发生器。
由于采用集成运放组成的积分电路,因此可以实现恒流充电,能够得到比较理想的矩形波。
通过分析可知,矩形波幅值大小由稳压管的稳定电压值决定,即方波的幅值V OLM V Z 。
积分器:积分电路可以完成对输入电压的积分运算,即输入电压与输出电压的积分成正比。
模电课设频率-电压转换器电路

目录一.电路设计 (1)1.1设计方案选择 (1)1.2电路主要框图 (1)1.3设计 (1)1.4电路原理 (2)二.部分电路设计 (2)2.1比较器 (2)2.2频率-电压转化器 (4)2.3反相器 (7)2.4反相加法器 (8)3........................................................................................................................................... 总体电路图 .. (10)4........................................................................................................................................... 测试数据 (11)5........................................................................................................................................... 心得体会及问题 (11)5.1心得 (11)5.2问题及不足 (12)6........................................................................................................................................... 元件清单 (13)7........................................................................................................................................... 所用器件介绍. (13)7.1 比较器LM339 (13)7.2F/V 转换器LM331 (16)7.3反相器/反相加法器OP07 (18).电路设计1.1设计方案选择本组本次设计共有两个供选方案。
模电课程设计 电压频率变换器(DOC)

模拟电子技术基础题目名称:电压/频率变换器班级:姓名:学号:完成日期: 2011-6-10摘要本实验是对信号的产生、处理及变换功能电路的设计,在实际生产和操作中有这应用广泛。
本设计是主要针对的是模拟电子技术课程的设计,具有可操作性和应用性,学生能够独立完成。
电路信号的转换已经在电子领域中广泛应用,如:采样/保持(S/H)电路、电压比较电路、V/f(电压/频率)变换器、f/V(频率/电压)转换器、V/I(电压/电流)转换器、I/V(电流/电压)转换器、A/D(模/数)转换器、D/A(数/模)转换器等。
可以从本实验中学习到更多的电路设计的方法,激发学生的设计兴趣和激情,为以后的学习和工作打下良好大的基础。
而V/f(电压/频率)转换器便是本实验的主要内容。
目录一. 设计任务二. 简略设计方案三. 电路构成和部分参数计算1.积分电路2.单稳态触发器电路3. 电子开关电路图4.恒流源电路的设计四.总原理图和元器件清单1.总原理图2.元件清单五.基本计算与仿真调试分析1.基本计算2.仿真结果六.PCB仿真图七. 设计总结八.参考文献一、设计任务1.设计一种电压/频率变换电路,输入υI为直流电压(控制信号),输出频率为ƒO的矩形脉冲,且fυI。
O2.υI变化范围:0~10V。
3.ƒO变化范围:0~10kHz4.转换精度<1% 。
二、设计方案可知电路主要是由积分器、单稳态触发器、电子开关和恒流源电三、电路构成和部分参数计算1.、积分电路:积分电路采用集成运算放大器和RC元件构成反向输入积分器。
电路图如下:2、单稳态触发器电路单稳态触发器由555定时器构成,单稳态触发器具有下列特点:第一、它有一个稳定状态和一个暂稳状态;第二、在外来触发脉冲的作用下,能够由稳定状态翻转到暂稳状态;第三、暂稳状态维持一段时间后,将自动返回到稳定的状态。
暂稳状态时间的长短,与触发器脉冲无关,仅决定于电路本身的参数或者电路阀值电压以外接R、C参数有关,单稳态触发器输出脉冲宽度t W仅决定于定时元件R、C的取值,与输入触发信号和电源电压无关,调节R、C的取值,即可方便的调节t W。
电压频率转换电路实验报告

电压频率转换电路实验报告一、实验目的该实验旨在了解电压频率转换电路的构成和原理,以及掌握电路的实际应用和设计方法。
二、实验仪器本实验所需仪器和器材包括:频率信号发生器、双踪示波器、万用表、电阻、电容、三极管等。
三、实验原理使用三极管放大器的基本原理如下:三极管在放大电压信号时,主要通过调节其输入电阻和输出电阻的大小来控制电流。
由于三极管的输出电阻很小,因此在输入电阻很大的情况下,可以实现高增益放大。
电压频率转换电路以三极管放大器为核心,通过调节其输入电容和输入电阻的参数,可以实现输入频率的转换。
在实际制作中,通常将信号发生器的输出接入电容,然后接入电阻和三极管放大器,最后输出到示波器进行波形显示和测试。
四、实验步骤1.调节信号发生器的频率和幅度,将其输出接入电容,电容参数为100pF。
3.测试不同频率下的转换效果,分析输出波形和幅度的变化规律,进一步优化电路参数的选择方案。
五、实验结果及分析经过本次实验,得到了一组电压频率转换电路的测试数据:在输入频率为50Hz时,输出幅度为2.5V;在输入频率为100Hz时,输出幅度为2.8V;在输入频率为200Hz时,输出幅度为3.0V。
通过实验结果可以看出,随着输入频率的增加,输出幅度逐渐增大,这表明电路在一定范围内具有一定的线性特性,能够实现高效的频率转换和信号放大功能。
此外,通过不断优化电路参数,包括调整电容和电阻的数值大小以及选择合适的三极管型号等,还能进一步提高电路的性能和稳定性。
六、实验评价本次实验通过实际搭建电压频率转换电路,以及对其工作原理和关键参数的分析和优化,掌握了电路实际应用和设计的方法,进一步提高了实验能力和实践操作技能。
模拟电路之电压频率转换

模拟电路课程设计报告设计课题:电压频率转换专业班级:09电气技术教育学生姓名:易群学号:090805031指导教师:曾祥华设计时间:2011/1/10(以上小二号、行距40磅)电压频率转换一、设计任务与要求1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。
2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
(提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.)二、方案设计与论证(一)电源部分单相电压经过电源变压器、整流电路、滤波电路和稳压电路转换成稳定的直流电压。
直流电源的输入为220V的电网电压,一般情况下,所需直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压,变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉动电压,再通过低通滤波电路滤波,减小电压的脉动,使输出电压平滑,但由于电网电压波动或负载变化时,其平均值也将随之变化,则在滤波电路后接个稳压电路,使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。
在此次设计中则用220v、50Hz的交流电通过电源变压器、整流电路、滤波电路、稳压电路利用桥式整流电路实现正、负12V直流电压。
方框图如下:原理:图 10.1.1 直流稳压电源的方框图电网电压直流稳压电源通过变压器、整流、滤波、稳压来实现。
1)通过电源变压器降压后,再对220V 、50Hz 的交流电压进行处理,变压器副边电压有效值决定于后面电路的输出电压。
2)变压器副边电压通过整流电路将正弦波电压转换为单一方向的脉动电压,一般整流电路用单相半波整流和单相桥式整流,但单相半波电路仅试用于整流电流较小,对脉动要求不高的场合,所以此次采用单相桥式整流电路。
3)经过整流电路的电压仍含有交流分量,再为了减小电压的脉动,则接一滤波电路,输出电压平稳。
图如下:4)交流电压通过整流、滤波后虽然变为交流成分较小的直流电压,但是当电网波动或者负载变化时,它的值也会变动,则通过稳压电路使输出直流电压基本不受电网电压波动和负载变化的影响,从而得到更好的稳定行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
模拟电路课程设计报告设计课题:电压—频率转换电路
专业班级:
学生姓名:
学号:
指导教师:
设计时间:
题目电压—频率转换电路
一、设计任务与要求
1.将输入的直流电压(10组以上正电压)转换成与之对应的频率信号。
2.用桥式整流电容滤波集成稳压块电路设计电路所需的正负直流电源(±12V)。
(提示:用锯齿波的频率与滞回比较器的电压存在一一对应关系,从而得到不同的频率.)
二、方案设计与论证
用集成运放构成的电压—频率转换电路,将直流电压转换成频率与其数值成正比的输出电压,其输出为矩形波。
方案一、采用电荷平衡式电路
输入电压→积分器→滞回比较器→输入
原理图:
方案二、采用复位式电路
输入电压→积分器→单限比较器→输出
原理图:
通过对两种转换电路进行比较分析,我选择方案一来实现电压—频率的转换。
方案一的电路图简单,操作起来更容易,器件少,价钱也更便宜,且方案一的线性误差小,精度高,实验结果更准确,所以我选择方案一。
三、单元电路设计与参数计算
1、电源部分:
图1 电源原理图
单相交流电经过电源变压器、单相桥式整流电路、滤波电路和稳压电路转换成稳定的直流电压。
直流电压的数值和电网电压的有效值相差较大,因而需要通过电源变压器降压后,再对交流电压进行处理。
变压器副边电压通过整流电路从交流电压转换为直流电压,即将正弦波电压转换为单一方向的脉冲电压。
为了减少电压的脉动,需通过低通滤波电路滤波,使输出电压平滑。
交流电压通过整流、滤波后虽然变为交流分量较小的直流电压,但是当电网电压波动或者负载变化时,其平均值也将随之变化。
稳压电路的功能是使输出直流电压基本不受电网电压波动和负载变化的影响,从而获得足够高的稳定性。
取值为:
变压器:规格220V~15V 整流芯片:LM7812、LM7912
整流用的二极管:1N4007 电解电容:3300uf
C2、C3:0.1uf C4、C5:0.47uf
C7、C8:220uf 发光二极管上的R:1KΩ
2、电压—频率转换部分:
○1积分器:
图2—1 积分运算电路
在电路中,由于集成运放的同相输入端通过R3接地,0==u u N P ,为“虚地”。
电容C 中电流等于电阻R 中的电流
R
u i i
I R C
==
输出电压与电容上电压的关系为
u u
C -=0
而电容上电压等于其电流的积分,故
d
u d i u t
Ii
t C RC
C ⎰⎰-
=-=1
10
○
2滞回比较器:
图 2—2—(a ) 滞回比较器
图2—2—(b )电压传输特性
从集成运放输出端的限幅电路可以看出,u u Z ±=0,集成运放反相输入端电位
u u I
N
=,同相输入端电位
U R
R R
u
Z P
∙+=2
1
1
令u u P N =,求出的u I 就是阈值电压,因此得出 U R
R R
u Z T ∙+±
=±2
1
1
○3电压—频率转换:
图2—2—(C)电压—频率转换原理图
图3 —(b)电压—频率转换波形分析
图3—(c ) 仿真图
图(a )所示电路中,滞回比较器的阈值电压为 U R
R u Z T ∙±=±4
7
在图(b )波形中的T 2时间段,u 01是对u I 线性积分,其起始值为-u T ,终了值为+u T ,因而T 2应满足 U T u R U T I T C
-∙⋅-=211
解得
u
U R
R R T I
Z C
∙=
4
1722
当R R W 3>>时,振荡周期T T 2≈,故振荡频率 u R R R T
I Z
C f ∙=
≈
1
7
42
21
所以取值为:R 1=10k Ω R
2
=10k Ω
R
4
=10k Ω
R
7
=10k Ω
R
5
=1k Ω
R 6
=1k Ω F C
μ12
=
四、总原理图及元器件清单
1总原理图
图(1)电源原理图
图(2)电压—频率转换原理图
2.元件清单
五、安装与调试
首先先做电源,按照电源的原理图焊接电路板,在焊接的过程中,要注意不要虚焊,漏焊,二极管的导通方向和电容的正负极不要接反,稳压芯片LM7812是1脚输入,2脚接地,3脚输出,稳压芯片LM7912是1脚接地,2脚输入,3脚输出,注意焊接时不要接错。
焊接电容时速度要尽量快一些,因为实间过长电容容易烧坏,然后进入实验室调试,测出其正电源输出为+12V,而负电源电压为-12.3V,虽然有一些误差,但是在允许的范围内,调试完毕,电源部分完成。
再按照电压—频率的原理图焊接电路板,在焊接的过程中也是要注意不要虚焊漏焊,电容和二极管不要接错,两个稳压二极管串联且方向相反,注意uA741的脚,2号为反相输入端,3号为同相输入端,6号为输出端,4号接负电源,7号接正电源,1号、5号和8号脚虽然没有外接,也要焊。
然后进入实验室进行调试,其波形输出频率不稳定,经过讨论和分析,检查焊接电路没有问题,后来发现稳压管的稳压值太大,可能是导致不稳定的原因,就换了一个小一点的稳压管,再次进行调试,这一次稳定了,u01输出为三角波u0输出为矩形波,调试完毕。
六、性能测试与分析
1、测试过程:
先连接好电路,将示波器分别接到u01和u0处,调节,使其u01输出波形为三角波u0输出波形为方波,在输入端输入不同值的直流电压,在其波形不失真的情况下,选择10组电压值,用函数发生器测出其输出的频率值,并记录。
2、数据处理:
电源:
输入输出电压差○1、副边电压: 15.V 15.1V 31V
○2、7812 : 20.5V 12V 8.5V
○
3、7912 : -20.5V -12.5V -8V ○
4、 正电压 : +12V 负电压 :-12.3V 相对误差:
○
1、 输入电压:%67.0%1001515
1.15=⨯- 输出电压:
%33.3%10030
30
31=⨯- ○
2、 电压差:0%1005
.85
.8125.20=⨯-- ○
3、 电压差:0%1008
)
8()5.12(5.20=⨯------ ○
4、 正电压: 0%10012
12
12=⨯- 负电压:
%5.2%10012
)
12(3.12=⨯----
3、误差分析:
○
1、电源的12±v 不是很对称; ○
2、元件标出的数值和其本身的数值有差异; ○
3、集成运放不是理想运放; ○
4、直流电压源带负载能力差; ○
5、读数时产生的人为误差,如读数不准确不精确。
4、实验结论:
○1、积分器和滞回比较器组成的电路可以实现电压—频率的转换;
○2、频率f和输入电压u I成正比,即当u I增大时f增大,u I减小时f减小。
七、结论与心得
通过做此次的课程设计,让我了解了很多,增加了我的动手实践能力,真正的做到了学以致用。
首先是先理解题目要求,通过和同学讨论,查阅书籍等,作为参考,确定方案并设计出了电路图,在焊接电路板时,要注意不要虚焊,漏焊等,这是很重要的一步,因为接下来的实验是否成功,焊接的电路板起着很大的作用。
在调试的时候,并没有达到预期的效果,没有出现理论的结果,这个时候要细心的检查故障,弄清楚到底是哪里的问题,而不是着急和烦躁,越是那样越不容易检查出错误在哪里。
在实验的过程中,存在很多误差,理论和实践有着很大的区别,理论上能够实现,但实际上不一定能实现,要考虑到元件、器材等带来的误差,要多方面考虑,来完成实验。
遇到问题要多思考,结合课本和所学的知识来进行更改调试,通过自己动手调试,加深了印象,使我对课本上的理论知识有了更深一步的理解,也让我知道自己在实践方面有很多的不足,不仅巩固了以前所学过的知识,而且学到了很多课本上学不到的知识,让我懂得了理论与实际相结合时很重要的,只有理论知识是远远不够的,只有把所学的知识与实践结合起来,才能真正的提高自己的实际动手能力和独立思考能力,
总而言之,这次的课程设计,对我来说很有意义。
八、参考文献
模拟电子技术基础清华大学电子学教研组编童诗白华成英主编。