2020版高考数学大二轮复习1.1集合与常用逻辑用语学案(文)

合集下载

2020年高考数学(文)二轮专项复习专题01 集合与常用逻辑用语

2020年高考数学(文)二轮专项复习专题01 集合与常用逻辑用语

专题01 集合与常用逻辑用语集合概念及其基本理论,是近代数学最基本的内容之一,集合的语言、思想、观点渗透于中学数学内容的各个分支.有关常用逻辑用语的常识与原理始终贯穿于数学的分析、推理与计算之中,学习关于逻辑的有关知识,可以使我们对数学的有关概念理解更透彻,表达更准确.关注本专题内容在其他各专题中的应用是学习这一专题内容时要注意的.§1-1 集合【知识要点】1.集合中的元素具有确定性、互异性、无序性.2.集合常用的两种表示方法:列举法和描述法,另外还有大写字母表示法,图示法(韦恩图),一些数集也可以用区间的形式表示.3.两类不同的关系:(1)从属关系——元素与集合间的关系;(2)包含关系——两个集合间的关系(相等是包含关系的特殊情况).4.集合的三种运算:交集、并集、补集.【复习要求】1.对于给定的集合能认识它表示什么集合.在中学常见的集合有两类:数集和点集.2.能正确区分和表示元素与集合,集合与集合两类不同的关系.3.掌握集合的交、并、补运算.能使用韦恩图表达集合的关系及运算.4.把集合作为工具正确地表示函数的定义域、值域、方程与不等式的解集等.【例题分析】例1 给出下列六个关系:(1)0∈N*(2)0∉{-1,1} (3)∅∈{0}(4)∅∉{0} (5){0}∈{0,1} (6){0}⊆{0}其中正确的关系是______.【答案】(2)(4)(6)【评析】1.熟悉集合的常用符号:不含任何元素的集合叫做空集,记作∅;N表示自然数集;N+或N*表示正整数集;Z表示整数集;Q表示有理数集;R表示实数集.2.明确元素与集合的关系及符号表示:如果a是集合A的元素,记作:a∈A;如果a不是集合A的元素,记作:a∉A.3.明确集合与集合的关系及符号表示:如果集合A中任意一个元素都是集合B的元素,那么集合A叫做集合B的子集.记作:A⊆B或B⊇A.如果集合A是集合B的子集,且B中至少有一个元素不属于A,那么,集合A叫做集合B的真子集.A B或B A.4.子集的性质:①任何集合都是它本身的子集:A⊆A;②空集是任何集合的子集:∅⊆A;提示:空集是任何非空集合的真子集.③传递性:如果A⊆B,B⊆C,则A⊆C;如果A B,B C,则A C.例2已知全集U={小于10的正整数},其子集A,B满足条件(U A)∩(U B)={1,9},A∩B={2},B∩(U A)={4,6,8}.求集合A,B.【答案】A={2,3,5,7},B={2,4,6,8}.【解析】根据已知条件,得到如图1-1所示的韦恩图,图1-1于是,韦恩图中的阴影部分应填数字3,5,7.故A={2,3,5,7},B={2,4,6,8}.【评析】1、明确集合之间的运算对于两个给定的集合A、B,由既属于A又属于B的所有元素构成的集合叫做A、B的交集.记作:A∩B.对于两个给定的集合A、B,把它们所有的元素并在一起构成的集合叫做A、B的并集.记作:A∪B.如果集合A是全集U的一个子集,由U中不属于A的所有元素构成的集合叫做A在U 中的补集.记作U A.2、集合的交、并、补运算事实上是较为复杂的“且”、“或”、“非”的逻辑关系运算,而韦恩图可以将这种复杂的逻辑关系直观化,是解决集合运算问题的一个很好的工具,要习惯使用它解决问题,要有意识的利用它解决问题.例3 设集合M ={x |-1≤x <2},N ={x |x <a }.若M ∩N =∅,则实数a 的取值范围是______.【答案】(-∞,-1].【评析】本题可以通过数轴进行分析,要特别注意当a 变化时是否能够取到区间端点的值.象韦恩图一样,数轴同样是解决集合运算问题的一个非常好的工具.例4 设a ,b ∈R ,集合},,0{},,1{b aba b a =+,则b -a =______. 【答案】2【解析】因为},,0{},,1{b a b a b a =+,所以a +b =0或a =0(舍去,否则ab没有意义), 所以,a +b =0,ab=-1,所以-1∈{1,a +b ,a },a =-1, 结合a +b =0,b =1,所以b -a =2.练习1-1一、选择题1.给出下列关系:①R ∈21;②2∉Q ;③|-3|∉N *;④Q ∈-|3|.其中正确命题的个数是( ) (A)1(B)2(C)3(D)42.下列各式中,A 与B 表示同一集合的是( ) (A)A ={(1,2)},B ={(2,1)} (B)A ={1,2},B ={2,1}(C )A ={0},B =∅(D)A ={y |y =x 2+1},B ={x |y =x 2+1}3.已知M ={(x ,y )|x >0且y >0},N ={(x ,y )|xy >0},则M ,N 的关系是( ) (A)M N(B)N M(C)M =N(D)M ∩N =∅4.已知全集U =N ,集合A ={x |x =2n ,n ∈N },B ={x |x =4n ,n ∈N },则下式中正确的关系是( ) (A)U =A ∪B (B)U =(U A )∪B(C)U =A ∪(U B )(D)U =(U A )∪(U B )二、填空题5.已知集合A={x|x<-1或2≤x<3},B={x|-2≤x<4},则A∪B=______.6.设M={1,2},N={1,2,3},P={c|c=a+b,a∈M,b∈N},则集合P中元素的个数为______.7.设全集U=R,A={x|x≤-3或x≥2},B={x|-1<x<5},则(U A)∩B=______. 8.设集合S={a0,a1,a2,a3},在S上定义运算⊕为:a i⊕a j=a k,其中k为i+j被4除的余数,i,j=0,1,2,3.则a2⊕a3=______;满足关系式(x⊕x)⊕a2=a0的x(x∈S)的个数为______.三、解答题9.设集合A={1,2},B={1,2,3},C={2,3,4},求(A∩B)∪C.10.设全集U={小于10的自然数},集合A,B满足A∩B={2},(U A)∩B={4,6,8},(A)∩(U B)={1,9},求集合A和B.U11.已知集合A={x|-2≤x≤4},B={x|x>a},①A∩B≠∅,求实数a的取值范围;②A∩B≠A,求实数a的取值范围;③A∩B≠∅,且A∩B≠A,求实数a的取值范围.§1-2 常用逻辑用语【知识要点】1.命题是可以判断真假的语句.2.逻辑联结词有“或”“且”“非”.不含逻辑联结词的命题叫简单命题,由简单命题和逻辑联结词构成的命题叫做复合命题.可以利用真值表判断复合命题的真假.3.命题的四种形式原命题:若p则q.逆命题:若q则p.否命题:若⌝p,则⌝q.逆否命题:若⌝q,则⌝p.注意区别“命题的否定”与“否命题”这两个不同的概念.原命题与逆否命题、逆命题与否命题是等价关系.4.充要条件如果p⇒q,则p叫做q的充分条件,q叫做p的必要条件.如果p⇒q且q⇒p,即q⇔p则p叫做q的充要条件,同时,q也叫做p的充要条件.5.全称量词与存在量词【复习要求】1.理解命题的概念.了解“若p,则q”形式的命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.理解必要条件、充分条件与充要条件的意义.2.了解逻辑联结词“或”、“且”、“非”的含义.3.理解全称量词与存在量词的意义.能正确地对含有一个量词的命题进行否定.【例题分析】例 1 分别写出由下列命题构成的“p∨q”“p∧q”“⌝p”形式的复合命题,并判断它们的真假.(1)p:0∈N,q:1∉N;(2)p:平行四边形的对角线相等,q:平行四边形的对角线相互平分.【解析】(1)p∨q:0∈N,或1∉N;p∧q:0∈N,且1∉N;⌝p:0∉N.因为p真,q假,所以p∨q为真,p∧q为假,⌝p为假.(2)p∨q:平行四边形的对角线相等或相互平分.p∧q:平行四边形的对角线相等且相互平分.⌝p:存在平行四边形对角线不相等.因为p假,q真,所以p∨q为真,p∧q为假,⌝p为真.【评析】判断复合命题的真假可以借助真值表.例2 分别写出下列命题的逆命题、否命题和逆否命题,并判断其真假.(1)若a2+b2=0,则ab=0;(2)若A∩B=A,则A B.【解析】(1)逆命题:若ab=0,则a2+b2=0;是假命题.否命题:若a2+b2≠0,则ab≠0;是假命题.逆否命题:若ab≠0,则a2+b2≠0;是真命题.(2)逆命题:若A B,则A∩B=A;是真命题.否命题:若A∩B≠A,则A不是B的真子集;是真命题.逆否命题:若A不是B的真子集,则A∩B≠A.是假命题.【评析】原命题与逆否命题互为逆否命题,同真同假;逆命题与逆否命题也是互为逆否命题.例3 指出下列语句中,p是q的什么条件,q是p的什么条件.(1)p:(x-2)(x-3)=0;q:x=2;(2)p:a≥2;q:a≠0.【解析】由定义知,若p⇒q且q p,则p是q的充分不必要条件;若p q且q⇒p,则p是q的必要不充分条件;若p⇒q且q⇒p,p与q互为充要条件.于是可得(1)中p是q的必要不充分条件;q是p的充分不必要条件.(2)中p是q的充分不必要条件;q是p的必要不充分条件.【评析】判断充分条件和必要条件,首先要搞清楚哪个是条件哪个是结论,剩下的问题就是判断p与q之间谁能推出谁了.例4设集合M={x|x>2},N={x|x<3},那么“x∈M或x∈N”是“x∈M∩N”的( )(A)充分非必要条件(B)必要非充分条件(C)充要条件(D)非充分条件也非必要条件【答案】B【解析】条件p:x∈M或x∈N,即为x∈R;条件q:x∈M∩N,即为{x∈R|2<x<3}.又R{x∈R|2<x<3},且{x∈R|2<x<3}⊆R,所以p是q的必要非充分条件,选B.【评析】当条件p和q以集合的形式表现时,可用下面的方法判断充分性与必要性:设满足条件p的元素构成集合A,满足条件q的元素构成集合B,若A⊆B且B A,则p是q 的充分非必要条件;若A B且B⊆A,则p是q的必要非充分条件;若A=B,则p与q互为充要条件.例5命题“对任意的x∈R,x3-x2+1≤0”的否定是( )(A)不存在x∈R,x3-x2+1≤0,(B)存在x∈R,x3-x2+1≤0(C)存在x∈R,x3-x2+1>0(D)对任意的x∈R,x3-x2+1>0【答案】C【分析】这是一个全称命题,它的否定是一个特称命题.其否定为“存在x∈R,x3-x2+1>0.”答:选C.【评析】注意全(特)称命题的否定是将全称量词改为存在量词(或将存在量词改为全称量词),并把结论否定.练习1-2一、选择题1.下列四个命题中的真命题为( )(A)∃x∈Z,1<4x<3(B)∃x∈Z,3x-1=0(C)∀x∈R,x2-1=0(D)∀x∈R,x2+2x+2>02.如果“p或q”与“非p”都是真命题,那么( )(A)q一定是真命题(B)q不一定是真命题(C)p不一定是假命题(D)p与q的真假相同3.已知a为正数,则“a>b”是“b为负数”的( )(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件4.“A是B的子集”可以用下列数学语言表达:“若对任意的x∈A⇒x∈B,则称A⊆B”.那么“A 不是B 的子集”可用数学语言表达为( ) (A)若∀x ∈A 但x ∉B ,则称A 不是B 的子集 (B)若∃x ∈A 但x ∉B ,则称A 不是B 的子集 (C)若∃x ∉A 但x ∈B ,则称A 不是B 的子集 (D)若∀x ∉A 但x ∈B ,则称A 不是B 的子集 二、填空题5.“⌝p 是真命题”是“p ∨q 是假命题的”__________________条件. 6.命题“若x <-1,则|x |>1”的逆否命题为_________. 7.已知集合A ,B 是全集U 的子集,则“A ⊆B ”是“U B⊆U A ”的______条件.8.设A 、B 为两个集合,下列四个命题: ①A B ⇔对任意x ∈A ,有x ∉B ②A B ⇔A ∩B =∅③AB ⇔AB④AB ⇔存在x ∈A ,使得x ∉B其中真命题的序号是______.(把符合要求的命题序号都填上) 三、解答题9.判断下列命题是全称命题还是特称命题并判断其真假: (1)指数函数都是单调函数;(2)至少有一个整数,它既能被2整除又能被5整除; (3)∃x ∈{x |x ∈Z },log 2x >0; (4).041,2≥+-∈∀x x x R10.已知实数a ,b ∈R .试写出命题:“a 2+b 2=0,则ab =0”的逆命题,否命题,逆否命题,并判断四个命题的真假,说明判断的理由.习题11.命题“若x 是正数,则x =|x |”的否命题是( ) (A)若x 是正数,则x ≠|x | (B)若x 不是正数,则x =|x | (C)若x 是负数,则x ≠|x |(D)若x 不是正数,则x ≠|x |2.若集合M 、N 、P 是全集U 的子集,则图中阴影部分表示的集合是( )(A)(M ∩N )∪P (B)(M ∩N )∩P (C)(M ∩N )∪(U P )(D)(M ∩N )∩(U P )3.“81=a ”是“对任意的正数12,≥+xa x x ”的( ) (A)充分不必要条件 (B)必要不充分条件 (C)充要条件(D)既不充分也不必要条件4.已知集合P ={1,4,9,16,25,…},若定义运算“&”满足:“若a ∈P ,b ∈P ,则a &b ∈P ”,则运算“&”可以是( ) (A)加法(B)减法(C)乘法(D)除法5.已知a ,b ,c 满足c <b <a ,且ac <0,那么下列选项中不一定...成立的是( ) (A)ab >ac (B)c (b -a )<0 (C)cb 2<ab 2 (D)ac (a -c )<0二、填空题6.若全集U ={0,1,2,3}且U A ={2},则集合A =______.7.命题“∃x ∈A ,但x ∉A ∪B ”的否定是____________.8.已知A ={-2,-1,0,1},B ={y |y =|x |,x ∈A },则B =____________. 9.已知集合A ={x |x 2-3x +2<0},B ={x |x <a },若A B ,则实数a 的取值范围是____________.10.设a ,b 是两个实数,给出下列条件:①a +b >1;②a +b =2;③a +b >2; ④a 2+b 2>2;⑤ab >1,其中能推出“a ,b 中至少有一个大于1”的条件是______.(写出所有正确条件的序号)11.解不等式.21<x12.若0<a <b 且a +b =1.(1)求b 的取值范围;(2)试判断b 与a 2+b 2的大小.13.设a ≠b ,解关于x 的不等式:a 2x +b 2(1-x )≥[ax +b (1-x )]2.14.设数集A 满足条件:①A ⊆R ;②0∉A 且1∉A ;③若a ∈A ,则.11A a∈- (1)若2∈A ,则A 中至少有多少个元素; (2)证明:A 中不可能只有一个元素.专题01 集合与常用逻辑用语参考答案练习1-1一、选择题1.B 2.B 3.A 4.C提示:4.集合A表示非负偶数集,集合B表示能被4整除的自然数集,所以{正奇数}(U B),从而U=A∪(U B).二、填空题5.{x|x<4} 6.4个7.{x|-1<x<2} 8.a1;2个(x为a1或a3).三、解答题9.(A∩B)∪C={1,2,3,4}10.分析:画如图所示的韦恩图:得A={0,2,3,5,7},B={2,4,6,8}.11.答:①a<4;②a≥-2;③-2≤a<4提示:画数轴分析,注意a可否取到“临界值”.练习1-2一、选择题1.D 2.A 3.B 4.B二、填空题5.必要不充分条件6.若|x|≤1,则x≥-1 7.充要条件8.④提示:8.因为A B,即对任意x∈A,有x∈B.根据逻辑知识知,A B,即为④.另外,也可以通过文氏图来判断.三、解答题9.答:(1)全称命题,真命题.(2)特称命题,真命题.(3)特称命题,真命题;(4)全称命题,真命题.10.略解:答:逆命题:若ab=0,则a2+b2=0;是假命题;例如a=0,b=1否命题:若a2+b2≠0,则ab≠0;是假命题;例如a=0,b=1逆否命题:若ab ≠0,则a 2+b 2≠0;是真命题;因为若a 2+b 2=0,则a =b =0,所以ab =0,即原命题是真命题,所以其逆否命题为真命题.习题1一、选择题1.D 2.D 3.A 4.C 5.C提示:5.A 正确.B 不正确.D .正确.当b ≠0时,C 正确;当b =0时,C 不正确,∴C 不一定成立.二、填空题6.{0,1,3} 7.∀x ∈A ,x ∈A ∪B 8.{0,1,2} 9.{a |a ≥2} 10.③. 提示:10、均可用举反例的方式说明①②④⑤不正确.对于③:若a 、b 均小于等于1.即,a ≤1,b ≤1,则a +b ≤2,与a +b >2矛盾,所以③正确.三、解答题11.解:不等式21<x 即,021,021<-<-x x x 所以012>-xx ,此不等式等价于x (2x -1)>0,解得x <0或21>x , 所以,原不等式的解集为{x |x <0或21>x }. 12.解:(1)由a +b =1得a =1-b ,因为0<a <b ,所以1-b >0且1-b <b ,所以.121<<b (2)a 2+b 2-b =(1-b )2+b 2-b =2b 2-3b +1=⋅--81)43(22b 因为121<<b ,所以,081)43(22<--b 即a 2+b 2<b .13.解:原不等式化为(a 2-b 2)x +b 2≥(a -b )2x 2+2b (a -b )x +b 2,移项整理,得(a -b )2(x 2-x )≤0.因为a ≠b ,故(a -b )2>0,所以x 2-x ≤0.故不等式的解集为{x |0≤x ≤1}.14.解:(1)若2∈A ,则.22111,21)1(11,1211A A A ∈=-∴∈=--∴∈-=- ∴A 中至少有-1,21,2三个元素. (2)假设A 中只有一个元素,设这个元素为a ,由已知A a∈-11,则a a -=11.即a 2-a +1=0,此方程无解,这与A 中有一个元素a 矛盾,所以A 中不可能只有一个元素.。

2020版高考数学一轮复习第一单元集合与常用逻辑用语学案文

2020版高考数学一轮复习第一单元集合与常用逻辑用语学案文

第一单元集合与常用逻辑用语第1课集__合[过双基]1.集合的含义及表示(1)集合的含义:研究对象叫做元素,一些元素组成的总体叫做集合.集合中元素的性质:确定性、无序性、互异性.(2)元素与集合的关系:①属于,记为∈;②不属于,记为∉.(3)集合的表示方法:列举法、描述法和图示法.(4)常用数集的记法:自然数集N,正整数集N*或N+,整数集Z,有理数集Q,实数集R.2.集合间的基本关系表示关系文字语言符号语言记法基本关系子集集合A的元素都是集合B的元素x∈A⇒x∈B A⊆B或B⊇A 真子集集合A是集合B的子集,且集合B中至少有一个元素不属于AA⊆B,且∃x0∈B,x0∉AA B或B A相等集合A,B的元素完全相同A⊆B,B⊆AA=B空集不含任何元素的集合.空集是任何集合A的子集∀x,x∉∅,∅⊆A∅3.集合的基本运算表示运算文字语言符号语言图形语言记法交集属于集合A且属于集合B的元素组成的集合{x|x∈A,且x∈B}A∩B 并集属于集合A或属于集合B的元素组成的集合{x|x∈A,或x∈B}A∪B补集 全集U 中不属于集合A 的元素组成的集合{x |x ∈U ,且x ∉A }∁U A(1)集合A 是其本身的子集,即A ⊆A ; (2)子集关系的传递性,即A ⊆B ,B ⊆C ⇒A ⊆C ;(3)A ∪A =A ∩A =A ,A ∪∅=A ,A ∩∅=∅,∁U U =∅,∁U ∅=U . [小题速通]1.(2018·江西临川一中期中)已知集合A ={2,0,1,8},B ={k |k ∈R ,k 2-2∈A ,k -2∉A },则集合B 中所有的元素之和为( )A .2B .-2C .0D. 2解析:选B 若k 2-2=2,则k =2或k =-2,当k =2时,k -2=0,不满足条件,当k =-2时,k -2=-4,满足条件;若k 2-2=0,则k =±2,显然满足条件;若k 2-2=1,则k =±3,显然满足条件;若k 2-2=8,则k =±10,显然满足条件.所以集合B 中的元素为-2,±2,±3,±10,所以集合B 中的元素之和为-2,故选B.2.(2018·河北武邑中学期中)集合A ={x |x 2-7x <0,x ∈N *},则B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪6y ∈N *,y ∈A 中元素的个数为( )A .1B .2C .3D .4解析:选 D A ={x |x 2-7x <0,x ∈N *}={x |0<x <7,x ∈N *}={1,2,3,4,5,6},B =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪6y∈N *,y ∈A ={1,2,3,6},则B 中元素的个数为4个. 3.(2017·黄冈三模)设集合U ={1,2,3,4},集合A ={x ∈N|x 2-5x +4<0},则∁U A 等于( )A .{1,2}B .{1,4}C .{2,4}D .{1,3,4}解析:选B 因为集合U ={1,2,3,4},集合A ={x ∈N|x 2-5x +4<0}={x ∈N|1<x <4}={2,3},所以∁U A ={1,4}.4.(2017·天津高考)设集合A ={1,2,6},B ={2,4},C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C =( )A .{2}B .{1,2,4}C .{1,2,4,6}D .{x ∈R|-1≤x ≤5}解析:选B A ∪B ={1,2,4,6},又C ={x ∈R|-1≤x ≤5},则(A ∪B )∩C ={1,2,4}.5.(2017·衡水押题卷)已知集合A ={x |x 2-2x ≤0},B ={y |y =log 2(x +2),x ∈A },则A ∩B 为( )A .(0,1)B .[0,1]C .(1,2)D .[1,2]解析:选D 因为A ={x |0≤x ≤2},所以B ={y |y =log 2(x +2),x ∈A }={y |1≤y ≤2},所以A ∩B ={x |1≤x ≤2}.[清易错]1.在写集合的子集时,易忽视空集.2.在解决含参数的集合问题时,要注意检验集合中元素的互异性,否则很可能会因为不满足“互异性”而导致解题错误.3.在应用条件A ∪B =B ⇔A ∩B =A ⇔A ⊆B 时,易忽略A =∅的情况.1.(2018·西安质检)已知集合M ={1,2,3,4},则集合P ={x |x ∈M ,且2x ∉M }的子集的个数为( )A .8B .4C .3D .2解析:选B 由题意,得P ={3,4},所以集合P 的子集有22=4个,故选B.2.已知全集U ={2,3,a 2+2a -3},A ={|a +1|,2},∁U A ={a +3},则实数a 的值为________.解析:∵∁U A ={a +3},∴a +3≠2且a +3≠|a +1|且a +3∈U , 由题意,得a +3=3或a +3=a 2+2a -3, 解得a =0或a =2或a =-3,又∵|a +1|≠2且A U ,∴a ≠0且a ≠-3,∴a =2. 答案:23.设集合A ={x |x 2-5x +6=0},集合B ={x |mx -1=0},若A ∩B =B ,则实数m 组成的集合是________.解析:由题意知A ={2,3},又A ∩B =B ,所以B ⊆A . 当m =0时,B =∅,显然成立;当m ≠0时,B =⎩⎨⎧⎭⎬⎫1m ⊆{2,3},所以1m =2或1m =3,即m =12或13.故m 组成的集合是⎩⎨⎧⎭⎬⎫0,12,13.答案:⎩⎨⎧⎭⎬⎫0,12,13[全国卷5年命题分析]考点 考查频度 考查角度集合的基本概念 5年2考 集合的表示、集合元素的性质集合间的基本关系 未考查集合的基本运算 5年11考交、并、补运算,多与不等式相结合集合的基本概念[典例] (1)∈A ,b ∈B },则M 中的元素个数为( )A .3B .4C .5D .6(2)(2018·厦门模拟)已知P ={x |2<x <k ,x ∈N},若集合P 中恰有3个元素,则k 的取值范围为________.[解析] (1)∵a ∈A ,b ∈B ,∴x =a +b 为1+4=5,1+5=2+4=6,2+5=3+4=7,3+5=8,共4个元素.(2)因为P 中恰有3个元素,所以P ={3,4,5},故k 的取值范围为5<k ≤6. [答案] (1)B (2)(5,6] [方法技巧]与集合中的元素有关问题的求解策略(1)确定集合的元素是什么,即集合是数集还是点集. (2)看这些元素满足什么限制条件.(3)根据限制条件列式求参数的值或确定集合中元素的个数,但要注意检验集合是否满足元素的互异性.[即时演练]1.(2018·莱州一中模拟)已知集合A ={x ∈N|x 2+2x -3≤0},B ={C |C ⊆A },则集合B 中元素的个数为( )A .2B .3C .4D .5解析:选C A ={x ∈N|(x +3)(x -1)≤0}={x ∈N|-3≤x ≤1}={0,1},共有22=4个子集,因此集合B 中元素的个数为4,选C.2.已知集合A ={m +2,2m 2+m },若3∈A ,则m 的值为________.解析:由题意得m +2=3或2m 2+m =3,则m =1或m =-32,当m =1时,m +2=3且2m2+m =3,根据集合中元素的互异性可知不满足题意;当m =-32时,m +2=12,而2m 2+m =3,故m =-32.答案:-32集合间的基本关系[典例] (1)则实数a 的取值范围为( )A .(-∞,0)∪(2,+∞)B .(-∞,0]∪[3,+∞)C .[0,2]D .[0,3](2)已知集合A ={x |1≤x <5},B ={x |-a <x ≤a +3},若B ⊆(A ∩B ),则实数a 的取值范围为________.[解析] (1)∵C ⊆A ,∴⎩⎪⎨⎪⎧a ≥0,a +1≤3,解得0≤a ≤2,故实数a 的取值范围为[0,2].(2)因为B ⊆(A ∩B ),所以B ⊆A . ①当B =∅时,满足B ⊆A , 此时-a ≥a +3,即a ≤-32;②当B ≠∅时,要使B ⊆A ,则⎩⎪⎨⎪⎧-a <a +3,-a ≥1,a +3<5,解得-32<a ≤-1.由①②可知,实数a 的取值范围为(-∞,-1]. [答案] (1)C (2)(-∞,-1] [方法技巧]已知两集合的关系求参数时,关键是将两集合的关系转化为元素间的关系,进而转化为参数满足的关系,解决这类问题常常要合理利用数轴、Venn 图帮助分析.[即时演练]1.设U =R ,集合A ={x |x 2+3x +2=0},B ={x |x 2+(m +1)x +m =0},若B ⊆A ,则m =________.解析:由已知得A ={x |x =-2或x =-1},B ={x |x =-1或x =-m }.因为B ⊆A ,当-m=-1,即m=1时,满足题意;当-m=-2,即m=2时,满足题意,故m=1或2.答案:1或22.已知集合A={x|log2x≤2},B=(-∞,a),若A⊆B,实数a的取值范围是(c,+∞),则c=________.解析:由log2x≤2,得0<x≤4,即A={x|0<x≤4},而B=(-∞,a),由于A⊆B,如图所示,则a>4,即c=4.答案:4集合的基本运算集合运算多与解简单的不等式、函数的定义域、值域相联系,考查对集合的理解及不等式的有关知识;有些集合题为抽象集合题或新定义型集合题,考查学生的灵活处理问题的能力.常见的命题角度有:1求交集或并集;2交、并、补的混合运算;3集合运算中的参数范围;4集合的新定义问题.1.(2017·山东高考)设函数y=4-x2的定义域为A,函数y=ln(1-x)的定义域为B,则A∩B=( )A.(1,2) B.(1,2]C.(-2,1) D.[-2,1)解析:选D 由题意可知A={x|-2≤x≤2},B={x|x<1},故A∩B={x|-2≤x<1}.2.(2017·浙江高考)已知集合P={x|-1<x<1},Q={x|0<x<2},那么P∪Q=( ) A.(-1,2) B.(0,1)C.(-1,0) D.(1,2)解析:选A 根据集合的并集的定义,得P∪Q=(-1,2).角度二:交、并、补的混合运算3.设全集U=R,集合A={x|x>0},B={x|x2-x-2<0},则A∩(∁U B)=( )A .(0,2]B .(-1,2]C .[-1,2]D .[2,+∞)解析:选D 因为A ={x |x >0},B ={x |-1<x <2}, 所以∁U B ={x |x ≤-1或x ≥2}, 所以A ∩(∁U B )={x |x ≥2}.4.若全集U =R ,集合A ={x |1<2x<4},B ={x |x -1≥0},则A ∪(∁U B )=________. 解析:A ={x |0<x <2},B ={x |x ≥1},则∁U B ={x |x <1},所以A ∪(∁U B )={x |x <2}. 答案:{x |x <2}角度三:集合运算中的参数范围5.(2017·上海高考)设集合A ={x ||x -2|≤3},B ={x |x <t },若A ∩B =∅,则实数t 的取值范围是________.解析:因为集合A ={x |-1≤x ≤5},B ={x |x <t },且A ∩B =∅,所以t ≤-1,即实数t 的取值范围是(-∞,-1].答案:(-∞,-1] 角度四:集合的新定义问题6.设M ,P 是两个非空集合,定义M 与P 的差集为:M -P ={x |x ∈M ,且x ∉P },则M -(M -P )=( )A .PB .M ∩PC .M ∪PD .M解析:选B 设全集U ,由题意可得M -P =M ∩(∁U P ),所以M -(M -P )=M ∩P .7.对于集合M ,定义函数f M (x )=⎩⎪⎨⎪⎧-1,x ∈M ,1,x ∉M ,对于两个集合A ,B ,定义集合A ΔB={x |f A (x )·f B (x )=-1}.已知A ={2,4,6,8,10},B ={1,2,4,8,12},则用列举法写出集合A ΔB 的结果为________.解析:由题意知当x ∈A 且x ∉B 或x ∈B 且x ∉A 时,有f A (x )·f B (x )=-1成立,所以A ΔB ={1,6,10,12}.答案:{1,6,10,12} [方法技巧]解集合运算问题4个注意点(1)看元素构成集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的关键. (2)对集合化简有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了、易于解决.(3)应用数形常用的数形结合形式有数轴和Venn图.(4)创新性问题以集合为依托,对集合的定义、运算、性质进行创新考查,但最终化为原来的集合知识和相应数学知识来解决.1.(2017·全国卷Ⅰ)已知集合A={x|x<1},B={x|3x<1},则( )A.A∩B={x|x<0} B.A∪B=RC.A∪B={x|x>1} D.A∩B=∅解析:选A ∵集合A={x|x<1},B={x|x<0},∴A∩B={x|x<0},A∪B={x|x<1},故选A.2.(2016·全国卷Ⅱ)已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},则A∪B =( )A.{1} B.{1,2}C.{0,1,2,3} D.{-1,0,1,2,3}解析:选 C 因为B={x|(x+1)(x-2)<0,x∈Z}={x|-1<x<2,x∈Z}={0,1},A={1,2,3},所以A∪B={0,1,2,3}.3.(2015·全国卷Ⅱ)已知集合A={x|-1<x<2},B={x|0<x<3},则A∪B=( ) A.(-1,3) B.(-1,0)C.(0,2) D.(2,3)解析:选A 将集合A与集合B在数轴上画出(如图).由图可知A∪B=(-1,3),故选A.4.(2014·全国卷Ⅱ)已知集合A={-2,0,2},B={ x|x2-x-2=0},则A∩B=( ) A.∅B.{2}C.{0} D.{-2}解析:选B 因为B={x|x2-x-2=0}={-1,2},A={-2,0,2},所以A∩B={2},故选B.5.(2013·全国卷Ⅰ)已知集合A={x|x2-2x>0},B={x|-5<x<5},则( ) A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:选B 因为集合A ={x |x >2或x <0},所以A ∪B ={x |x >2或x <0}∪{x |-5<x <5}=R ,故选B.一、选择题1.(2017·北京高考)若集合A ={x |-2<x <1},B ={x |x <-1或x >3},则A ∩B =( ) A .{x |-2<x <-1} B .{x |-2<x <3} C .{x |-1<x <1}D .{x |1<x <3}解析:选A 由集合交集的定义可得A ∩B ={x |-2<x <-1}.2.设集合A ={x |x 2-9<0},B ={x |2x ∈N},则A ∩B 中元素的个数为( ) A .3 B .4 C .5D .6解析:选D 因为A ={x |-3<x <3},B ={x |2x ∈N},所以由2x ∈N 可得A ∩B =⎩⎨⎧⎭⎬⎫0,12,1,32,2,52,其元素的个数是6.3.(2017·全国卷Ⅲ)已知集合A ={(x ,y )|x 2+y 2=1},B ={(x ,y )|y =x },则A ∩B 中元素的个数为( )A .3B .2C .1D .0解析:选B 因为A 表示圆x 2+y 2=1上的点的集合,B 表示直线y =x 上的点的集合,直线y =x 与圆x 2+y 2=1有两个交点,所以A ∩B 中元素的个数为2.4.设集合A ={x |x 2-2x -3<0},B ={x |x >0},则A ∪B =( ) A .(-1,+∞) B .(-∞,3) C .(0,3)D .(-1,3)解析:选A 因为集合A ={x |x 2-2x -3<0}={x |-1<x <3},B ={x |x >0},所以A ∪B ={x |x >-1}.5.(2017·全国卷Ⅱ)设集合A ={1,2,4},B ={x |x 2-4x +m =0}.若A ∩B ={1},则B =( )A .{1,-3}B .{1,0}C .{1,3}D .{1,5}解析:选C 因为A ∩B ={1},所以1∈B ,所以1是方程x 2-4x +m =0的根,所以1-4+m =0,m =3,方程为x 2-4x +3=0,解得x =1或x =3,所以B ={1,3}.6.设集合A ={-1,0,1},集合B ={0,1,2,3},定义A *B ={(x ,y )|x ∈A ∩B ,y ∈A ∪B },则A *B 中元素的个数是( )A .7B .10C .25D .52解析:选B 因为A ={-1,0,1},B ={0,1,2,3}, 所以A ∩B ={0,1},A ∪B ={-1,0,1,2,3}. 由x ∈A ∩B ,可知x 可取0,1; 由y ∈A ∪B ,可知y 可取-1,0,1,2,3. 所以元素(x ,y )的所有结果如下表所示:x y-1 0 1 2 3 0 (0,-1) (0,0) (0,1) (0,2) (0,3) 1 (1,-1)(1,0)(1,1)(1,2)(1,3)所以A *B 中的元素共有10个.7.(2017·吉林一模)设集合A ={0,1},集合B ={x |x >a },若A ∩B 中只有一个元素,则实数a 的取值范围是( )A .(-∞,1)B .[0,1)C .[1,+∞)D .(-∞,1]解析:选B 由题意知,集合A ={0,1},集合B ={x |x >a },画出数轴(如图所示).若A ∩B 中只有一个元素,则0≤a <1,故选B.8.设P 和Q 是两个集合,定义集合P -Q ={x |x ∈P ,且x ∉Q },如果P ={x |log 2x <1},Q ={x ||x -2|<1},那么P -Q =( )A .{x |0<x <1}B .{x |0<x ≤1}C .{x |1≤x <2}D .{x |2≤x <3}解析:选B 由log 2x <1,得0<x <2, 所以P ={x |0<x <2}. 由|x -2|<1,得1<x <3, 所以Q ={x |1<x <3}.由题意,得P -Q ={x |0<x ≤1}. 二、填空题9.(2018·辽宁师大附中调研)若集合A ={x |(a -1)x 2+3x -2=0}有且仅有两个子集,则实数a 的值为________.解析:由题意知,集合A 有且仅有两个子集,则集合A 中只有一个元素.当a -1=0,即a =1时,A =⎩⎨⎧⎭⎬⎫23,满足题意;当a -1≠0,即a ≠1时,要使集合A 中只有一个元素,需Δ=9+8(a -1)=0,解得a =-18.综上可知,实数a 的值为1或-18.答案:1或-1810.已知集合A ={x |1≤x ≤3},B ={x |x -1≥1}.若A ∩B 是集合{x |x ≥a }的子集,则实数a 的取值范围为________.解析:∵由x -1≥1,得x ≥2,∴B ={x |x ≥2}. ∵A ={x |1≤x ≤3},∴A ∩B ={x |2≤x ≤3}. 若集合A ∩B ={x |2≤x ≤3}是集合{x |x ≥a }的子集, 则a ≤2. 答案:(-∞,2]11.(2018·贵阳监测)已知全集U ={a 1,a 2,a 3,a 4},集合A 是全集U 的恰有两个元素的子集,且满足下列三个条件:①若a 1∈A ,则a 2∈A ;②若a 3∉A ,则a 2∉A ;③若a 3∈A ,则a 4∉A .则集合A =________.(用列举法表示)解析:假设a 1∈A ,则a 2∈A ,由若a 3∉A ,则a 2∉A 可知,a 3∈A ,故假设不成立;假设a 4∈A ,则a 3∉A ,a 2∉A ,a 1∉A ,故假设不成立.故集合A ={a 2,a 3}.答案:{a 2,a 3}12.(2016·北京高考)某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种.则该网店①第一天售出但第二天未售出的商品有________种; ②这三天售出的商品最少有________种.解析:设三天都售出的商品有x 种,第一天售出,第二天未售出,且第三天售出的商品有y 种,则三天售出商品的种类关系如图所示.由图可知:①第一天售出但第二天未售出的商品有19-(3-x )-x =16(种).②这三天售出的商品有(16-y )+y +x +(3-x )+(6+x )+(4-x )+(14-y )=43-y (种).由于⎩⎪⎨⎪⎧16-y ≥0,y ≥0,14-y ≥0,所以0≤y ≤14.所以(43-y )min =43-14=29. 答案:①16 ②29 三、解答题13.已知A ={x |-1<x ≤3},B ={x |m ≤x <1+3m }. (1)当m =1时,求A ∪B ;(2)若B ⊆∁R A ,求实数m 的取值范围. 解:(1)因为m =1时,B ={x |1≤x <4}, 所以A ∪B ={x |-1<x <4}. (2)∁R A ={x |x ≤-1或x >3}.当B =∅时,则m ≥1+3m ,得m ≤-12,满足B ⊆∁R A ,当B ≠∅时,要使B ⊆∁R A ,须满足⎩⎪⎨⎪⎧m <1+3m ,1+3m ≤-1或⎩⎪⎨⎪⎧m <1+3m ,m >3,解得m >3.综上所述,m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-12∪(3,+∞).14.记函数f (x )= 2-x +3x +1的定义域为A ,g (x )=lg[(x -a -1)(2a -x )](a <1)的定义域为B .(1)求A ;(2)若B ⊆A ,求实数a 的取值范围. 解:(1)由2-x +3x +1≥0,得x -1x +1≥0, 解得x <-1或x ≥1,即A =(-∞,-1)∪[1,+∞). (2)由(x -a -1)(2a -x )>0, 得(x -a -1)(x -2a )<0,∵a <1,∴a +1>2a ,∴B =(2a ,a +1),∵B ⊆A ,∴2a ≥1或a +1≤-1,即a ≥12或a ≤-2,∵a <1,∴12≤a <1或a ≤-2,∴实数a 的取值范围是(-∞,-2]∪⎣⎢⎡⎭⎪⎫12,1.1.已知定义域均为{x |0≤x ≤2}的函数f (x )=xe x -1与g (x )=ax +3-3a (a >0),设函数f (x )与g (x )的值域分别为A 与B ,若A ⊆B ,则a 的取值范围是( )A .[2,+∞)B .[1,2]C .[0,2]D .[1,+∞)解析:选B 因为f ′(x )=1-x e x -1,所以f (x )=xex -1在[0,1)上是增函数,在(1,2]上是减函数,又因为f (1)=1,f (0)=0,f (2)=2e ,所以A ={x |0≤x ≤1};由题意易得B =[3-3a,3-a ], 因为[0,1]⊆[3-3a,3-a ],所以3-3a ≤0且3-a ≥1,解得1≤a ≤2.2.已知集合A ={x |x 2-2 018x +2 017<0},B ={x |log 2x <m },若A ⊆B ,则整数m 的最小值是________.解析:由x 2-2 018x +2 017<0,解得1<x <2 017,故A ={x |1<x <2 017}.由log 2x <m ,解得0<x <2m,故B ={x |0<x <2m}.由A ⊆B ,可得2m≥2 017,因为210=1 024,211=2 048,所以整数m 的最小值为11.答案:11第2课命题及其关系__充分条件与必要条件[过双基]1.命题概念 使用语言、符号或者式子表达的,可以判断真假的陈述句 特点 (1)能判断真假;(2)陈述句 分类 真命题、假命题2(1)四种命题间的相互关系:(2)四种命题中真假性的等价关系:原命题等价于逆否命题,原命题的否命题等价于逆命题.在四种形式的命题中真命题的个数只能是0,2,4.3.充要条件若p ⇒q ,则p 是q 的充分条件,q 是p的必要条件p 成立的对象的集合为A ,q 成立的对象的集合为Bp 是q 的充分不必要条件 p ⇒q 且q ⇒/p A 是B 的真子集 集合与p 是q 的必要不充分条件 p ⇒/q 且q ⇒p B 是A 的真子集充要条件p 是q 的充要条件p ⇔qA =B p 是q 的既不充分也不必要条件p ⇒/q 且q ⇒/pA ,B 互不包含[1.命题“若a >b ,则ac >bc ”的逆否命题是( ) A .若a >b ,则ac ≤bc B .若ac ≤bc ,则a ≤b C .若ac >bc ,则a >bD .若a ≤b ,则ac ≤bc解析:选B 由逆否命题的定义可知,答案为B.2.已知命题p :对于x ∈R ,恒有2x+2-x≥2成立;命题q :奇函数f (x )的图象必过原点,则下列结论正确的是( )A .p ∧q 为真B .(綈p )∨q 为真C .p ∧(綈q )为真D .(綈p )∧q 为真解析:选C 由指数函数与基本不等式可知,命题p 是真命题;当函数f (x )=1x时,是奇函数但不过原点,则可知命题q 是假命题,所以p ∧(綈q )是真命题,故选C.3.已知p :x >1或x <-3,q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是( ) A .[1,+∞) B .(-∞,1] C .[-3,+∞)D .(-∞,-3)解析:选A 法一:设P ={x |x >1或x <-3},Q ={x |x >a },因为q 是p 的充分不必要条件,所以Q P ,因此a ≥1.法二:令a =-3,则q :x >-3,则由命题q 推不出命题p ,此时q 不是p 的充分条件,排除B 、C ;同理,取a =-4,排除D ,选A.4.已知命题p :x ≠π6+2k π,k ∈Z ;命题q :sin x ≠12,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选B 令x =5π6,则sin x =12,即p ⇒/ q ;当sin x ≠12时,x ≠π6+2k π或5π6+2k π,k ∈Z ,即q ⇒p ,因此p 是q 的必要不充分条件.[清易错]1.易混淆否命题与命题的否定:否命题是既否定条件,又否定结论,而命题的否定是只否定命题的结论.2.易忽视A 是B 的充分不必要条件(A ⇒B 且B ⇒/A )与A 的充分不必要条件是B (B ⇒A 且A ⇒/B )两者的不同.1.“若x ,y ∈R 且x 2+y 2=0,则x ,y 全为0”的否命题是( ) A .若x ,y ∈R 且x 2+y 2≠0,则x ,y 全不为0 B .若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0 C .若x ,y ∈R 且x ,y 全为0,则x 2+y 2=0 D .若x ,y ∈R 且xy ≠0,则x 2+y 2=0解析:选B 原命题的条件:x ,y ∈R 且x 2+y 2=0, 结论:x ,y 全为0.否命题是否定条件和结论.即否命题:“若x ,y ∈R 且x 2+y 2≠0,则x ,y 不全为0”.2.设a ,b ∈R ,函数f (x )=ax +b (0≤x ≤1),则f (x )>0恒成立是a +2b >0成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 充分性:因为f (x )>0恒成立, 所以⎩⎪⎨⎪⎧f 0=b >0,f1=a +b >0,则a +2b >0,即充分性成立;必要性:令a =-3,b =2,则a +2b >0成立,但是,f (1)=a +b >0不成立,即f (x )>0不恒成立,则必要性不成立.所以答案为A.[全国卷5年命题分析]考点考查频度 考查角度 四种命题的相互关系及真假判断5年1考 命题的真假判断 充分条件、必要条件5年1考充要条件的判断命题的相互关系及真假性[典例] 0”,命题q :“若a 不是正数,则它的平方等于0”,则q 是p 的( )A .逆命题B .否命题C .逆否命题D .否定(2)原命题为“若a n +a n +12<a n ,n ∈N *,则{a n }为递减数列”,关于其逆命题、否命题、逆否命题真假性的依次判断正确的是( )A .真,真,真B .假,假,真C.真,真,假D.假,假,假[解析] (1)命题p:“正数a的平方不等于0”可写成“若a是正数,则它的平方不等于0”,从而q是p的否命题.(2)原命题是:“若a n+1<a n,n∈N*,则{a n}为递减数列”为真命题,则其逆否命题为真,逆命题是:“若{a n}为递减数列,n∈N*,则a n+1<a n”为真命题,所以否命题也为真命题.[答案] (1)B (2)A[方法技巧]命题的关系及真假判断(1)在判断命题之间的关系时,首先要分清命题的条件与结论,再分析每个命题的条件与结论之间的关系,要注意四种命题关系的相对性.(2)判断命题真假的方法:一是联系已有的数学公式、定理、结论进行正面直接判断;二是利用原命题和其逆否命题的等价关系进行判断.[即时演练]1.已知命题α:如果x<3,那么x<5;命题β:如果x≥3,那么x≥5;命题γ:如果x≥5,那么x≥3.关于这三个命题之间的关系,下列三种说法正确的是( )①命题α是命题β的否命题,且命题γ是命题β的逆命题;②命题α是命题β的逆命题,且命题γ是命题β的否命题;③命题β是命题α的否命题,且命题γ是命题α的逆否命题.A.①③ B.②C.②③D.①②③解析:选A 命题的四种形式,逆命题是把原命题中的条件和结论互换,否命题是把原命题的条件和结论都加以否定,逆否命题是把原命题中的条件与结论先都否定,然后交换条件与结论所得,因此①正确,②错误,③正确.2.给出命题:若函数y=f(x)是幂函数,则函数y=f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.3 B.2 C.1 D.0解析:选C 易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题只有一个.充分、必要条件的判定[典例] n S n,则“d>0”是“S4+S6>2S5”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(2)设α:1≤x≤3,β:m+1≤x≤2m+4,m∈R,若α是β的充分条件,则m的取值范围是________.[解析] (1)因为{a n }为等差数列,所以S 4+S 6=4a 1+6d +6a 1+15d =10a 1+21d,2S 5=10a 1+20d ,S 4+S 6-2S 5=d ,所以d >0⇔S 4+S 6>2S 5.(2)若α是β的充分条件,则α对应的集合是β对应集合的子集,则⎩⎪⎨⎪⎧m +1≤1,2m +4≥3,解得-12≤m ≤0.[答案] (1)C (2)⎣⎢⎡⎦⎥⎤-12,0 [方法技巧]充要条件的3种判断方法即设A ={x |p (x )},B ={x |q (x )}:若A ⊆B ,则p 是q 的充分条件或q 是p 的必要条件;若A B ,则p 是q 的充分不必要条件,若A =B ,则p 是q 的充要条件[1.(2016·四川高考)设p :实数x ,y 满足x >1且y >1,q :实数x ,y 满足x +y >2,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:选A ∵⎩⎪⎨⎪⎧x >1,y >1,∴x +y >2,即p ⇒q .而当x =0,y =3时,有x +y =3>2,但不满足x >1且y >1,即q ⇒/ p .故p 是q 的充分不必要条件.2.已知m ,n ∈R ,则“mn <0”是“抛物线mx 2+ny =0的焦点在y 轴正半轴上”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选C 若“mn <0”,则x 2=-nm y 中的-n m>0,所以“抛物线mx 2+ny =0的焦点在y 轴正半轴上”成立,是充分条件;反之,若“抛物线mx 2+ny =0的焦点在y 轴正半轴上”,则x 2=-n m y 中的-n m>0,即mn <0,则“mn <0”成立,故是充要条件.根据充分、必要条件求参数的范围根据充分条件、必要条件求参数的范围是对充分条件、必要条件与集合之间关系的深层次考查.此类题的解决方法一般有两种:(1)直接法:先求出p ,q 为真命题时所对应的条件,然后表示出綈p 与綈q ,把綈p 与綈q 所对应的关系转化为綈p 与綈q 所对应集合之间的关系,列出参数所满足的条件求解;(2)等价转化法,把綈p ,綈q 的关系转化为p ,q 的关系.[典例] (2018·安徽黄山调研)已知条件p :2x 2-3x +1≤0,条件q :x 2-(2a +1)x +a (a +1)≤0.若綈p 是綈q 的必要不充分条件,则实数a 的取值范围是________.[解析] 由2x 2-3x +1≤0,得12≤x ≤1,∴条件p 对应的集合P =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12≤x ≤1. 由x 2-(2a +1)x +a (a +1)≤0,得a ≤x ≤a +1, ∴条件q 对应的集合为Q ={x |a ≤x ≤a +1}. 法一:用“直接法”解题綈p 对应的集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪x >1或x <12, 綈q 对应的集合B ={x |x >a +1或x <a }. ∵綈p 是綈q 的必要不充分条件,即B A , ∴⎩⎪⎨⎪⎧a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,∴0≤a ≤12.即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12. 法二:用“等价转化法”解题 ∵綈p 是綈q 的必要不充分条件,∴根据原命题与逆否命题等价,得p 是q 的充分不必要条件. ∴p ⇒q ,即P Q ⇔⎩⎪⎨⎪⎧a <12,a +1≥1或⎩⎪⎨⎪⎧a ≤12,a +1>1,解得0≤a ≤12.即实数a 的取值范围是⎣⎢⎡⎦⎥⎤0,12.[答案] ⎣⎢⎡⎦⎥⎤0,12[方法技巧]根据充分、必要条件求参数范围的2个注意点(1)解决此类问题一般是把充分条件、必要条件或充要条件转化为集合之间的关系,然后根据集合之间关系列出关于参数的不等式(组)求解.(2)求解参数的取值范围时,一定要注意区间端点值的检验,尤其是利用两个集合之间的关系求解参数的取值范围时,不等式是否能够取等号决定端点值的取舍,处理不当容易出现漏解或增解的现象.[即时演练]1.(2018·安阳调研)已知p :x ∈A ={x |x 2-2x -3≤0,x ∈R},q :x ∈B ={x |x 2-2mx +m 2-4≤0,x ∈R ,m ∈R}.若p 是綈q 的充分条件,则实数m 的取值范围是________.解析:∵A ={x |-1≤x ≤3},B ={x |m -2≤x ≤m +2},∴∁R B ={x |x <m -2或x >m +2}.∵p 是綈q 的充分条件,∴A ⊆∁R B ,∴m -2>3或m +2<-1,∴m >5或m <-3.答案:(-∞,-3)∪(5,+∞)2.若“x 2>1”是“x <a ”的必要不充分条件,则a 的最大值为________. 解析:由x 2>1,得x <-1,或x >1,又“x 2>1”是“x <a ”的必要不充分条件,知由“x <a ”可以推出“x 2>1”,反之不成立,所以a ≤-1,即a 的最大值为-1.答案:-11.(2014·全国卷Ⅱ)函数f (x )在x =x 0处导数存在.若p :f ′(x 0)=0;q :x =x 0是f (x )的极值点,则( )A .p 是q 的充分必要条件B .p 是q 的充分条件,但不是q 的必要条件C .p 是q 的必要条件,但不是q 的充分条件D .p 既不是q 的充分条件,也不是q 的必要条件解析:选C 当f ′(x 0)=0时,x =x 0不一定是f (x )的极值点,比如,y =x 3在x =0时,f ′(0)=0,但在x =0的左右两侧f ′(x )的符号相同,因而x =0不是y =x 3的极值点.由极值的定义知,x =x 0是f (x )的极值点必有f ′(x 0)=0.综上知,p 是q 的必要条件,但不是充分条件.2.(2017·天津高考)设θ∈R ,则“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:选A 法一:由⎪⎪⎪⎪⎪⎪θ-π12<π12,得0<θ<π6, 故sin θ<12.由sin θ<12,得-7π6+2k π<θ<π6+2k π,k ∈Z ,推不出“⎪⎪⎪⎪⎪⎪θ-π12<π12”.故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件.法二:⎪⎪⎪⎪⎪⎪θ-π12<π12⇒0<θ<π6⇒sin θ<12,而当sin θ<12时,取θ=-π6,⎪⎪⎪⎪⎪⎪-π6-π12=π4>π12. 故“⎪⎪⎪⎪⎪⎪θ-π12<π12”是“si n θ<12”的充分而不必要条件. 3.(2016·北京高考)设a ,b 是向量,则“| a |=|b |”是“|a +b |=|a -b |”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选D 若|a|=|b|成立,则以a ,b 为邻边的平行四边形为菱形.a +b ,a -b 表示的是该菱形的对角线,而菱形的两条对角线长度不一定相等,所以|a +b|=|a -b|不一定成立,从而不是充分条件;反之,若|a +b|=|a -b|成立,则以a ,b 为邻边的平行四边形为矩形,而矩形的邻边长度不一定相等,所以|a|=|b|不一定成立,从而不是必要条件.故“|a|=|b |”是“|a +b|=|a -b |”的既不充分也不必要条件.4.(2015·陕西高考)“sin α=cos α”是“cos 2α=0”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:选A cos 2α=0等价于cos 2α-sin 2α=0,即cos α=±sin α.由cos α=sin α可得到cos 2α=0,反之不成立,故选A.5.(2015·重庆高考)“x >1”是“log 12(x +2)<0”的( )A .充要条件B .充分而不必要条件C .必要而不充分条件D .既不充分也不必要条件解析:选 B ∵x >1⇒log 12(x +2)<0,log 12(x +2)<0⇒x +2>1⇒x >-1,∴“x>1”是“log 12(x +2)<0”的充分而不必要条件.一、选择题1.命题“若α=π4,则tan α=1”的逆否命题是( )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α=π4D .若tan α≠1,则α≠π4解析:选D 逆否命题是将原命题中的条件与结论都否定后再交换位置即可. 所以逆否命题为:若tan α≠1,则α≠π4.2.在命题“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真解析:选D 对于原命题:“若抛物线y =ax 2+bx +c 的开口向下,则{x |ax 2+bx +c <0}≠∅”,这是一个真命题,所以其逆否命题也为真命题;但其逆命题:“若{x |ax 2+bx +c <0}≠∅,则抛物线y =ax 2+bx +c 的开口向下”是一个假命题,因为当不等式ax 2+bx +c <0的解集非空时,可以有a >0,即抛物线的开口可以向上,因此否命题也是假命题.故选D.3.“直线y =x +b 与圆x 2+y 2=1相交”是“0<b <1”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件D .既不充分也不必要条件解析:选C 由直线y =x +b 与圆x 2+y 2=1相交可得|b |2<1,所以-2<b <2,因此,“直线y =x +b 与圆x 2+y 2=1相交”⇒/ “0<b <1”,但“0<b <1”⇒“直线y =x +b 与圆x 2+y 2=1相交”.故选C.4.命题p :“∀x >e ,a -ln x <0”为真命题的一个充分不必要条件是( ) A .a ≤1 B .a <1 C .a ≥1D .a >1解析:选B 由题意知∀x >e ,a <ln x 恒成立,因为ln x >1,所以a ≤1,故答案为B. 5.a 2+b 2=1是a sin θ+b cos θ≤1恒成立的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选A 因为a 2+b 2=1,所以设a =cos α,b =sin α,则a sin θ+b cos θ=sin(α+θ)≤1恒成立;当a sin θ+b cos θ≤1恒成立时,只需a sin θ+b cos θ=a 2+b 2sin(θ+φ)≤a 2+b 2≤1即可,所以a 2+b 2≤1,故不满足必要性.6.若向量a =(x -1,x ),b =(x +2,x -4),则“a ⊥b ”是“x =2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 若“a ⊥b ”,则a ·b =(x -1,x )·(x +2,x -4)=(x -1)(x +2)+x (x -4)=2x 2-3x -2=0,则x =2或x =-12;若“x =2”,则a ·b =0,即“a ⊥b ”,所以“a⊥b ”是“x =2”的必要不充分条件.7.在△ABC 中,“sin A -sin B =cos B -cos A ”是“A =B ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件解析:选B 在△ABC 中,当A =B 时,sin A -sin B =cos B -cos A 显然成立,即必要性成立;当sin A -sin B =cos B -cos A 时,则sin A +cos A =sin B +cos B ,两边平方可得sin 2A =sin 2B ,则A =B 或A +B =π2,即充分性不成立.则在△ABC 中,“sin A -sinB =cos B -cos A ”是“A =B ”的必要不充分条件.8.设m ,n 是两条直线,α,β是两个平面,则下列命题中不正确的是( ) A .当n ⊥α时,“n ⊥β”是“α∥β”的充要条件 B .当m ⊂α时,“m ⊥β”是“α⊥β”的充分不必要条件 C .当m ⊂α时,“n ∥α”是“m ∥n ”的必要不充分条件 D .当m ⊂α时,“n ⊥α”是“m ⊥n ”的充分不必要条件解析:选C 由垂直于同一条直线的两个平面平行可知,A 正确;显然,当m ⊂α时,“m ⊥β”⇒“α⊥β”;当m ⊂α时,“α⊥β”⇒/ “m ⊥β”,故B 正确;当m ⊂α时,“m ∥n ”⇒/ “n ∥α”, n 也可能在平面α内,故C 错误;当m ⊂α时,“n ⊥α”⇒“m ⊥n ”,反之不成立,故D 正确.二、填空题9.“若a ≤b ,则ac 2≤bc 2”,则命题的原命题、逆命题、否命题和逆否命题中真命题的个数是________.解析:其中原命题和逆否命题为真命题,逆命题和否命题为假命题. 答案:210.下列命题正确的序号是________.①命题“若a >b ,则2a>2b ”的否命题是真命题;②命题“a ,b 都是偶数,则a +b 是偶数”的逆否命题是真命题; ③若p 是q 的充分不必要条件,则綈p 是綈q 的必要不充分条件; ④方程ax 2+x +a =0有唯一解的充要条件是a =±12.解析:①否命题“若2a≤2b,则a ≤b ”,由指数函数的单调性可知,该命题正确;②由互为逆否命题真假相同可知,该命题为真命题;由互为逆否命题可知,③是真命题;④方程ax2+x +a =0有唯一解,则a =0或⎩⎪⎨⎪⎧Δ=1-4a 2=0,a ≠0,求解可得a =0或a =±12,故④是假命题.答案:①②③11.已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R,B ={x |-1<x <m +1,x ∈R},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是________.解析:A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ⎪⎪⎪12<2x<8,x ∈R={x |-1<x <3}, ∵x ∈B 成立的一个充分不必要条件是x ∈A , ∴AB ,∴m +1>3,即m >2.答案:(2,+∞) 12.给出下列四个结论: ①若am 2<bm 2,则a <b ;②已知变量x 和y 满足关系y =-0.1x +1,若变量y 与z 正相关,则x 与z 负相关; ③“已知直线m ,n 和平面α,β,若m ⊥n ,m ⊥α,n ∥β,则α⊥β”为真命题; ④m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件. 其中正确的结论是________(填序号).解析:由不等式的性质可知,①正确;由变量间相关关系可知,当变量y 和z 是正相关时,x 与z 负相关,故②正确;③由已知条件,不能判断α与β的位置关系,故③错误;④当m =3时,直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直;当直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直时,(m +3)m -6m =0,则m =3或m =0,即m =3是直线(m +3)x +my -2=0与直线mx -6y +5=0互相垂直的充分不必要条件,则④正确.答案:①②④ 三、解答题13.写出命题“已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0有非空解集,则a 2≥4b ”的逆命题、否命题、逆否命题,并判断它们的真假.解:(1)逆命题:已知a ,b ∈R ,若a 2≥4b ,则关于x 的不等式x 2+ax +b ≤0有非空解集,为真命题.(2)否命题:已知a ,b ∈R ,若关于x 的不等式x 2+ax +b ≤0没有非空解集,则a 2<4b ,为真命题.(3)逆否命题:已知a ,b ∈R ,若a 2<4b ,则关于x 的不等式x 2+ax +b ≤0没有非空解集,为真命题.14.已知集合A =⎩⎨⎧⎭⎬⎫y ⎪⎪⎪y =x 2-32x +1,x ∈⎣⎢⎡⎦⎥⎤34,2,B ={x |x +m 2≥1}.若“x ∈A ”是“x ∈B ”的充分条件,求实数m 的取值范围.解:y =x 2-32x +1=⎝ ⎛⎭⎪⎫x -342+716,∵x ∈⎣⎢⎡⎦⎥⎤34,2,∴716≤y ≤2,∴A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫y ⎪⎪⎪716≤y ≤2. 由x +m 2≥1,得x ≥1-m 2, ∴B ={x |x ≥1-m 2}.∵“x ∈A ”是“x ∈B ”的充分条件, ∴A ⊆B ,∴1-m 2≤716,解得m ≥34或m ≤-34,故实数m 的取值范围是⎝ ⎛⎦⎥⎤-∞,-34∪⎣⎢⎡⎭⎪⎫34,+∞.1.下列四个命题中,①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”; ②“x =4”是“x 2-3x -4=0”的充分条件;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为真命题;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0且n ≠0”; ⑤对空间任意一点O ,若满足OP ―→=34OA ―→+18OB ―→+18OC ―→,则P ,A ,B ,C 四点一定共面.其中真命题的为________.(填序号)解析:①命题“若x 2-3x -4=0,则x =4”的逆否命题为“若x ≠4,则x 2-3x -4≠0”,故①正确;②x =4⇒x 2-3x -4=0;由x 2-3x -4=0,解得x =-1或x =4. ∴“x =4”是“x 2-3x -4=0”的充分不必要条件,故②正确;③命题“若m >0,则方程x 2+x -m =0有实根”的逆命题为“若方程x 2+x -m =0有实根,则m >0”,是假命题,如m =0时,方程x 2+x -m =0有实根,故③错误;④命题“若m 2+n 2=0,则m =0且n =0”的否命题是“若m 2+n 2≠0,则m ≠0或n ≠0”,故④错误;。

2020版高考数学大二轮文科通用版 教师课件:专题一 第1讲 集合与常用逻辑用语

2020版高考数学大二轮文科通用版 教师课件:专题一 第1讲 集合与常用逻辑用语

D.∃x∈R,∀n∈N*,使得n<x2
(2)(2019河北衡水调研)已知命题p:∀x∈R,log2(x2+x+a)>0恒成立, 命题q:∃x0∈[-2,2],2a≤ 2,若������0 命题p和q都成点1 考点2 考点3
解析:(1)由含量词命题的否定格式,可知首先改写量词,而n≥x2的
考点1 考点2 考点3
对应训练1 (1)(2018北京,文1)已知集合A={x||x|<2},B={-2,0,1,2},则
A∩B=( )
A.{0,1} B.{-1,0,1} C.{-2,0,1,2}
D.{-1,0,1,2}
(2)(2018天津,文1)设集合A={1,2,3,4},B={-1,0,2,3},C={x∈R|-

1-������ ≥ -2, 解得 1 + ������ ≤ 10,
m≤3.
又∵S为非空集合,∴1-m≤1+m,解得m≥0.
综上,m的取值范围是[0,3].
考点1 考点2 考点3
【迁移探究1】 本例(2)条件不变,若x∈P是x∈S的必要不充分条件,
求m的取值范围.
解:由题意知,P={x|-2≤x≤10},又S⫋P,
B.{x|-1≤x≤2}
C.{x|x<-1}∪{x|x>2} D.{x|x≤-1}∪{x|x≥2}
解析:(1)由交集定义知A∩B={0,2}.
(2)解一元二次不等式x2-x-2>0,可得x<-1或x>2,则A={x|x<-1或
x>2},
所以∁RA={x|-1≤x≤2}. 答案:(1)A (2)B
考点1 考点2 考点3
个:{-1}, 12,2 , -1,12,2 . 答案:(1)A (2)C (3)B

(浙江)2020高考数学二轮复习专题一集合、常用逻辑用语、函数与导数、不等式第1讲集合、常用逻辑用语课件

(浙江)2020高考数学二轮复习专题一集合、常用逻辑用语、函数与导数、不等式第1讲集合、常用逻辑用语课件

2.集合运算中的常用方法 (1)若已知的集合是不等式的解集,用数轴求解; (2)若已知的集合是点集,用数形结合法求解; (3)若已知的集合是抽象集合,用 Venn 图求解.
[典型例题]
(1)(2018·高考浙江卷)已知全集 U={1,2,3,4,5},A={1,3},则∁UA=( )
A.∅
B.{1,3}
命题真假的判断
[核心提炼] 1.四种命题的关系 (1)两个命题互为逆否命题,它们有相同的真假性. (2)两个命题为互逆命题或互否命题,它们的真假性没有关系.
2.常见词语的否定 在四种命题的构造中,其中否命题和逆否命题都涉及对一些词语的否定,要特别注意下
表中常见词语的否定.
词语
词语的否定
等于
不等于
解析:选 C.因为 U=A∪B=0,1,2,3,4,5,6, 又因为 A∩(∁UB)=1,3,5, 所以 B=0,2,4,6,故选 C.
2.(2019·温州二模)已知集合 A={x||x-1|≤2},B={x|0<x≤4},则(∁RA)∩B=( )
第2部分 高考热点 专题突破
专题一 集合、常用逻辑用语、函数与导 数、不等式
第1讲 集合、常用逻辑用语
数学
01
考点1
02
考点2
03
考点3
04
专题强化训练
集合的概念及运算
[核心提炼] 1.集合的运算性质及重要结论 (1)A∪A=A,A∪∅=A,A∪B=B∪A; (2)A∩A=A,A∩∅=∅,A∩B=B∩A; (3)A∩(∁UA)=∅,A∪(∁UA)=U; (4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.
(2)(2019·杭州市数学期末)若 l,m 是两条不同的直线,α 是一个平面,则下列命题正确的 是( ) A.若 l∥α,m∥α,则 l∥m B.若 l⊥m,m⊂α,则 l⊥α C.若 l∥α,m⊂α,则 l∥m D.若 l⊥α,l∥m,则 m⊥α

第一章集合与常用逻辑用语(学案)

第一章集合与常用逻辑用语(学案)

第一章集合与常用逻辑用语1.1集合的概念第1课时集合的概念【学习目标】一.元素与集合的相关概念1.元素:一般地,把统称为元素,常用小写的拉丁字母表示.2.集合:一些组成的总体,简称集,常用大写拉丁字母表示.3.集合相等:指构成两个集合的元素是的.4.集合中元素的特性:、和.二.元素与集合的关系1.属于:如果a是集合A的元素,就说,记作.2.不属于:如果a不是集合A中的元素,就说,记作.三.常见的数集及表示符号1.思考辨析(正确的画“√”,错误的画“×”)(1)山东新坐标书业有限公司的优秀员工可以组成集合.()(2)分别由元素0,1,2和2,0,1组成的两个集合是相等的.()(3)由-1,1,1组成的集合中有3个元素.()2、用“∈”或“∉”填空:1*;5____R.2____N;-3____Z;2____Q;0____N【经典例题】题型一集合的概念例1 下列所给的对象能构成集合的是________.①所有的正三角形;②比较接近1的数的全体;③某校高一年级所有16岁以下的学生;④平面直角坐标系内到原点距离等于1的点的集合;⑤所有参加2018年俄罗斯世界杯的年轻足球运动员;⑥2的近似值的全体.【跟踪训练】1 判断下列每组对象的全体能否构成一个集合?(1)接近于2019的数;(2)大于2019的数;(3)育才中学高一(1)班视力较好的同学;(4)方程x2-2=0在实数范围内的解;(5)函数y=x2图象上的点.题型二元素与集合的关系例2 -1给出下列6个关系:①22∈R,②3∈Q,③0∉N,④4∈N,⑤π∈Q,⑥|-2|∉Z.其中正确命题的个数为()A.4B.3C.2 D.1例2-2集合A中的元素x满足63-x∈N,x∈N,则集合A中的元素为________.【跟踪训练】2用符号“∈”或“∉”填空.若A表示第一、三象限的角平分线上的点的集合,则点(0,0)________A,(1,1)______A,(-1,1)______A.题型三集合中元素的特性例3 已知集合A含有两个元素a和a2,若1∈A,则实数a的值为________.【跟踪训练】3已知集合A是由0,m,m2-3m+2三个元素组成的集合,且2∈A,则实数m为()A.2 B.3 C.0或3 D.0,2,3均可【当堂达标】1.下列说法正确的是()A.某班中年龄较小的同学能够形成一个集合B.由1,2,3和9,1,4组成的集合不相等C.不超过20的非负数组成一个集合D.方程(x-1)(x+1)2=0的所有解构成的集合中有3个元素2.下列各组中集合P与Q,表示同一个集合的是()A.P是由2,3构成的集合,Q是由有序数对(2,3)构成的集合B.P是由π构成的集合,Q是由3.14159构成的集合C.P是由元素1,3,π构成的集合,Q是由元素π,1,|-3|构成的集合D.P是满足不等式-1≤x≤1的自然数构成的集合,Q是方程x2=1的解集3.已知集合A含有三个元素2,4,6,且当a∈A,有6-a∈A,则a为() A.2 B.2或4 C.4 D.04.由实数-a,a,|a|,a2所组成的集合最多含有的元素个数是()A.1 B.2 C.3 D.45.给出下列关系:①13∈Z;②5∈R;③|-5|∉N+;④|-32|∈Q;⑤π∈R.其中,正确的个数为________.6.设集合A中含有三个元素3,x,x2-2x.(1)求实数x应满足的条件;(2)若-2∈A,求实数x.第2课时集合的表示【学习目标】1.列举法把集合的元素出来,并用括起来表示集合的方法叫做列举法.2.描述法(1)定义:用集合所含元素的表示集合的方法称为描述法.(2)具体方法:在花括号内先写上表示这个集合元素的及,再画一条竖线,在竖线后写出这个集合中元素所具有的.【小试牛刀】1.思考辨析(正确的画“√”,错误的画“×”)(1)集合0∈{x|x>1}.()(2)集合{x|x<5,x∈N}中有5个元素.()(3)集合{(1,2)}和{x|x2-3x+2=0}表示同一个集合.()2.大于4并且小于10的奇数组成的集合用列举法可表示为____ ____.【经典例题】题型一用列举法表示集合例1用列举法表示下列集合:(1)小于10的所有自然数组成的集合;(2)方程x2=x的所有实数根组成的集合;(3)由120以内的所有质数组成的集合.【跟踪训练】1 用列举法表示下列集合:(1)绝对值小于5的偶数;(2)24与36的公约数;(3)方程组⎩⎨⎧x +y =2,2x -y =1的解集.题型二 用描述法表示集合 例2 用描述法表示下列集合:(1)正偶数集;(2)被3除余2的正整数的集合;(3)平面直角坐标系中坐标轴上的点组成的集合.【跟踪训练】2 用描述法表示如图所示阴影部分(含边界)点的坐标的集合.题型三 列举法与描述法的综合运用 例3 下面三个集合:①{x |y =x 2+1};②{y |y =x 2+1};③{(x ,y )|y =x 2+1}. (1)它们各自的含义是什么? (2)它们是不是相同的集合?【跟踪训练】3 集合A ={x |kx 2-8x +16=0},若集合A 中只有一个元素,求实数k 的值组成的集合.【当堂达标】1.用列举法表示集合{x |x 2-2x +1=0}为( ) A .{1,1} B .{1}C .{x =1}D .{x 2-2x +1=0}2.下面对集合{1,5,9,13,17}用描述法表示,其中正确的是( )A .{x |x 是小于18的正奇数} B .{x |x =4s +1,s ∈N ,且s <5} C .{x |x =4t -3,t ∈N ,且t <5} D .{x |x =4s -3,s ∈N ,且s <6} 3.给出下列说法:①任意一个集合的正确表示方法是唯一的; ②集合P ={x |0≤x ≤1}是无限集; ③集合{x |x ∈N ,x <5}={0,1,2,3,4}; ④集合{(1,2)}与集合{(2,1)}表示同一集合.其中正确说法的序号是( )A .①②B .②③C .②D .①③④4.方程⎩⎨⎧x +y =2,x -y =5的解集用列举法表示为_______________________;用描述法表示为________________.5.若集合A ={-1,2},集合B ={x |x 2+ax +b =0},且A =B ,则a +b 的值为______. 6.已知集合A ={x |ax 2-3x -4=0,x ∈R},若A 中至多有一个元素,求实数a 的取值范围.1.2集合间的基本关系【学习目标】素养目标学科素养1. 理解子集、真子集、空集的概念;(重点)2. 能用符号和Venn图表示集合间的关系;(难点)3. 掌握列举有限集的所有子集的方法。

江苏省高考数学二轮复习 第1讲 集合与简单逻辑用语教学案

江苏省高考数学二轮复习 第1讲 集合与简单逻辑用语教学案

专题一集合、简单逻辑用语、函数、不等式、导数及应用第1讲集合与简单逻辑用语1. 理解集合中元素的意义是解决集合问题的关键:弄清元素是函数关系式中自变量的取值?还是因变量的取值?还是曲线上的点?…2. 数形结合是解集合问题的常用方法:解题时要尽可能地借助数轴、直角坐标系或韦恩图等工具,将抽象的代数问题具体化、形象化、直观化,然后利用数形结合的思想方法解决.3. 已知集合A、B,当A∩B=时,你是否注意到“极端”情况:A=或B=?求集合的子集时是否忘记?分类讨论思想的建立在集合这节内容学习中要得到强化.4. 对于含有n个元素的有限集合M, 其子集、真子集、非空子集、非空真子集的个数依次为2n,2n-1,2n-1,2n-2.是任何集合的子集,是任何非空集合的真子集.1. A、B是非空集合,定义A×B={x|x∈A∪B,且,若A={x∈R|y=x2-3x},B={y|y=3x,x∈R},则A×B=______________.2. 已知命题P:n∈N,2n>1 000,则P为________.3. 条件p:a∈M={x|x2-x<0},条件q:a∈N={x||x|<2},p是q的______________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分也不必要”)4. 若命题R,x2+(a-1)x+1>0”是假命题,则实数a的取值范围为________.【例1】已知集合A={x|x2-3x-10≤0},集合B={x|p+1≤x≤2p-1}.若,求实数p的取值范围.【例2】设A={(x,y)|y2-x-1=0},B={(x,y)|4x2+2x-2y+5=0},C={(x,y)|y=kx+b},是否存在k、b∈N,使得(A∪B)∩C=?若存在,求出k,b的值;若不存在,请说明理由.【例3】(2011·广东)设S是整数集Z的非空子集,如果,b∈S,有ab∈S,则称S关于数的乘法是封闭的,若T,V是Z的两个不相交的非空子集,T∪V=Z且,b,c∈T,有abc∈T,,y,z∈V,有xyz∈V.则下列结论恒成立的是________.A. T,V中至少有一个关于乘法封闭B. T,V中至多有一个关于乘法封闭C. T,V中有且只有一个关于乘法封闭D. T,V中每一个关于乘法封闭【例4】已知a>0,函数f(x)=ax-bx2.(1) 当b>0时,若R,都有f(x)≤1,证明:0<a≤2b;(2) 当b>1时,证明:1],|f(x)|≤1的充要条件是b-1≤a≤2 b.1. (2011·江苏)已知集合A={-1,1,2,4},B={-1,0,2},则A∩B=________.2.(2011·天津)命题“若f(x)是奇函数,则f(-x)是奇函数”的否命题是________.3.(2009·江苏)已知集合A={x|log2x≤2},B=(-∞,a),若,则实数a的取值范围是(c,+∞),其中c=________.4.(2009·陕西)某班有36名同学参加数学、物理、化学课外探究小组,每名同学至多参加两个小组,已知参加数学、物理、化学小组的人数分别为26,15,13,同时参加数学和物理小组的有6人,同时参加物理和化学小组的有4人,则同时参加数学和化学小组的有________人.5.(2011·陕西)设n∈N+,一元二次方程x2-4x+n=0有正整数根的充要条件是n=________.6.(2011·福建)在整数集Z中,被5除所得余数为k的所有整数组成一个“类”,记为[k],即[k]={5n+k|n∈Z},k=0,1,2,3,4.给出如下四个结论:①2 011∈[1];②-3∈[3];③Z =[0]∪[1]∪[2]∪[3]∪[4];④“整数a ,b 属于同一‘类’”的充要条件是“a-b∈[0]”. 其中,正确结论的个数是________个.(2011·全国)(本小题满分14分)设a∈R ,二次函数f(x)=ax 2-2x -2a.若f(x)>0的解集为A ,B ={x|1<x<3},,求实数a 的取值范围.解:由f(x)为二次函数知a≠0,令f(x)=0解得其两根为x 1=1a -2+1a 2,x 2=1a+2+1a2, 由此可知x 1<0,x 2>0,(3分)① 当a>0时,A ={x|x<x 1}∪{x|x>x 2},(5分)的充要条件是x 2<3,即1a +2+1a 2<3,解得a>67,(9分) ② 当a<0时, A ={x|x 1<x<x 2},(10分)的充要条件是x 2>1,即1a+2+1a2>1,解得a<-2,(13分)综上,使成立的实数a 的取值范围为(-∞,-2)∪⎝ ⎛⎭⎪⎫67,+∞.(14分)一 集合、简单逻辑用语、函数、不等式、导数及应用第1讲 集合与简单逻辑用语1. (2011·安徽)设集合A ={1,2,3,4,5,6},B ={4,5,6,7},则满足A 且的集合S 的个数为________.A. 57B. 56C. 49D. 8【答案】 B 解析:集合A 的所有子集共有26=64个,其中不含4,5,6,7的子集有23=8个,所以集合S 共有56个.故选B.2. (2011·江苏)设集合A ={(x ,y)|m 2≤(x-2)2+y 2≤m 2,x ,y∈R }, B ={(x ,y)|2m≤x+y≤2m+1,x ,y∈R }, 若,则实数m 的取值范围是________.【答案】 ⎣⎢⎡⎦⎥⎤12,2+2 解析:由得,,所以m 2≥m 2,m≥12或m≤0.当m≤0时,|2-2m|2=2-2m >-m ,且|2-2m -1|2=22-2m >-m ,又2+0=2>2m +1,所以集合A 表示的区域和集合B 表示的区域无公共部分;当m≥12时,只要|2-2m|2≤m 或|2-2m -1|2≤m,解得2-2≤m≤2+2或1-22≤m≤1+22,所以实数m 的取值范围是⎣⎢⎡⎦⎥⎤12,2+2.点评:解决此类问题要挖掘问题的条件,并适当转化,画出必要的图形,得出求解实数m 的取值范围的相关条件.基础训练 1. (-∞,3) 解析:A =(-∞,0]∪[3,+∞),B =(0,+∞),A∪B=(-∞,+∞),A∩B=[3,+∞).N,2n≤1 0003. 充分不必要 解析:M ==(-2,2).4. a≥3或a≤-1 解析:Δ=(a -1)2-4≥0,a≥3或a≤-1. 例题选讲例1 解:由x 2-3x -10≤0得-2≤x≤5. ∴ A=[-2,5]. ① 当时,即p +1≤2p-由得-2≤p+1且2p -1≤5.得-3≤p≤3.∴ 2≤p≤3.② 当B =时,即p +1>2p -<成立.综上得p≤3. 点评:从以上解答应看到:解决有关A∩B=,A∪B=A ,A∪B=B 或等集合问题易忽视空集的情况而出现漏解,这需要在解题过程中全方位、多角度审视问题.变式训练 设不等式x 2-2ax +a +2≤0的解集为M ,如果,求实数a 的取值范围.解: 有n 种情况:其一是M =,此时Δ<0;其二是,此时Δ≥0,分三种情况计算a 的取值范围.设f(x)=x 2-2ax +a +2,有Δ=(-2a)2-(4a +8)=4(a 2-a -2), ① 当Δ<0时,-1<a <2,M =成立; ② 当Δ=0时,a =-1或2,当a =-1时,M ={-,当a =2时,M =; ③ 当Δ>0时,a <-1或a >2.设方程f(x)=0的两根为x 1,x 2,且x 1<x 2,那么M =[x 1,x 2],1<x 2⎩⎪⎨⎪⎧且,1≤a≤4且Δ>0.即⎩⎪⎨⎪⎧-a +3≥0,18-7a≥0,1≤a≤4,a <-1或a >2,解得:2<a≤187,综上实数a 的取值范围是⎝⎛⎦⎥⎤-1,187.例2 解: ∵ (A∪B)∩C=,∵A∩C=且B∩C=,由 ⎩⎪⎨⎪⎧y 2=x +1,y =kx +b得k 2x 2+(2bk -1)x +b 2-1=0,∵ A∩C=,∴ k≠0,Δ1=(2bk -1)2-4k 2(b 2-1)<0, ∴ 4k 2-4bk +1<0,此不等式有解,其充要条件是16b 2-16>0,即b 2>1,①∵ ⎩⎪⎨⎪⎧4x 2+2x -2y +5=0,y =kx +b ,∴ 4x 2+(2-2k)x +(5-2b)=0,∵ B∩C=,∴ Δ2=4(1-k)2-16(5-2b)<0,∴ k 2-2k +8b -19<0, 从而8b<20,即b<2.5, ②由①②及b∈N ,得b =2,代入由Δ1<0和Δ2<0组成的不等式组,得⎩⎪⎨⎪⎧4k 2-8k +1<0,k 2-2k -3<0,∴ k=1,故存在自然数k =1,b =2,使得(A∪B)∩C=.点评:把集合所表示的意义读懂,分辨出所考查的知识点,进而解决问题.变式训练 已知集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫,⎪⎪⎪1-y x +1=3,B ={(x ,y)|y =kx +3},若A∩B=, 求实数k 的取值范围.解: 集合A 表示直线y =-3x -2上除去点(-1,1)外所有点的集合,集合B 表示直线y =kx +3上所有点的集合,A∩B=,所以两直线平行或直线y =kx +3过点(-1,1),所以k =2或k =-3.例3 【答案】 A 解析:由于T∪V=Z ,故整数1一定在T ,V 两个集合中的一个中,不妨设1∈T,则,b∈T,由于a ,b,1∈T,则a·b·1∈T,即ab∈T,从而T 对乘法封闭;另一方面,当T ={非负整数},V ={负整数}时,T 关于乘法封闭,V 关于乘法不封闭,故D 不对;当T ={奇数},V ={偶数}时,T ,V 显然关于乘法都是封闭的,故B ,C 不对. 从而本题就选A.例4 证明:(1) ax -bx 2≤1对x∈R 恒成立,又b >0, ∴ a 2-4b≤0,∴ 0<a≤2 b.(2) 必要性,,|f(x)|≤1恒成立,∴ bx 2-ax≤1且bx 2-ax≥-1, 显然x =0时成立,对x∈(0,1]时a≥bx-1x 且a≤bx+1x ,函数f(x)=bx -1x 在x∈(0,1]上单调增,f(x)最大值f(1)=b -1.函数g(x)=bx +1x 在⎝ ⎛⎦⎥⎤0,1b 上单调减,在⎣⎢⎡⎦⎥⎤1b ,1上单调增,函数g(x)的最小值为g ⎝⎛⎭⎪⎫1b =2b ,∴ b-1≤a≤2b ,故必要性成立; 充分性:f(x)=ax -bx 2=-b(x -a 2b )2+a 24b ,a 2b =a 2b ×1b ≤1×1b≤1,f(x)max =a24b≤1,又f(x)是开口向下的抛物线,f(0)=0,f(1)=a -b ,f(x)的最小值从f(0)=0,f(1)=a -b 中取最小的,又a -b≥-1, ∴ -1≤f(x)≤1,故充分性成立; 综上命题得证.变式训练 命题甲:方程x 2+mx +1=0有两个相异负根;命题乙:方程4x 2+4(m -2)x +1=0无实根,这两个命题有且只有一个成立,求实数m 的取值范围.解: 使命题甲成立的条件是: ⎩⎪⎨⎪⎧Δ1=m 2-4>0,x 1+x 2=-m <0>2.∴ 集合A={m|m>2}.使命题乙成立的条件是:Δ2=16(m-2)2-16<0,∴ 1<m<3.∴ 集合B={m|1<m<3}.若命题甲、乙有且只有一个成立,则有:① m∈A∩B,② m∈A∩B.若为①,则有:A∩B={m|m>2}∩{m|m≤1或m≥3}={m|m≥3};若为②,则有:B∩A={m|1<m<3}∩{m|m≤2}={m|1<m≤2};综合①、②可知所求m的取值范围是{m|1<m≤2或m≥3}.点评:明确命题为真时的充要条件,再分类确定.高考回顾1. {-1,2}2. 若f(x)不是奇函数,则f(-x)不是奇函数3. 4 解析:A=(0,4],>4, ∴ c=4.4. 8 解析:画韦恩图.设同时参加数学和化学小组的有x人,则20-x+11+x+4+9-x=36,x=8.5. 3或4 解析:令f(x)=x2-4x+n,n∈N*,f(0)=n>0, ∴ f(2)≤0即n≤4,故n =1,2,3,4,经检验,n=3,4适合,或直接解出方程的根,x=2±4-n,n∈N*,只有n=3,4适合.6. 3 解析:正确的是①③④,在②中-3∈[2]才对.。

2020版高考理科数学大二轮专题复习新方略讲义:1.1集合与常用逻辑用语

2020版高考理科数学大二轮专题复习新方略讲义:1.1集合与常用逻辑用语

第1讲集合与常用逻辑用语考点1集合的概念及运算集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[例1](1)[2019·全国卷Ⅲ]已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=()A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}(2)[2019·全国卷Ⅰ]已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=()A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}【解析】(1)本题主要考查集合的交运算与一元二次不等式的求解,考查考生的运算求解能力,考查的核心素养是数学运算.集合B={x|-1≤x≤1},则A∩B={-1,0,1}.(2)本题主要考查集合的交运算、解一元二次不等式等,考查考生的化归与转化能力、运算求解能力,考查的核心素养是数学运算.通解∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.优解由题得N={x|-2<x<3}.∵-3∉N,∴-3∉M∩N,排除A,B;∵2.5∉M,∴2.5∉M∩N,排除D.故选C.【答案】(1)A(2)C1.解答集合问题的策略先正确理解各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的策略为:(1)若给定的集合是不等式的解集,用数轴求解.(2)若给定的集合是点集,用图象法求解.(3)若给定的集合是抽象集合,常用Venn图求解.2.[警示]忽略空集的讨论,若遇到A⊆B,A∩B=A时,要考虑A为空集的可能性.『对接训练』⎭P=Q P QP Q∩Q=解析:在集合中,x=,k∈Z k∈Z,所以P Q.故选北京延庆一模=(1} B四种命题间的关系2.命题p∧q、p∨q、綈p的真假判断p q p∧q p∨q 綈p真真真真假真假假真假【答案】(1)f(x)=sin x,x∈[0,2](答案不唯一)(2)B1.命题真假的判定方法(2)四种命题真假的判断:一个命题和它的逆否命题同真假,而其他两个命题的真假无此规律;(3)形如p∧q,p∨q,綈p命题的真假根据p,q的真假与联结词的含义判定.2.全称命题与特称命题真假的判定(1)全称命题:要判定一个全称命题是真命题,必须对限定集合M中的每一个元素x验证p(x)成立,要判定其为假命题时,只需举出一个反例『对接训练』充分条件与必要条件的3种判定方法定义法正、反方向推理,若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且qp,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)A判断充分、必要条件时的3个关注点『对接训练』故由|a|=|b|不一定能推出|a+b|=|a-b|.由|a+b|=|a-b|,得|a+b|2=|a-b|2,整理得a·b=0,所以a⊥b,此时不一定能得出|a|=|b|.故“|a|=|b|”是“|a+b|=|a-b|”的既不充分也不必要条件.故选D.答案:D课时作业1集合与常用逻辑用语1.[2019·全国卷Ⅱ]设集合A={x|x2-5x+6>0},B={x|x-1<0},则A∩B=()A.(-∞,1) B.(-2,1)C.(-3,-1) D.(3,+∞)解析:本题考查不等式的求解、集合的交运算,意在考查考生的运算求解能力,考查的核心素养是数学运算.因为A={x|x2-5x+6>0}={x|x>3或x<2},B={x|x-1<0}={x|x<1},所以A∩B={x|x<1},故选A.答案:A2.[2019·宁夏中卫一模]命题“若a2+b2=0,则a=0且b=0”的逆否命题是()A.若a2+b2≠0,则a≠0且b≠0B.若a2+b2≠0,则a≠0或b≠0C.若a=0且b=0,则a2+b2≠0D.若a≠0或b≠0,则a2+b2≠0解析:命题“若a2+b2=0,则a=0且b=0”的逆否命题是“若a≠0或b≠0,则a2+b2≠0”,故选D.答案:D3.[2019·四川内江、眉山等六市诊断性考试]已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3C.2 D.1解析:由A∪C=B可知集合C中一定有元素2,所以符合要求的集合C有{2},{2,0},{2,1},{2,0,1},共4种情况,所以选A.答案:A4.[2019·广东广州一测]已知集合A={x|x2-2x<0},B={x|2x>1},则()A.A∩B=∅B.A∪B=RC.B⊆A D.A⊆B解析:A={x|0<x<2},B={x|x>0},故A⊆B,故选D.答案:D5.[2019·吉林长春模拟]设命题p:∀x∈(0,+∞),ln x≤x-1,则綈p是()A.∀x∈(0,+∞),ln x>x-1B .∀x ∈(-∞,0 ],ln x >x -1C .∃x 0∈(0,+∞),ln x 0>x 0-1D .∃x 0∈(0,+∞),ln x 0≤x 0-1解析:因为全称命题的否定是特称命题,所以命题p :∀x ∈(0,+∞),ln x ≤x -1的否定綈p :∃x 0∈(0,+∞),ln x 0>x 0-1.故选C.答案:C6.[2019·陕西西安铁一中月考]如果x ,y 是实数,那么“x ≠y ”是“cos x ≠cos y ”的( )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件解析:解法一 (集合法)设集合A ={(x ,y )|x ≠y },B ={(x ,y )|cos x ≠cos y },则A 的补集C ={(x ,y )|x =y },B 的补集D ={(x ,y )|cos x =cos y },显然C D ,所以B A ,于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.解法二 (等价转化法)x =y ⇒cos x =cos y ,而cos x =cos y ⇒/ x =y .于是“x ≠y ”是“cos x ≠cos y ”的必要不充分条件.答案:C7.[2019·安徽芜湖四校联考]已知全集U =R ,集合A ={-2,-1,0,1,2},B ={x |x 2≥4},则图中阴影部分所表示的集合为( )A .{-2,-1,0,1}B .{0}C .{-1,0}D .{-1,0,1}解析:由韦恩图可知阴影部分对应的集合为A ∩(∁U B ),∵B ={x |x 2≥4}={x |x ≥2或x ≤-2},A ={-2,-1,0,1,2},∴∁U B ={x |-2<x <2},A ∩(∁U B )={-1,0,1},故选D.答案:D8.[2019·西藏拉萨中学月考]下列命题中是真命题的是( )A .命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2=0,则x ≠1”B .若p ∧q 为假命题,则p ,q 均为假命题C .命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1D .“φ=2k π+π2(k ∈Z )”是“函数y =sin (2x +φ)为偶函数”的充要条件解析:对于A ,命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2≠0,则x ≠1”,A 错误.对于B ,若p ∧q 为假命题,则p ,C.充分必要条件D.既不充分也不必要条件解析:本题考查函数的奇偶性,充分、必要条件的判断,以及三角函数的性质;考查学生的运算求解能力和推理论证能力;考查的核心素养是逻辑推理.当b=0时,f(x)=cos x为偶函数;若f(x)为偶函数,则f(-x)=cos(-x)+b sin(-x)=cos x-b sin x=f(x),∴-b sin x=b sin x对x∈R恒成立,∴b=0. 故“b=0”是“f(x⎭A B ,,a 2,解析:因为⎩⎨⎭⎬sin 2,a ,a =⎩⎨⎭⎬cos π2,a ,a +b , 所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b }, 所以⎩⎨⎧ b a =0,a 2=1或⎩⎨⎧b a =0,a +b =1, ⎧ a =-1,⎧a =1,。

高考数学二轮复习专题1第1讲集合与常用逻辑用语素能训练(文、理)

高考数学二轮复习专题1第1讲集合与常用逻辑用语素能训练(文、理)

高考数学二轮复习专题 1 第 1 讲会合与常用逻辑用语素能训练(文、理)一、选择题1.已知会合A= { x||x-2|>1}, B={ x| y= x-1+3- x},那么有()A.A∩B= ?B.A? BC. ?A D.=B A B [答案]A[分析]由 |x -2|>1得- 2<- 1,或x- 2>1,即x<1,或xx-1≥0得 1≤≤3,>3;由x3-x≥0x所以 A={ x| x<1,或 x>3}, B={ x|1≤ x≤3},所以 A∩ B=?,应选 A.2.(2014 ·浙江文, 2) 设四边形ABCD的两条对角线为AC、 BD,则“四边形ABCD为菱形”是“⊥ ”的()AC BDA.充足不用要条件B.必需不充足条件C.充足必需条件D.既不充足也不用要条件[答案]A[分析]菱形的对角线相互垂直,对角线相互垂直的四边形不必定是菱形.应选 A.x-13.(2014 ·银川市一中二模 ) 已知全集U=R,会合A= { x|x <0} ,B={ x| x≥1} ,则集合{ x| x≤0} 等于 ()A.A∩B B.A∪BC. ? ( A∩B)D. ? ( A∪B)U U[答案]D[分析]A={ x|0< x<1},B={ x| x≥1},则 A∪ B={ x| x>0},∴? ( A∪ B)={ x| x≤0},∴U选 D.4.(2013 ·天津理,4) 已知以下三个命题:11①若一个球的半径减小到本来的,则其体积减小到本来的;28②若两组数据的均匀数相等,则它们的标准差也相等;221③直线 x+ y+1=0与圆 x + y =相切.此中真命题的序号是()A.①②③B.①②C.①③D.②③[答案] C[ 分析 ]统计知识与直线和圆的地点关系的判断.431对于①,设球半径为R,则 V=3π R, r =2R,413πR31∴ V1=3π×(2R)=6=8V,故①正确;对于②,两组数据的均匀数相等,标准差一22般不相等;对于③,圆心(0,0) ,半径为 2 ,圆心(0,0)到直线的距离d=2,故直线和圆相切,故①、③正确.5. ( 文)(2014 ·天津文,3) 已知命题p:? x>0,总有( x+1)e x>1,则?p 为()A. ? x0≤0,使得 ( x0+ 1)e x0≤1B. ? x0>0,使得 ( x0+ 1)e x0≤1C. ? x>0,总有 ( x+ 1)e x≤1D. ? x≤0,总有 ( x+ 1)e x≤1[答案]B[ 分析 ]由命题的否认只否认命题的结论及全称命题的否认为特称( 存在性 ) 命题,“>”的否认为“ <”知选 B.( 理 ) 已知命题p:“? x∈R,x2+1≥1”的否认是“? x∈ R,x2+1≤1”;命题q:在△ABC中,“ A>B”是“sin A>sin B”的充足条件,则以下命题是真命题的是()A.p 且qB.或?pqC.?p且?q D.p或q[答案]D[分析]p 为假命题, q 为真命题,∴ p 且 q 为假命题, p 或?q 为假命题,? p 且?q 为假命题, p 或 q 为真命题.6.( 文) 若会合A= { x|2< x<3} ,B={ x|( x+2)( x-a)<0} ,则“a=1”是“A∩B=?”的()A.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件[答案]A[分析]当 a=1时, B={ x|-2<x<1},∴ A∩ B=?,则“ a=1”是“ A∩ B=?”的充足条件;当∩= ?时,得≤2,则“a =1”不是“∩= ?”的必需条件,故“ =1”是“ ∩A B a A B a A B =?”的充足不用要条件.( 理)(2013 ·沈阳模拟) 已知条件p:| x+1|>2,条件 q: x>a,且?p 是?q 的充足不用要条件,则 a 的取值范围是()A.a≥1B.a≤1C.a≥- 1D.a≤- 3[答案]A[ 分析 ]条件p:x>1或x<-3,所以?p:-3≤ x≤1;条件 q: x>a,所以?q: x≤ a,因为?p 是?q 的充足不用要条件,所以a≥1,应选 A.7.已知会合A= {1,2,3,4},B={2,4,6,8},定义会合 A× B={( x, y)| x∈ A, y∈ B},则会合×中属于会合 {(x ,)|log x∈N} 的元素个数是 ()A B y yA. 3B. 4C. 8D. 9[答案]B[分析]用列举法求解.由给出的定义得A× B={(1,2),(1,4),(1,6) ,(1,8) ,(2,2) ,(2,4) ,(2,6), (2,8) ,(3,2),(3,4),(3,6),(3,8) ,(4,2),(4,4) ,(4,6) ,(4,8)} .其中 log 22= 1,log 24= 2,log 28= 3, log 44= 1,所以,一共有 4 个元素,应选 B.8.( 文)(2014 ·湖南理,5) 已知命题p:若x>y,则-x<-y;命题q:若x>y,则x2>y2.在命题① ∧ ;② ∨;③p ∧(?q);④(? )∨q中,真命题是 ()p qp q pA.①③B.①④C.②③D.②④[答案]C[分析]当 x>y 时,两边乘以- 1 可得-x<-y,所以命题p为真命题,当x=1,y=-2 时,因为x2<y2,所以命题q为假命题,所以②③为真命题,应选 C.( 理)(2014 ·重庆理,6) 已知命题xp:对随意 x∈R,总有 2 >0;q:“ x>1”是“ x>2”的充足不用要条件,则以下命题为真命题的是()A.p∧q B.?p∧?qC.?p∧q D.p∧?q[答案] D[ 分析 ]命题p是真命题,命题q 是假命题,所以选项 D 正确.判断复合命题的真假,要先判断每一个命题的真假,而后做出判断.9.命题“若 f ( x)是奇函数,则 f (- x)是奇函数”的否命题是()A.若f ( x) 是偶函数,则 f (- x)是偶函数B.若f ( x) 不是奇函数,则 f (- x)不是奇函数C.若f ( -x) 是奇函数,则 f ( x)是奇函数D.若f ( -x) 不是奇函数,则 f ( x)不是奇函数[ 剖析 ]依据四种命题的关系判断.[答案]B[ 分析 ]“若p则q”的否命题为“若? p则?q”,应选 B.10.(2014 ·陕西理, 8) 原命题为“若z1、z2互为共轭复数,则| z1| = | z2| ”,对于其逆命题,否命题,逆否命题真假性的判断挨次以下,正确的选项是()A.真,假,真B.假,假,真C.真,真,假D.假,假,假[答案]B[ 分析 ]若z1=a+b i,则z2=a-b i.∴| z1| =| z2| ,故原命题正确、逆否命题正确.其抗命题为:若 | z1| = | z2| ,则z1、z2互为共轭复数,若 z1= a+ b i, z2=- a+ b i,则| z1|=| z2|,而 z1、 z2不为共轭复数.∴抗命题为假,否命题也为假.二、填空题x11.设p:<0,q:0<x<m,若p是q建立的充足不用要条件,则m的取值范围是 ________.x-2[答案](2 ,+∞)x[分析]由x-2<0 得 0<x<2,∵p是q建立的充足不用要条件,∴ (0,2)(0 ,m) ,∴m>2.12.设会合A={5,log2( a+3)}, B={ a, b},若 A∩ B={2},则 A∪ B=________.[ 答案 ]{1,2,5}[ 分析 ]∵ A∩ B={2},∴ 2∈ A,∴ log2(a+3)=2,∴a=1,∴ b=2,∴ A∪ B={1,2,5}.一、选择题13.(2014 ·哈三中一模 ) 会合A= {1,2}, B={1,2,3}, P={ x| x=ab, a∈ A,b∈ B},则会合 P 的元素个数为()A. 3B. 4C. 5D. 6[答案]C[分析]由题意知 P={1,2,4,3,6},∴选 C.14.(文 ) 已知会合={(,)|y = 2x,∈R} ,={(x, )|= 2x,∈R} ,则∩的A x y xB y y x A B元素数量为 ()A. 0B. 1C. 2D.无量多[答案]C[分析]函数= 2x与y = 2的图象的交点有 2 个,应选 C.y x( 理 ) 设全集U=R,会合M= { x| y=3- 2x} ,N= { y| y= 3- 2x } ,则图中暗影部分表示的会合是 ()A. { x|3B. { x|3<x≤3}<x<3} 2233C. { x| 2≤x<2}D. { x| 2<x<2} [答案]B3[分析]M={ x| x≤2} ,N= { x| x<3} ,U) = {|x <3} ∩{ |x3}= {x|3∴暗影部分∩(< <3}.N M x x22x15.(2013 ·重庆理, 2) 命题“对随意x∈R,都有 x2≥0”的否认为()A.对随意x∈R,都有 x2<0B.不存在x∈R,使得 x2<02C.存在x0∈ R,使得x0≥0D.存在x0∈ R,使得x20<0[答案]D[分析]依据全称命题的否认是特称命题,应选 D.16. ( 文)(2013 ·西城区模拟) 已知函数 f ( x)=x2+ bx+ c,则“ c<0”是“? x0∈R,使)f ( x )<0”的(A.充足不用要条件B.必需而不充足条件C.充足必需条件D.既不充足也不用要条件[答案]A[分析]c<0 时,f(0) =<0;当>0b2>4 >0 时,存在x0∈R,使f(x0)<0,例即c cc>0,如取 b=3, c=1,此时, f ( x)= x2+3x+1=( x+32)2-54,其最小值-54<0.应选A.x+y≥1( 理)(2014 ·新课标Ⅰ理,9) 不等式组的解集记为D.有下边四个命题:x-2y≤4p1:? ( x, y)∈ D,x+2y≥-2,p2:? ( x, y)∈ D,x+2y≥2,p3:? ( x, y)∈ D,x+2y≤3,p4:? ( x, y)∈ D,x+2y≤-1.此中真命题是 ()A.p2,p3B.p1,p4C.p1,p2D.p1,p3[答案]C[分析 ]x+ y≥1不等式组表示的平面地区如图所x-2y≤4示.x+ y=1,由得交点 A(2,-1),x-2y=4,1∵目标函数u=x+2y 的斜率 k=-,2∴当直线 x+2y= u 过 A时, u 取最小值0.应选项 p1, p2正确,所以选 C.17.(2014 ·辽宁理, 5) 设a、b、c是非零向量,已知命题p:若 a·b=0, b·c=0,则·= 0;命题:若∥,∥,则a ∥,则以下命题中真命题是 ()a c qab bc cA.p∨q B.p∧qC.(? p) ∧(? q)D.p∨(? q)[答案]A[分析]取 a=c =(1,0),b=(0,1)知, a· b=0, b· c=0,但 a·c≠0,∴命题 p 为假命题;∵a∥b,b∥ c,∴?λ,μ∈R,使 a=λ b, b=μc,∴a=λμ c,∴ a∥c,∴命题 q 是真命题.∴ p∨q 为真命题.18.已知命题:“?x ∈ R,2+2+≤0”为假命题,则实数a的取值范围是 ()p x ax aA. (0,1)B. (0,2) C. (2,3)D. (2,4)[答案] A[分析]由p 为假命题知, ?x∈ R , 2+ 2 + >0 恒建立, ∴Δ= 4 2-4 <0,∴ 0< <1,xax aaaa应选 A.x 2y 219.设 x 、 y ∈R ,则“|x | ≤4且 | y | ≤3”是“ 16+ 9 ≤1”的 () A .充足而不用要条件 B .必需而不充足条件C .充足必需条件D .既不充足也不用要条件[答案] B[分析]“| | ≤4且|y | ≤3”表示的平面地区为矩形地区,“x 2+y 2 ≤1”表示的平M9 16x 2 y 2面地区 N 为椭圆 16+ 9= 1 及其内部,明显NM ,应选 B.x20. ( 文 ) 在 R 上定义运算 ?: x ?y =2- y ,若对于 x 的不等式 ( x - a ) ?( x + 1- a )>0 的解集是会合 { x | -2≤ x ≤2} 的子集,则实数 a 的取值范围是 ()A .- 2≤ a ≤2B .- 1≤ a ≤1C .- 2≤ a ≤1D .1≤ a ≤2[答案]Cx - a[ 分析 ]因为 ( x - a ) ?( x + 1- a )>0 ,所以 1+a - x >0,即 a <x <a + 1,则 a ≥- 2 且 a +1≤2,即- 2≤ a ≤1.( 理)(2014 ·中原名校联考 ) 以下命题正确的个数是 ()①“在三角形 ABC 中,若 sin A >sin B ,则 A >B ”的抗命题是真命题;②命题p : x ≠2或32y ≠3,命题 q :x + y ≠5则 p 是 q 的必需不充足条件;③“ ? x ∈R ,x - x +1≤0”的否认是“? x ∈ R ,x 3- x 2+1>0”;④若随机变量 x ~ B ( n ,p ) ,则 DX = np . ⑤回归剖析中,回归方程能够是非线性方程.A .1B . 2C .3D . 4[答案]C[ 分析 ]在△ ABC 中,A >B ? a >b ? 2R sin A >2R sin B ? sin A >sin B ( 此中 R 为△ ABC 外接圆半径) .∴①为真命题;∵ x = 2 且 y = 3 时, x + y = 5 建立, x + y = 5 时, x = 2 且 y = 3 不建立, ∴“ x + y =5”是“ x = 2 且 y =3”的必需不充足条件, 进而“ x ≠2或 y ≠3”是“ x +y ≠5”的必需不充足条件,∴②为真命题;∵全称命题的否认是特称命题,7由二项散布的方差知④为假命题.⑤明显为真命题,应选C.二、填空题21.设 p :对于 x 的不等式 a x >1 的解集为 { x | x <0} ,q :函数 y = lg( ax 2-x + a ) 的定义域为 R ,若 p 或 q 为真命题, p 且 q 为假命题,则a 的取值范围是 ________.[答案]1(0 , ] ∪[1 ,+∞)2[分析]p 真时, 0<a <1;q 真时, ax 2- x +a >0 对 x ∈ R 恒建立,则a >0,= 1-4 a 2<0,10<a <1,即 a >2. 若 p ∨ q 为真, p ∧ q 为假,则 p 、q 应一真一假:①当 p 真 q 假时, a ≤1 ?21 a ≤0或 a ≥1,? a ≥ 1.0<a ≤ ;②当 p 假 q 真时,12a >21综上, a ∈ (0 , ] ∪ [1 ,+∞ ) .222.给出以下命题:①已知线性回归方程^个单位,其预告值均匀增添4 个单位;y = 3+ 2x ,当变量 x 增添 2 ②在进制计算中, 100(2) = 11(3) ;③若 ξ~ N (3 ,σ2) ,且 P (0 ≤ ξ≤3) = 0.4 ,则 P ( ξ<6) = 0.1 ;④“ a =件;1 1- x 2dx ”是“函数 y = cos 2(ax) - sin 2(ax) 的最小正周期为 4”的充要条2014 x +1+ 2013π π⑤设函数 f(x) =2014 x +1+ 2014sin x(x ∈[ - 2 , 2 ]) 的最大值为 M ,最小值为 m ,则 M + m = 4027,此中正确命题的个数是________个.[答案] 4[分析]①明显正确; 100(2)211=1×2 +0×2+0×2= 4,11 (3)=1×3+1×3 = 4,∴②正21确;∵ξ <N(3,σ ) ,∴ P(ξ>6) = 2(1 -2P(0≤ξ≤ 3)) = 0.1 ,∴③错误;由数形联合法,1 2 π 2 2 πx 依照定积分的几何意义得a =1- x dx = 4 ,y =cos ax - sin ax = cos 2ax = cos 2 ,最小2π正周期 T = π = 4,∴④正确.2x + 1a+ a-1设 a=2014,则 f(x)=a x+1+a sin x1=a+ a sin x-a x+1,易知 f(x) 在 [ -ππ] 上单一递加,,22πππ111 a 2∴M+ N= f( 2 )+ f(-2 ) = 2a-π-π= 2a-π-π= 2a- 1=a + 1a-+ 1 a + 11+ a22224027,∴⑤正确.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第1讲集合与常用逻辑用语考点1 集合的概念及运算集合的运算性质及重要结论(1)A∪A=A,A∪∅=A,A∪B=B∪A;(2)A∩A=A,A∩∅=∅,A∩B=B∩A;(3)A∩(∁U A)=∅,A∪(∁U A)=U;(4)A∩B=A⇔A⊆B,A∪B=A⇔B⊆A.[例1] (1)[2019·全国卷Ⅲ]已知集合A={-1,0,1,2},B={x|x2≤1},则A∩B=( ) A.{-1,0,1} B.{0,1}C.{-1,1} D.{0,1,2}(2)[2019·全国卷Ⅰ]已知集合M={x|-4<x<2},N={x|x2-x-6<0},则M∩N=( )A.{x|-4<x<3} B.{x|-4<x<-2}C.{x|-2<x<2} D.{x|2<x<3}【解析】(1)本题主要考查集合的交运算与一元二次不等式的求解,考查考生的运算求解能力,考查的核心素养是数学运算.集合B={x|-1≤x≤1},则A∩B={-1,0,1}.(2)本题主要考查集合的交运算、解一元二次不等式等,考查考生的化归与转化能力、运算求解能力,考查的核心素养是数学运算.通解∵N={x|-2<x<3},M={x|-4<x<2},∴M∩N={x|-2<x<2},故选C.优解由题得N={x|-2<x<3}.∵-3∉N,∴-3∉M∩N,排除A,B;∵2.5∉M,∴2.5∉M∩N,排除D.故选C.【答案】(1)A(2)C1.解答集合问题的策略先正确理解各个集合的含义,弄清集合元素的属性;再依据元素的不同属性采用不同的方法对集合进行化简求解,一般的策略为:(1)若给定的集合是不等式的解集,用数轴求解.(2)若给定的集合是点集,用图象法求解.(3)若给定的集合是抽象集合,常用Venn图求解.2.[警示]忽略空集的讨论,若遇到A⊆B,A∩B=A时,要考虑A为空集的可能性.『对接训练』1.[2019·四川南充适应性考试]已知集合P =⎩⎨⎧⎭⎬⎫x|x =k 2+14,k∈Z ,Q =⎩⎨⎧⎭⎬⎫x |x =k 4+12,k ∈Z 则( )A .P =QB .P QC .P QD .P ∩Q =∅解析:在集合P 中,x =k 2+14=2k +14,k ∈Z ,在集合Q 中,x =k 4+12=k +24,k ∈Z .因为k ∈Z ,所以2k +1为奇数,k +2为整数,由集合间的关系判断,得P Q .故选B.答案:B2.[2019·北京延庆一模]已知集合A ={x |x (x +1)≤0},集合B ={x |-1<x <1},则A ∪B =( )A .{x |-1≤x ≤1} B.{x |-1<x ≤0} C .{x |-1≤x <1} D .{x |0<x <1}解析:解一元二次不等式x (x +1)≤0,可得A ={x |-1≤x ≤0},则A ∪B ={x |-1≤x <1},故选C.答案:C考点2 命题的真假与逻辑联结词1.四种命题及其关系 (1)四种命题若原命题为“若p ,则q ”,则其逆命题是若q ,则p ;否命题是若綈p ,则綈q ;逆否命题是若綈q ,则綈p .(2)四种命题间的关系2.命题p ∧q 、p ∨q 、綈p 的真假判断pqp ∧qp ∨q綈p 真 真 真 真 假 真 假 假 真 假 假 真 假 真 真 假假假假真[例2] x ∈(0,2]都成立,则f (x )在[0,2]上是增函数”为假命题的一个函数是________;(2)[2019·福建漳州一中月考]已知命题p :椭圆25x 2+9y 2=225与双曲线x 2-3y 2=12有相同的焦点;命题q :函数f (x )=x 2+5x 2+4的最小值为52.则下列命题为真命题的是( )A .p ∧qB .(綈p )∧qC .綈(p ∨q )D .p ∧(綈q )【解析】 (1)设f (x )=sin x ,则f (x )在0,π2上是增函数,在π2,2上是减函数.由正弦函数图象的对称性知,当x ∈(0,2]时,f (x )>f (0)=sin 0=0,故f (x )=sin x 满足条件f (x )>f (0)对任意的x ∈(0,2]都成立,但f (x )在[0,2]上不一直都是增函数.(2)p 中椭圆x 29+y 225=1的焦点坐标分别为(0,4),(0,-4),双曲线x 212-y 24=1的焦点坐标分别为(4,0),(-4,0),故p 为假命题;q 中f (x )=x 2+5x 2+4=x 2+4+1x 2+4=x 2+4+1x 2+4,设t =x 2+4≥2(当且仅当x =0时,等号成立),则f (t )=t +1t 在区间[2,+∞)上单调递增,故f (x )min =52,故q 为真命题.所以(綈p )∧q 为真命题,故选B.【答案】 (1)f (x )=sin x ,x ∈[0,2](答案不唯一) (2)B1.命题真假的判定方法(1)一般命题p 的真假由涉及的相关知识辨别;(2)四种命题真假的判断:一个命题和它的逆否命题同真假,而其他两个命题的真假无此规律;(3)形如p ∧q ,p ∨q ,綈p 命题的真假根据p ,q 的真假与联结词的含义判定.2.全称命题与特称命题真假的判定(1)全称命题:要判定一个全称命题是真命题,必须对限定集合M 中的每一个元素x 验证p (x )成立,要判定其为假命题时,只需举出一个反例即可;(2)特称命题:要判定一个特称命题为真命题,只要在限定集合M 中至少能找到一个元素x 0,使得p (x 0)成立即可;否则,这一特称命题就是假命题.『对接训练』3.[2019·山西芮城期末]在一次数学测试中,成绩在区间[125,150]内视为优秀,有甲、乙两名同学,设命题p 是“甲测试成绩优秀”,q 是“乙测试成绩优秀”,则命题“甲、乙中至少有一名同学成绩不是优秀”可表示为( )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:“甲测试成绩不优秀”可表示为綈p ,“乙测试成绩不优秀”可表示为綈q ,“甲、乙中至少有一名同学成绩不是优秀”即“甲测试成绩不优秀”或“乙测试成绩不优秀”,表示形式为(綈p )∨(綈q ).故选A.答案:A4.[2019·江西临川一中月考]已知命题p :∀x ∈R ,x 2-2ax +1>0;命题q :∃x 0∈R ,ax 20+2≤0.若p ∨q 为假命题,则实数a 的取值范围是( )A .[1,+∞) B.(-∞,-1] C .(-∞,-2] D .[-1,1]解析:∵p ∨q 为假命题,∴p ,q 均为假命题.若命题p 为假命题,则Δ≥0,即4a 2-4≥0,解得a ≤-1或a ≥1;若命题q 为假命题,则a ≥0,∴实数a 的取值范围是[1,+∞),故选A.答案:A考点3 充分、必要条件充分条件与必要条件的3种判定方法A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件(2)[2019·浙江卷]设a >0,b >0,则“a +b ≤4”是“ab ≤4”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【解析】 (1)本题主要考查充分性与必要性的判断、简单的不等式求解,考查考生的运算求解的能力,考查的核心素养是逻辑推理.由x 2-5x <0可得0<x <5.由|x -1|<1可得0<x <2.由于区间(0,2)是(0,5)的真子集,故“x 2-5x <0”是“|x -1|<1”的必要而不充分条件.(2)本题主要考查充分条件、必要条件,考查考生分析问题的能力,考查的核心素养是逻辑推理.通解 因为a >0,b >0,所以a +b ≥2ab ,由a +b ≤4可得2ab ≤4,解得ab ≤4,所以充分性成立;当ab ≤4时,取a =8,b =13,满足ab ≤4,但a +b >4,所以必要性不成立.所以“a +b ≤4”是“ab ≤4”的充分不必要条件.故选A.优解 在同一坐标系内作出函数b =4-a ,b =4a的图象,如图,则不等式a +b ≤4与ab ≤4表示的平面区域分别是直线a +b =4及其左下方(第一象限中的部分)与曲线b =4a及其左下方(第一象限中的部分),易知当a +b ≤4成立时,ab ≤4成立,而当ab ≤4成立时,a +b ≤4不一定成立.故选A.【答案】(1)B (2)A判断充分、必要条件时的3个关注点要弄清先后顺序“A的充分不必要条件是B”是指B能推出A,且A不能推出B;而“A 是B的充分不必要条件”则是指A能推出B,且B不能推出A.要善于举出反例当从正面判断或证明一个命题的正确或错误不易进行时,可以通过举出恰当的反例来说明.要注意转化綈p是綈q的必要不充分条件⇔p是q的充分不必要条件;綈p是綈q的充要条件⇔p是q的充要条件.『对接训练』5.[2019·甘肃天水一模]设a,b是向量.则“|a|=|b|”是“|a+b|=|a-b|”的( ) A.充分不必要条件B.充要条件C.必要不充分条件D. 既不充分也不必要条件解析:取a=-b≠0,则|a|=|b|≠0,|a+b|=|0|=0,|a-b|=|2a|≠0,所以|a+b|≠|a-b|,故由|a|=|b|不一定能推出|a+b|=|a-b|.由|a +b |=|a -b |,得|a +b |2=|a -b |2, 整理得a ·b =0,所以a ⊥b ,此时不一定能得出|a |=|b |.故“|a |=|b |”是“|a +b |=|a -b |”的既不充分也不必要条件.故选D. 答案:D6.[2019·天津一中月考]已知命题p :x ≥k ,命题q :3x +1<1.如果p 是q 的充分不必要条件,则实数k 的取值范围是( )A .[2,+∞) B.(2,+∞) C .[1,+∞) D.(-∞,1] 解析:由3x +1<1得,3x +1-1=2-x x +1<0,即(x -2)(x +1)>0,解得x <-1或x >2,由p 是q 的充分不必要条件知,k >2,故选B.答案:B课时作业1 集合与常用逻辑用语1.[2019·全国卷Ⅱ]设集合A ={x |x 2-5x +6>0},B ={x |x -1<0},则A ∩B =( ) A .(-∞,1) B .(-2,1) C .(-3,-1) D .(3,+∞)解析:本题考查不等式的求解、集合的交运算,意在考查考生的运算求解能力,考查的核心素养是数学运算.因为A ={x |x 2-5x +6>0}={x |x >3或x <2},B ={x |x -1<0}={x |x <1},所以A ∩B ={x |x <1},故选A.答案:A2.[2019·宁夏中卫一模]命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是( ) A .若a 2+b 2≠0,则a ≠0且b ≠0 B .若a 2+b 2≠0,则a ≠0或b ≠0 C .若a =0且b =0,则a 2+b 2≠0 D .若a ≠0或b ≠0,则a 2+b 2≠0解析:命题“若a 2+b 2=0,则a =0且b =0”的逆否命题是“若a ≠0或b ≠0,则a 2+b 2≠0”,故选D.答案:D3.[2019·四川内江、眉山等六市诊断性考试]已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为( )A.4 B.3C.2 D.1解析:由A∪C=B可知集合C中一定有元素2,所以符合要求的集合C有{2},{2,0},{2,1},{2,0,1},共4种情况,所以选A.答案:A4.[2019·广东广州一测]已知集合A={x|x2-2x<0},B={x|2x>1},则( )A.A∩B=∅ B.A∪B=RC.B⊆A D.A⊆B解析:A={x|0<x<2},B={x|x>0},故A⊆B,故选D.答案:D5.[2019·吉林长春模拟]设命题p:∀x∈(0,+∞),ln x≤x-1,则綈p是( ) A.∀x∈(0,+∞),ln x>x-1B.∀x∈(-∞,0 ],ln x>x-1C.∃x0∈(0,+∞),ln x0>x0-1D.∃x0∈(0,+∞),ln x0≤x0-1解析:因为全称命题的否定是特称命题,所以命题p:∀x∈(0,+∞),ln x≤x-1的否定綈p:∃x0∈(0,+∞),ln x0>x0-1.故选C.答案:C6.[2019·陕西西安铁一中月考]如果x,y是实数,那么“x≠y”是“cos x≠cos y”的( )A.充要条件 B.充分不必要条件C.必要不充分条件 D.既不充分也不必要条件解析:解法一(集合法)设集合A={(x,y)|x≠y},B={(x,y)|cos x≠cos y},则A 的补集C={(x,y)|x=y},B的补集D={(x,y)|cos x=cos y},显然C D,所以B A,于是“x≠y”是“cos x≠cos y”的必要不充分条件.解法二(等价转化法)x=y⇒cos x=cos y,而cos x=cos y⇒/ x=y.于是“x≠y”是“cos x≠cos y”的必要不充分条件.答案:C7.[2019·安徽芜湖四校联考]已知全集U=R,集合A={-2,-1,0,1,2},B={x|x2≥4},则图中阴影部分所表示的集合为( )A .{-2,-1,0,1}B .{0}C .{-1,0}D .{-1,0,1}解析:由韦恩图可知阴影部分对应的集合为A ∩(∁U B ),∵B ={x |x 2≥4}={x |x ≥2或x ≤-2},A ={-2,-1,0,1,2},∴∁U B ={x |-2<x <2},A ∩(∁U B )={-1,0,1},故选D.答案:D8.[2019·西藏拉萨中学月考]下列命题中是真命题的是( )A .命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2=0,则x ≠1” B .若p ∧q 为假命题,则p ,q 均为假命题C .命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1D .“φ=2k π+π2(k ∈Z )”是“函数y =sin (2x +φ)为偶函数”的充要条件解析:对于A ,命题“若x 2-3x +2=0,则x =1”的否命题是“若x 2-3x +2≠0,则x ≠1”,A 错误.对于B ,若p ∧q 为假命题,则p ,q 中至少有一个为假命题,B 错误.对于C ,命题p :∃x 0∈R ,sin x 0>1,则綈p :∀x ∈R ,sin x ≤1,C 正确.对于D ,φ=2k π+π2(k ∈Z )时,函数y =sin(2x +φ)=cos 2x 为偶函数,充分性成立.函数y =sin(2x +φ)为偶函数时,φ=π2+k π(k ∈Z ),必要性不成立,不是充要条件,D 错误.故选C. 答案:C9.[2019·北京卷]设函数f (x )=cos x +b sin x (b 为常数),则“b =0”是“f (x )为偶函数”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件解析:本题考查函数的奇偶性,充分、必要条件的判断,以及三角函数的性质;考查学生的运算求解能力和推理论证能力;考查的核心素养是逻辑推理.当b =0时,f (x )=cos x 为偶函数;若f (x )为偶函数,则f (-x )=cos(-x )+b sin(-x )=cos x -b sin x =f (x ),∴-b sin x =b sin x 对x ∈R 恒成立,∴b =0. 故“b =0”是“f (x )为偶函数”的充分必要条件. 故选C.答案:C10.[2019·安徽六安月考]已知集合A ={x |x <3},B ={x |x >a },若A ∩B ≠∅,则实数a 的取值范围为( )A .[3,+∞) B.(3,+∞) C .(-∞,3) D .(-∞,3]解析:依题意可知当a <3时,A ∩B ≠∅,故选C.答案:C11.[2019·贵州贵阳模拟]已知命题p :∀x ∈R,2x<3x,命题q :∃x ∈R ,x 2=2-x ,若命题(綈p )∧q 为真命题,则x 的值为( )A .1B .-1C .2D .-2解析:因为綈p :∃x ∈R,2x≥3x,要使(綈p )∧q 为真命题,所以綈p 与q 同时为真命题.由2x ≥3x 得⎝ ⎛⎭⎪⎫23x ≥1,所以x ≤0,由x 2=2-x 得x 2+x -2=0,所以x =1或x =-2.又x ≤0,所以x =-2.故选D.答案:D12.[2019·海南海口模拟]已知集合A ={x ∈R ⎪⎪⎪12<2x<8},B ={x ∈R |-1<x <m +1},若x ∈B 成立的一个充分不必要的条件是x ∈A ,则实数m 的取值范围是( )A .m ≥2 B.m ≤2 C .m >2 D .-2<m <2解析:集合A =⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫x ∈R ⎪⎪⎪12<2x<8={x |-1<x <3},∵x ∈B 成立的一个充分不必要条件是x ∈A ,∴A B ,∴m +1>3,即m >2.答案:C13.若⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b ,则a 2 020+b 2 020的值为________.解析:因为⎩⎨⎧⎭⎬⎫sin π2,a ,b a =⎩⎨⎧⎭⎬⎫cos π2,a 2,a +b , 所以⎩⎨⎧⎭⎬⎫1,a ,b a ={0,a 2,a +b },所以⎩⎪⎨⎪⎧b a=0,a 2=1或⎩⎪⎨⎪⎧b a =0,a +b =1,解得⎩⎪⎨⎪⎧ a =-1,b =0或⎩⎪⎨⎪⎧a =1,b =0(舍去),则a2 020+b2 020=1.答案:114.[2019·安徽定远重点中学月考]若命题“∃x 0∈R ,使得x 20+mx 0+2m -3<0”为假命题,则实数m 的取值范围是________.解析:由题意知命题“∀x ∈R ,使得x 2+mx +2m -3≥0 ”为真命题,所以Δ=m 2-4(2m -3)≤0,解得2≤m ≤6,则实数m 的取值范围是[2,6].- 11 - 答案:[2,6]15.[2019·江苏扬州期中]已知条件p :x >a ,条件q :1-x x +2>0.若p 是q 的必要不充分条件,则实数a 的取值范围是________.解析:由1-x x +2>0,得{x |-2<x <1}.因为p 是q 的必要不充分条件,所以a ≤-2. 答案:(-∞,-2]16.[2019·陕西西安模拟]已知下列命题:①∃x 0∈⎣⎢⎡⎦⎥⎤0,π2,sin x 0+cos x 0≥2; ②∀x ∈(3,+∞),x 2>2x +1;③∀x ∈R,2x +12x >2; ④∃x 0∈⎝ ⎛⎭⎪⎫π2,π,tan x 0>sin x 0. 其中真命题为________(填所有真命题的序号).解析:对于①,当x =π4时,sin x +cos x =2,所以此命题为真命题;对于②,当x ∈(3,+∞)时,x 2-2x -1=(x -1)2-2>0,所以此命题为真命题;对于③,因为2x >0,所以12x +2x ≥212x ×2x =2,当且仅当12x =2x ,即x =0时等号成立,所以此命题为假命题;对于④,当x ∈⎝ ⎛⎭⎪⎫π2,π时,tan x <0<sin x ,所以此命题为假命题.综上,真命题为①②. 答案:①②。

相关文档
最新文档