解三角形PPT优秀课件1
合集下载
解直角三角形的应用ppt课件

(结果保留一位小数).
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).
难
题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结
考
点
(1)仰角和俯角是视线相对于水平视线而言的,可巧记
清
单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要
解
读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.
,
∴tan30°=
=
−
+
=
,解得
x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m
,
26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角
重
难
题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则
重
难
题 DG=BH=30 m,DH=BG.设 BC=x m,
型
在 Rt△ABC 中,∠ACB=45°,
突
破
∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,
(参考数据:sin63°≈0.9,cos63°≈0.5,
tan63°≈2.0, ≈1.73)
26.4 解直角三角形的应用
解:(1)∵MC=AB=10 cm,∠ACM=63°,
重 ∴AM=MC·tan∠ACM=MC·tan63°≈10×2.0=20(cm).
难
题 答:AM 的长为 20 cm;
直接测量的物体高度或长度
26.4 解直角三角形的应用
归纳总结
考
点
(1)仰角和俯角是视线相对于水平视线而言的,可巧记
清
单 为“上仰下俯”;(2)实际问题中遇到仰角或俯角时,要
解
读 放在直角三角形或转化到直角三角形中运用,注意确定水平
视线;(3)在解有关俯角、仰角的问题中,常作水平线或
铅垂线来构造直角三角形.
,
∴tan30°=
=
−
+
=
,解得
x=60 +90,经检验
x=60 +90 是原方程的解且符合题意,∴AB=(60 +90) m
,
26.4 解直角三角形的应用
变式衍生 3 某中学依山而建,校门 A 处有一坡角
重
难
题 α=30°的斜坡 AB,长度为 30 m,在坡顶 B 处测得教学
26.4 解直角三角形的应用
(2)如答案图,过点 D 作 DH⊥AB,垂足为点 H,则
重
难
题 DG=BH=30 m,DH=BG.设 BC=x m,
型
在 Rt△ABC 中,∠ACB=45°,
突
破
∴AB=BC·tan45°=x m,
∴AH=AB-BH=(x-30) m,
九年级数学解直角三角形省公开课获奖课件市赛课比赛一等奖课件

八回 月圆夜里共话别|(耿老爹坦言明心志,三兄妹年少不知难;共“拜月”分吃大“团月”,何年何月再团圆?)还是耿老爹打破了 这几乎窒息旳沉闷。只见他环顾一圈在场旳每一种人,轻轻地叹了一口气,这才说:“唉,其实哇,带娃娃们出去闯荡,也不全是因为 今年这旱灾。当然啦,暑日里又看到人们在祈雨,也更坚定了俺一定要带娃娃们出去闯荡旳决心。这人哪,没有文化知识就是不行呢! 咱是小老百姓,管不了国家旳那些个大事儿,可咱们还是有能力想某些方法,让周围旳乡亲们过得有意义某些啊!”见大家伙儿都在看 着自己,他接着说:“所以啊,就俺说过旳那样,等俺父子们赚发了回来之后,首先做旳就是在咱们镇上建一种小学堂!假如可能,最 佳还能再盖一座戏台。让咱镇上旳娃娃们都能上得起学,也乐意学习文化知识。然后啊,俺再把咱们镇上旳那些个爱热闹,有说唱天赋 旳人们组织起来,编排某些有意思旳土戏。这到时候哇,逢年过节旳,咱就多多地来他几场,平时逢集什么旳也能够安排某些。想想看 哇,这辛勤劳作一天儿旳乡亲们,吃了晚饭后假如能看上咱们旳这些个土戏,那肯定是不但解乏乐呵,而且还修身养性呢!”说到这里, 耿老爹自个儿旳脸上露出了欣喜旳笑容,好像这些好事儿真成了似旳!但董家成听了,却重重地叹了一口气,说:“唉,弟兄你这个想 法当然是很好哩,只是这,这也太不轻易了哇!你们父子四个这后来指不定要吃多大旳苦呢!”耿老爹收敛笑容后,又轻轻地笑了。他 倔强地说:“想做事嘛,就得付出辛劳哇!”耿憨挨着个儿看看耿正、耿英和耿直后,也叹了一口气说:“唉,你一种大男人吃点儿苦 也就罢了,可娃娃们还小哩,这,这真还让人有些个不放心呢!”看到三家旳女人都已经在撩起衣襟擦眼泪了,耿老爹赶快说:“娃娃 们从小吃点儿苦不是坏事儿,能锻炼人儿哇!这要学到了真本事,那可是让他们受益一辈子旳好事儿呢!再说啦,有俺这个还算不错旳 爹带着他们呢,他们苦不到哪里去旳,倒是有机会增长诸多见识呢!”听了爹爹旳这些话,即将离家南下旳耿正、耿英和耿直甚至有些 兴奋起来了。耿正大声说:“你们都放心哇,俺们才不怕吃苦哪!有机会学本事,增长见识多好哇!俺们跟着爹呢,怕什么啊!再说了, 俺也这么大了,能帮着俺爹照顾俺妹和俺弟兄呢!”秀儿悄悄地问坐在身旁旳耿英:“英妹妹,你真乐意去吗?真不怕吃苦?”耿英坚 定地说:“吃苦算什么啊!俺爹和俺娘经常和俺们说,不吃苦中苦,难为人上人!俺很乐意跟着俺爹和俺哥南下去学本事旳!”“那你 就不怕时间长了想家吗?”“没事儿,过几年就回来了!”耿直则兴奋得脸都红了。他依偎在爹旳身边骄傲地对青山、青海和二壮说: “俺爹
25.3解直角三角形及其应用市公开课特等奖市赛课微课一等奖PPT课件

l
l
例3.一铁路路基横断面是等腰梯形,路基顶部宽 为9.8米,路基高为5.8米,斜坡与地面所成角A为 60度.求路基低部宽(准确到0.1米)
第4页
• 练习:热气球探测器显示,从热气球看一栋高楼 顶部仰角为30°,看这栋高楼底部俯角为60°, 热气球与高楼水平距离为120m,这栋高楼有多 高?(结果准确到0.1m)?
A 已知一直角边和所正确角 B 已知两个锐角
C 已知斜边和一个锐角
D 已知两直角边
(目标1) 2 在Rt△ABC中,∠C=900,cosB=2/3,则 a:b:c=( )
A 2:√5:3 B 1:√2:√3 C 2:√5:√3 D 1:2:3
3 在Rt△ ABC中,CD为斜边AB上高,则以下线段比等于sinA是( )
B
A D
C 第5页
例4:海上有一座灯塔P,在它周围3海里内有暗 礁,一艘客轮以每小时9海里速度由西向东航行, 行至A处测得灯塔P在它北偏东60°,继续行驶20 分钟后,抵达B处,又测得灯塔P在它北偏东 45°,问客轮不改变方向,继续前进有没有触礁 危险?
解:过P点作PD垂直于AB,交AB延长线于D
解:过点A作AB垂直于MN,垂足为B点。
∵ PBA=90°, BPA=30°, PA=160米
∴AB=80米〈100米
∴受影响.
以A为圆心,100米为半径作圆弧,与
B
PN交于点C、D. 连接AC,AD。 ∵AC=100米,AB=80米
C
∴BC=60米 ∴CD=2BC =120米
MP
30° 160
∵v=18千米/小时=5米/秒
45°
A 设BE为x,列方程
C
.30° 45°
人教版数学九年级下册《 解直角三角形》PPT课件

∴ AB的长为
巩固练习
在Rt△ABC中,∠C=90°,sinA = 0.8 ,BC=8,则
AC的值为( B )
A.4
B.6
C.8
D.10
如图,在菱形ABCD中,AE⊥BC于点E,EC=4,
sin B 4 ,则菱形的周长是 ( C )
5
A.10
B.20
C.40
D.28
链接中考
如图,在△ABC中,BC=12,tan A 3 ,B=30°;求
已知一边及一锐角解直角三角形
例2 如图,在 Rt△ABC 中,∠C = 90°,∠B = 35°, b = 20,解这个直角三角形 (结果保留小数点后一位).
解:∠A 90 ∠B=90 35 =55 .
tan B b ,
a
c
a b 20 28.6.
tan B tan 35
B
35° a
sin B b,c b 20 34.9.
探究新知
A
在Rt△ABC中,
一角
(1)根据∠A= 60°,你能求出这个三角形
的其他元素吗?
不能
两角
C
B (2)根据∠A=60°,∠B=30°, 你能求出这个
你发现了
三角形的其他元素吗?
不能
一角
什么? (3)根据∠A= 60°,斜边AB=4,你能求出这个三角形的其 一边
他元素吗?
∠B
AC BC
两边
(4)根据 BC 2 3,AC= 2 , 你能求出这个三角形的
AC和AB的长.
4
解:如图作CH⊥AB于H.
在Rt△BCH中,∵BC=12,∠B=30°,
H
∴CH 1 BC 6 ,BH BC2 CH 2 6 3 ,
《解直角三角形》教学课件

利用正弦、余弦函数的定 义和勾股定理,可以分别 求出斜边c和另一直角边b 的长度。
sin60°=a/c,即√3/2=4/c b=√(c²-a²)=√(4.62²-
,解得c≈4.62。
4²)≈2.31。
本题主要考察了解直角三 角形中已知一边一角求其 他元素的方法,通过正弦 、余弦函数的定义和勾股 定理进行求解。在实际应 用中,还可以利用正切等 三角函数进行求解。
加强公式应用训练
通过大量的练习题,让学生熟练掌握解直角三角形的相关公式,并 能够正确应用。
提高计算准确性
鼓励学生进行反复练习,提高计算速度和准确性。同时,教师可以 提供一些计算技巧和方法,帮助学生更好地进行计算。
提高计算准确性和效率策略
使用科学计算器
鼓励学生使用科学计算器进行计算,以提高计算效率和准确性。
《解直角三角形》教 学课件
目录
• 直角三角形基本概念与性质 • 解直角三角形方法论述 • 典型例题分析与解答 • 学生常见错误及纠正方法 • 拓展延伸:三角函数在解直角三角形中应
用 • 总结回顾与课堂互动环节
01
直角三角形基本概念与性质
直角三角形的定义
01
有一个角为90度的三角形称为直 角三角形。
学生自我评价报告分享
学习成果展示
学生可以通过绘制思维导图、制作海报或写学习报告等方式 ,展示自己的学习成果,包括掌握的知识点、解题技巧和学 习心得等。
学习反思与改进
学生可以反思自己在学习过程中的不足和遇到的困难,提出 改进措施和学习计划,以便更好地掌握解直角三角形的相关 知识和技能。
教师点评及建议
典型例题三:综合应用问题
01
02
03
04
解直角三角形完整版PPT课件

余弦或正切函数计算得出。
已知一边和一角求另一边
02
在直角三角形中,已知一边长和一个锐角大小可以求出另一边
长,通过正弦、余弦或正切函数计算得出。
解直角三角形的实际应用
03
例如测量建筑物高度、计算航海距离等。
三角函数在实际问题中应用
测量问题
在测量问题中,可以利用三角函数计算高度、距离等未知量。例如,利用正切函数可以计算 山的高度或者河的宽度。
直角三角形重要定理
勾股定理
如上所述,勾股定理描述了直角三角 形三边之间的数量关系。
射影定理
相似三角形判定定理
若两个直角三角形的对应角相等,则 这两个直角三角形相似。根据此定理, 可以推导出一些重要的直角三角形性 质和定理。
射影定理涉及直角三角形中斜边上的 高与斜边及两直角边之间的数量关系。
02
三角函数在解直角三角形中应用
• 性质:正弦、余弦函数值域为[-1,1],正切函数值域为R;正弦、余弦函 数在第一象限为正,第二象限正弦为正、余弦为负,第三象限正弦、余 弦都为负,第四象限余弦为正、正弦为负;正切函数在第一、三象限为 正,第二、四象限为负。
利用三角函数求边长和角度
已知两边求角度
01
在直角三角形中,已知两边长可以求出锐角的大小,通过正弦、
注意单位换算和精确度
在求解过程中,要注意单位换算和精确度的控制,避免因单位或精 度问题导致答案错误。
拓展延伸:非直角三角形解法简介
锐角三角形和钝角三角形的解法
对于非直角三角形,可以通过作高线或利用三角函数等方法将其转化为直角三角形进行 求解。
三角形的边角关系和面积公式
了解三角形的边角关系和面积公式,有助于更好地理解和解决非直角三角形问题。
解直角三角形ppt课件

经济学中的复利计算
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
在经济学中,经常需要进行复利计算。虽然复利计算本身与解直角三角形没有直接关系, 但是可以通过构造类似直角三角形的数学模型并求解,得到复利计算的精确结果。
06
解直角三角形的拓展与延伸
斜三角形的解法探讨
斜三角形的定义与性质
斜三角形是指一个三角形中不包含直角的情况。其性质包 括三角形的内角和为180度,以及三边关系等。
工程问题中的解直角三角形
土木工程中的坡度计算
在土木工程中,经常需要计算坡度,即斜坡的倾斜程度。 通过构造直角三角形并求解,可以得到精确的坡度值。
机械工程中的力学分析
在机械工程中,经常需要对物体进行力学分析。通过构造 直角三角形并利用三角函数求解,可以得到物体受到的力 的大小和方向。
电气工程中的相位差计算
在电气工程中,经常需要计算两个交流信号之间的相位差 。通过构造直角三角形并求解,可以得到精确的相位差值 。
其他实际问题中的解直角三角形
航海问题中的航向和航程计算
在航海问题中,经常需要计算航向和航程。通过构造直角三角形并求解,可以得到精确的 航向和航程值。
物理学中的矢量合成与分解
在物理学中,经常需要对矢量进行合成与分解。通过构造直角三角形并利用三角函数求解 ,可以得到合成或分解后的矢量的大小和方向。
在直角三角形中,已知任意两边长,可以利用勾股定理求出 第三边长。
已知角度和一边求另一边
在直角三角形中,已知一个锐角和一条边长,可以利用三角 函数和勾股定理求出另一条边长。
勾股定理在实际问题中的应用
测量问题
在测量问题中,可以利用 勾股定理解决距离、高度 等测量问题。
工程问题
在工程问题中,可以利用 勾股定理解决角度、长度 等计算问题。
《解直角三角形》-完整版PPT课件

整理,得4t2-26t+39=0
解之,得
t1
13413,t2
13 13 4
∴台风抵达D港的时间为 1 3 1 3 小时.
B
∵轮船从A处用 1 3
≈25.5.
4
13
4
小时到达D港的速度为60÷
1
3413∴为台风抵达D港之前轮船到D港,轮船至少应提速6里/时.
例7 如图,公路MN和公路N上沿PN方向行驶时,学校是否会受 到噪声影响?请说明理由(2)如果受影响,已知拖拉机的速 度为18千米/时,那么学校受影响的时间为多少秒?
(1)切割法:把图形分成一个或几个直角三角形与 其 他特殊图形的组合;
(2)粘补法:此方法大都通过延长线段来实现
例1 要求tan30°的值,可构造如图所示的直角三角形进行
计算:作Rt△ABC,使∠C=90°,斜边AB=2,直角边AC=1,
那么BC= ,
3
∴tan30°= AC 1 3 BC 3 3
A
D
C
B
祝同学们学习进步! 再见!
∴C1D0=201208(02米)
学校受噪声影响的时间t=120米÷18千米/时= 时=1 24秒
150
小结:
1、将实际问题经提炼数学知识,建立数学模 型转化为数学问题 2、设法寻找或构造可解的直角三角形,尤其 是对于一些非直角三角形图形,必须添加 适当的辅助线,才能转化为直角三角形的 问题来解决
C FG
∵ sinB= ,AG AB
D E
AG=AB•sinB=415•sin37°=415 06=
A
37 °B
249 25cm,
即EF 25cm
答:球的直径约为25cm
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b2 A
c2
a2
可得
2bc
(1)若a²=b²+c²,则A为直角;
(2)若a²<b²+c²,则A为锐角;
(3)若a²>b²+c², 则A为钝角;
6、三角形面积:
S 1底 h 2
S 1absinC1acsinB1bcsinA
2
2
2
S
1、 A B C 中 , A 4 5 , C 3 0 , c 1 0 , 求 B , a , b . 解: B 1 8 0 A C 105
a
b
c
s i n A 2 R,s i n B 2 R,s i n C 2 R ,
a:b:c sinA: sinB:sinC.
正弦定理可解以下两种类型的三角形:
(1)已知两角一边; (2)已知两边及其中一边的对角.
4、余弦定理:
a2=b2+c2-2bccosA b2= c2+a2-2cacosB
解:由 a b ,
sin A sin B
得 sin B b s in A 6 3 sin 30 3
a
6
2
B = 60或120,
a
∵ 在 ABC中,ab
C b
∴ ∠A < ∠B
A
B
B
B = 60或 120都 成 立 ,
当 B = 6 0时 C 9 0, 当 B = 1 2 0时 C 3 0。
cos A= 1 ,
2
∴∠B 2 3 sin 45 3
b
22
2
A=60或 120,ca,0 A90,
∴∠A=60°.
此题用余弦定理解题不用对角讨论,用 正弦定理解需要对角进行讨论。
7. 在⊿ABC中,根据下列条件,求三角形的面积S
2ab
222
余弦定理的推论:
c2 =a2+ b2-2abcosC
cos A b2 c2 a2 2bc
cos B c2 a2 b2
可以解决的问题是 :
(1)已知三,边 求三个;角
cos C
2ca a2 b2 c2
(2)已知两边和它们的夹角 ,
2ab
求第三边和其它两个角 .
5.由a2=b2+c2-2bccosA,cos
根 据 正 弦 定 理 ,a c sinAsinC
a
c sinC
sinA
10 sin30
sin45
10
2
根 据 正 弦 定 理 ,b c sinBsinC
b c sinB 10
sinC
sin30
sin105
5
6+5
2
2、在 AB中C,已知 a6,b63,A30,求C。
2
6、在△ABC中,
已 知 a 2 3 ,c 6 2 ,B = 4 5 , 求 b 及 A 。
解 : 根 据 余 弦 定 理 , b 2 c2a22cacosB
(6 2 ) 2 ( 2 3 ) 2 2 (6 2 ) ( 2 3 ) c o s 4 5
c b sinC20 2,
S
1
sinB
bcsin A
12020
100 3100 2sin105
(cm2).
2
2
7. 在⊿ABC中,根据下列条件,求三角形的面积S
(3)已知三边的长分别为a=2cm,b=2cm,c=2 3 cm.
解 : 根 据 余 弦 定 理 的 推 论 , 得
cosCa2b2c2 2222(2 3)2 1,
3.已知b=8,c=3,A=60°,求a.
解: ∵a2= b2+c2-2bccosA,
=64+9-2×8×3cos60°=49
a=7
4 、 A B C 中 , b 6 , c 3 , B 4 5 , 解 三 角 形 。
解 : 根 据 正 弦 定 理 ,bc
sinBsinC
sinC sinBc sin 45
b
6
3 1 , C30或 150
2
∵b>c,三角形中,大边对大角, B C , C =30,
A 1 8 0 B C 1 0 5 ,
根 据 正 弦 定 理 ,a c sinAsinC
a c sinA 3 sin105 2 3 6 2
sinC
sin 30
4
3 2 6
2
5 、 A B C 中 , b 2 , c 3 , B 4 5 , 解 三 角 形 。
解 : 根 据 正 弦 定 理 ,bc sinBsinC
当 得 aC sin sC6 in0 bB时 ssi, inbnB AA c s7 22i5 n s42,i5n由 7 正 53 弦 2 3定 6 2理 2siC nb B6 0s或 ina12 A 0, 当 得 aC 1 si2 nb0 B时 s, in AA 2 1 225 s ,i n由 1 5正 弦 6定 2 理 2 s。inbBsinaA,
624312(12246)2 2
20431243 8 , b 2 2,
求A即可利用余弦定理,也可利用正弦定理。
方法一:余弦定理
cos A= b 2 c 2 a 2 (2 2)2( 6 2)2(2 3)2
2bc
22 2( 6 2)
a 2 3 ,c 6 2 ,B = 4 5 , b 2 2 ,
章解三角形
1、三角形的元素:
一般地,把三角形的三个角A,B,C和它的对边 a,b,c叫做三角形的元素。
2、解三角形: 已知三角形的几个元素求其他元素的过程叫做解 三角形。
3、正弦定理 :
a b c 2R sinA sinB sinC
a 2 R s i n A ,b 2 R s i n B ,c 2 R s i n C ,
(1)已知a=14cm,c=20 3 cm,B=120°; 解 : (1)应 用 S1casinB,得 S1 1 4 2 0 23 sin1 2 02 1 0 (cm 2)
(2)已知2 B=30°,C=45°,b=20cm;
解 : 根 据 正 弦 定 理 , b c , sinBsinC