【新高考】数学 强化训练--专题04 如何由数列前n项和Sn求数列通项an(含答案解析)
微专题数列之三由数列的前n 项和Sn求其通项公式

微专题数列之三由数列的前n 项和S n 求其通项公式一、备考基础——查清对于题目中给出n a 和n S 关系的,一定要注意公式1112n nn S n a S S n -=⎧=⎨-≥⎩的正用和逆用.已知S n 求a n ,常用的方法是利用a n =S n -S n -1(n ≥2),将已知等式转化为关于a n 的递推关系,再求数列的通项公式.要注意验证a 1是否满足a n .二、热点命题——悟通例1.已知数列{a n }的前n 项和S n =n 2-2n +2,则数列{a n }的通项公式为( )A .a n =2n -3B .a n =2n +3C .a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2D .a n =⎩⎪⎨⎪⎧1,n =1,2n +3,n ≥2[解析] 当n =1时,a 1=S 1=1-2+2=1;当n ≥2时,a n =S n -S n -1=(n 2-2n +2)-[(n -1)2-2(n -1)+2]=2n -3.又a 1=1不适合上式,所以数列{a n }的通项公式为a n =⎩⎪⎨⎪⎧1,n =1,2n -3,n ≥2.变式训练: 已知数列{a n }的前n 项和S n =n 2-9n ,第k (k ∈N *)项满足5<a k <8,则k =( )A.7B.6C.9D.8[解析] 当n =1时,a 1=S 1=1-9=-8;当n ≥2时,a n =S n -S n -1=(n 2-9n)-[(n -1)2-9(n -1)]=2n -10. 又a 1=-8适合上式,所以数列{a n }的通项公式为a n =2n -10.由第k 项满足5<a k <8,得5<2k -10<8,解得 152<k<9,又因为k ∈N *,所以k =8.例2.设数列{a n }的前n 项和是S n ,且a 1=12,S n =n 2a n ,n ∈N *.求数列{a n }的通项公式;解:(1)S n =n 2a n ,①当n ≥2时,S n -1=(n -1)2a n -1,②①-②,得a n =n 2a n -(n -1)2a n -1(n ≥2,n ∈N *),∴(n +1)a n =(n -1)a n -1(n ≥2,n ∈N *),即a n a n -1=n -1n +1(n ≥2,n ∈N *),∴a 1·a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=12×13×24×35×…×n -1n +1=1n (n +1),∴a n =1n (n +1),n ∈N *.例3.设数列{}n a 满足21*12333...3()3n n n a a a a n N -++++=∈,求n a例4.(2013山东)设等差数列的前项和为,且,(Ⅰ)求数列的通项公式 (Ⅱ)设数列满足,求的前项和解:(1)设等差数列{a n }的首项为a 1,公差为d. 由S 4=4S 2,a 2n =2a n +1得 ⎩⎪⎨⎪⎧4a 1+6d =8a 1+4d ,a 1+(2n -1)d =2a 1+2(n -1)d +1. 解得a 1=1,d =2.因此a n =2n -1,n ∈N *.(2)由已知b 1a 1+b 2a 2+…+b n a n =1-12n ,n ∈N *,当n =1时,b 1a 1=12;当n ≥2时,b n a n =1-12n -⎝⎛⎭⎫1-12n -1=12n .所以b n a n =12n ,n ∈N *.由(1)知a n =2n -1,n ∈N *,所以b n =2n -12n ,n ∈N *.又T n =12+322+523+…+2n -12n ,12T n =122+323+…+2n -32n +2n -12n +1, 两式相减得12T n =12+⎝⎛⎭⎫222+223+…+22n -2n -12n +1 =32-12n -1-2n -12n +1, 所以T n =3-2n +32n .三、迁移应用——练透1.若数列{a n }满足a 1+3a 2+5a 3+…+(2n -1)·a n =(n -1)·3n +1+3(n ∈N *),则数列{a n }的通项公式a n =________.[解析] 由a 1+3a 2+5a 3+…+(2n -3)·a n -1+(2n -1)·a n =(n -1)·3n +1+3,得a 1+3a 2+5a 3+…+(2n -3)·a n -1=(n -2)·3n +3,两式相减,得a n =3n .2.已知数列{a n }的前n 项和S n =3n 2-n2,n ∈N *.(1)求数列{a n }的通项公式;(2)证明:对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.解:(1)由S n =3n 2-n2,得a 1=S 1=1.当n ≥2时,a n =S n -S n -1=3n -2,a 1也符合上式,所以数列{a n }的通项公式为a n =3n -2.(2)证明:要使得a 1,a n ,a m 成等比数列,只需要a 2n =a 1·a m ,即(3n -2)2=1·(3m -2),即m =3n 2-4n +2. 而此时m ∈N *,且m >n ,所以对任意的n >1,都存在m ∈N *,使得a 1,a n ,a m 成等比数列.3.设数列{a n }的前n 项和为S n ,已知数列{S n }是首项和公比都是3的等比数列,则数列{a n }的通项公式a n =________________.解析:由已知可得S n =3n ,当n =1时,a 1=S 1=3;当n ≥2时,a n =S n -S n -1=3n -3n -1=2·3n -1.当n =1时,2·3n -1=2.所以a n =⎩⎪⎨⎪⎧3,n =1,2·3n -1,n ≥2.4.[2015·四川卷] 设数列{a n }(n =1,2,3,…)的前n 项和S n 满足S n =2a n -a 1,且a 1,a 2+1,a 3成等差数列.(1)求数列{a n }的通项公式;(2)设数列⎩⎨⎧⎭⎬⎫1a n 的前n 项和为T n ,求T n .解:(1)由已知S n =2a n -a 1,有a n =S n -S n -1=2a n -2a n -1(n ≥2), 即a n =2a n -1(n ≥2).从而a 2=2a 1,a 3=2a 2=4a 1.又因为a 1,a 2+1,a 3成等差数列,即a 1+a 3=2(a 2+1), 所以a 1+4a 1=2(2a 1+1),解得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列. 故a n =2n .(2)由(1)得1a n =12n ,所以T n =12+122+…+12n =121-12n 1-12=1-12n .5.[2015·浙江卷] 已知数列{a n }和{b n }满足a 1=2,b 1=1,a n +1=2a n (n ∈N *),b 1+12b 2+13b 3+…+1n b n =b n +1-1(n ∈N *).(1)求a n 与b n ;(2)记数列{a n b n }的前n 项和为T n ,求T n .解:(1)由a 1=2,a n +1=2a n ,得a n =2n (n ∈N *). 由题意知,当n =1时,b 1=b 2-1,故b 2=2.当n ≥2时,1nb n =b n +1-b n ,整理得b n +1n +1=b nn, 所以b n =n (n ∈N *). (2)由(1)知a n b n =n ·2n , 因此T n =2+2·22+3·23+…+n ·2n ,2T n =22+2·23+3·24+…+n ·2n +1,所以T n -2T n =2+22+23+…+2n -n ·2n +1,故T n =(n -1)2n +1+2(n ∈N *).6.[2015·湖北部分高中调研] 已知数列{a n }为等差数列,a 1=1,公差d >0,数列{b n }为等比数列,且a 2=b 1,a 6=b 2,a 18=b 3.(1)求数列{a n }和数列{b n }的通项公式;(2)设数列{c n }对任意正整数n 均有c 1b 1+c 2b 2+…+c n b n =12a 2n ,若m 为正整数,求所有满足不等式102<c 1+c 2+…+c m <103的m 的值.解:(1)由已知可知a 2,a 6,a 18成等比数列,∴a 26=a 2a 18,即(a 1+5d )2=(a 1+d )(a 1+17d ), 8d 2-8a 1d =0.∵d >0,a 1=1,∴a 1=d =1,∴a n =n .由b 1=2,b 2=6,b 3=18,{b n }为等比数列,得b n =2×3n -1.(2)∵c 1b 1+c 2b 2+…+c n b n =12n 2,∴当n =1时,c 1b 1=12,∴c 1=1.当n ≥2时,c 1b 1+…+c n -1b n -1=12(n -1)2,∴c n =(2n -1)·3n -1.易知当n =1时也满足c n =(2n -1)·3n -1,∴c n =(2n -1)·3n -1.又c n =(2n -1)·3n -1>0,c 1=1,c 1+c 2=10,c 1+c 2+c 3=55,c 1+c 2+c 3+c 4=244,c 1+c 2+c 3+c 4+c 5=973,c 1+c 2+c 3+c 4+c 5+c 6=3646,∴m =4或5. 7.[2015·广东湛江调研] 已知数列{a n }的前n 项和S n 满足S n =2a n +3n -12(n ∈N *). (1)试说明数列{a n -3}为等比数列,并求出数列{a n }的通项公式; (2)若b n =na n ,数列{b n }的前n 项和为T n ,求T n .解:(1)当n =1时,S 1=a 1=2a 1+3-12,∴a 1=9.当n >1时,S n -S n -1=a n =2a n +3n -12-2a n -1-3(n -1)+12=2a n -2a n -1+3,∴a n -3=2(a n -1-3),∴{a n -3}是以6为首项,2为公比的等比数列,∴a n -3=6×2n -1,∴a n =6×2n -1+3.(2)b n =na n =6n ×2n -1+3n ,∴T n =6×[1×20+2×21+3×22+…+(n -1)×2n -2+n ·2n -1]+3×(1+2+…+n ).令K n =1×20+2×21+3×22+…+(n -1)×2n -2+n ·2n -1,则2K n =1×21+2×22+3×23+…+(n -1)×2n -1+n ·2n ,两式相减得-K n =1×20+21+22+23+…+2n -1-n ·2n=1+2-2n -1×21-2-n ·2n =(1-n )·2n -1,∴K n =(n -1)·2n +1,∴T n =6(n -1)·2n +6+32(n 2+n ).。
2024年高考数学模拟试题含答案(一)

2024年高考数学模拟试题含答案(一)一、选择题(每题5分,共40分)1. 若函数f(x) = 2x - 1在区间(0,2)上是增函数,则实数a的取值范围是()A. a > 0B. a ≥ 1C. a ≤ 1D. a < 0【答案】C【解析】由题意知,f'(x) = 2 > 0,所以函数在区间(0,2)上是增函数。
又因为f(0) = -1,f(2) = 3,所以f(x)在区间(0,2)上的取值范围是(-1,3)。
要使得f(x)在区间(0,2)上是增函数,只需保证a ≤ 1。
2. 已知函数g(x) = x² - 2x + 1,则下列结论正确的是()A. 函数g(x)在区间(-∞,1)上是增函数B. 函数g(x)在区间(1,+∞)上是减函数C. 函数g(x)的对称轴为x = 1D. 函数g(x)的顶点坐标为(1,0)【答案】D【解析】函数g(x) = x² - 2x + 1 = (x - 1)²,所以函数的顶点坐标为(1,0),对称轴为x = 1。
根据二次函数的性质,当x > 1时,函数g(x)递增;当x < 1时,函数g(x)递减。
3. 已知数列{an}的前n项和为Sn,且满足Sn =2an - 1,则数列{an}的通项公式是()A. an = 2^n - 1B. an = 2^nC. an = 2^n + 1D. an = 2^(n-1)【答案】D【解析】由Sn = 2an - 1,得an = (Sn + 1) / 2。
当n = 1时,a1 = (S1 + 1) / 2 = 1。
当n ≥ 2时,an = (Sn + 1) / 2 = (2an - 1 + 1) / 2 = 2an-1。
所以数列{an}是首项为1,公比为2的等比数列,通项公式为an = 2^(n-1)。
4. 已知函数h(x) = |x - 2| - |x + 1|,则函数h(x)的图像是()A. 两条直线B. 两条射线C. 一个三角形D. 一个抛物线【答案】B【解析】函数h(x) = |x - 2| - |x + 1|表示数轴上点x到点2的距离减去点x到点-1的距离。
高考数学----数列通项公式与前n项和公式

数列通项与求和一、观察法(归纳猜想、根据周期规律) 二、根据递推关系求通项(一)累加法形如)2)((1≥=--n n f a a n n 或)(1n f a a n n +=-,且)(n f 不为常数,则求n a 可用累加法。
① 若)(n f 是关于n 的一次函数,累加后可转化为等差数列求和; ② 若)(n f 是关于n 的指数函数,累加后可转化为等比数列求和; ③ 若)(n f 是关于n 的分式函数,累加后可裂项求和。
(二)累乘法 形如)2)((1≥=-n n f a a n n或1)(-=n n a n f a ,且)(n f 不为常数,求n a 用累乘法。
(三)待定系数法形如0(,1≠+=+k b ka a n n ,其中a a =1)型 (1)若1=k 时,数列{n a }为等差数列; (2) 若0=b 时,数列{n a }为等比数列;(3) 若1≠k 且0≠b 时,数列{n a }为线性递推数列,其通项可通过待定系数法构造辅助数列来求。
方法如下:设)(1λλ+=++n n a k a ,比较系数得λ。
(四)倒数法 形如1+=+n n n ca a a d 型,取倒数变成1111+=+n n d a c a c的形式的方法叫倒数变换.取倒数后有两种类型:一是直接转化为等差数列;二是再借助于待定系数法去求解.(五)对数变换法 形如rnn pa a =+1)0,0(>>n a p这种类型一般是等式两边取对数后转化为q pa a n n +=+1,再利用待定系数法求解。
三、和n S 有关的求通项的方法已知数列}{n a 前n 项和n S ,则用公式⎩⎨⎧≥-==-2111n S S n S a n n n (注意:不能忘记讨论1=n )。
四、形如)(1n f a a n n =++型和)(1n f a a n n =⋅+型(一)形如)(1n f a a n n =++型 (1)若da a n n =++1(d 为常数),则数列{na }为“等和数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n 的函数(非常数)时,可通过构造转化为)(1n f a a n n =-+型,通过累加来求出通项;或用逐差法(两式相减)得)1()(11--=--+n f n f a a n n ,分奇偶项来分求通项.(二)形如)(1n f a a n n =⋅+型(1)若pa a n n =⋅+1(p 为常数),则数列{na }为“等积数列”,它是一个周期数列,周期为2,其通项分奇数项和偶数项来讨论;(2)若f(n)为n 的函数(非常数)时,可通过逐差法得)1(1-=⋅-n f a a n n ,两式相除后,分奇偶项来分求通项.一、公式法①等差数列前n 项和S n =____________=________________,推导方法:____________;②等比数列前n 项和S n =⎩⎪⎨⎪⎧,q =1, = ,q ≠1.推导方法:乘公比,错位相减法.③常见数列的前n 项和:a .1+2+3+…+n = ;b .2+4+6+…+2n = ;c .1+3+5+…+(2n -1)= ;)12)(1(6112++==∑=n n n k S nk n213)]1(21[+==∑=n n k S nk n二、倒序相加:如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如__________数列的前n 项和公式即是用此法推导的.三、错位相减:形如a n =b n ·c n ,其中一个是等差数列一个是等比数列四、分组求和:形如a n =b n +c n ,五、裂项(相消)法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,只剩有限项再求和.常见的裂项公式有:①1n (n +1)= ; ①1n (n +k )= ; ①1(2n -1)(2n +1)= ; ①1n +n +1= ; ①2211111()1211k k k k <=---+, 211111111(1)(1)1k k k k k k k k k-=<<=-++-- 一、求通项(一)、观察法(归纳猜想、根据周期规律)【例1】已知数列 0,71,0,51,0,31,0,1--试写出其一个通项公式:__________。
高考数学模拟试题与解析(数列)-普通用卷

数学强化训练(数列)1. 等比数列{a n }中,a 4,a 8是关于x 的方程x 2+10x +4=0的两个实根,则a 2a 6a 10=( )A. 8B. −8C. 4D. 8或−82. 已知等差数列{a n }{b n }的前n 项和分别为S n ,T n (n ∈N ∗)若S nT n=2n−1n+1则实数a 12b 6( ) A. 154B. 158C. 237D. 33. 定义数列{a n }的“项的倒数的n 倍和数”为T n =1a 1+2a 2+⋯+na n(n ∈N ∗),已知T n =n 22(n ∈N *),则数列{a n }是 ( )A. 单调递减的B. 单调递增的C. 先增后减的D. 先减后增的4. 已知数列{a n }中,a 1=2,a n =-1an−1(n ≥2),则a 2010等于 ( )A. −12B. 12C. 2D. −25. 数列{a n }满足a n +a n +1=(-1)n •n ,则数列{a n }的前20项的和为 ( )A. −100B. 100C. −110D. 110 6. 等比数列{a n }的各项均为正数,且a 5a 6+a 4a 7=18,则log 3a 1+log 3a 2+…+log 3a 10=( )A. 1+log 35B. 2+log 35C. 12D. 10 7. 设数列{a n }的前n 项和为S n ,若S n =2a n -2n +1(n ∈N +),则数列{a n }的通项公式为______. 8. 在数列{a n }中,若a 1=1,a n+1=2a n +3(n ∈N ∗),则数列的通项公式是______ . 9. 已知数列{a n }满足a n +2-2a n +1+a n =0,且a 4=π2,若函数f (x )=sin2x +2cos 2x2,记y n =f(a n ),则数列{y n }的前7项和为______.10. 已知数列{a n }的通项公式为a n =n +λn ,若{a n }为递增数列,则实数λ的取值 范围是________.11. 设{a n }是首项为a 1,公差为-1的等差数列,S n 为其前n 项和,若S 1,S 2,S 4成等比数列,则a 1的值为______.12. 已知数列a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公差为1的等差数列,则数列{a n }的通项公式a n =______.13. 已知数列{a n }的前n 项和为S n ,且S n =a n +n 2−1(n ∈N ∗). (Ⅰ)求数列{a n }的通项公式(Ⅱ)定义x =[x ]+<x >,其中[x ]为实数x 的整数部分,<x >为x 的小数部分, 且0≤<x ><1,记c n =<a n a n+1S n>,求数列{c n }的前n 项和T n .14.设数列{a n}满足:a1=1,a n+1=2a n+1.(1)证明:数列{a n}为等比数列,并求出数列{a n}的通项公式;(2)求数列{n•(a n+1)}的前n项和T n.15.已知n为正整数,数列{a n}满足a n>0,4(n+1)a n2-na n+12=0设数列{b n}满足b n=a n2t n}为等比数列;(2)若数列{b n}是等差数列,求实数t的值:(1)求证:数列{n√n(3)若数列{b n}是等差数列,前n项和为S n,对任意的n∈N*,均存在m∈N*,使得8a12S n-a14n2=16b m成立,求满足条件的所有整数a1的值.答案和解析1.【答案】B解:根据题意,等比数列{a n}中,有a4a8=a2a10=(a6)2,a4,a8是关于x的方程x2+10x+4=0的两个实根,则a4a8=4,a4+a8=-10,则a4<0,a8<0,则有a6=a4q2<0,即a6=-2,a2a6a10=(a6)3=-8;2.【答案】A解:由题意可设,,,(k≠0).则a12=S12-S11=288k-12k-242k+11k=45k.b6=T6-T5=36k+6k-25k-5k=12k.∴实数=.3.【答案】A解:当n=1时,,解得a1=2.当n≥2时,,所以,综上有,所以a1>a2>a3>…,即数列{a n}是单调递减的.(或用).4.【答案】A解:数列{a n}中,a1=2,a n=-(n≥2),则a2=-=-,a3=-=2,a4=-=-,a5=-=2,…,则数列{a n}为最小正周期为4的数列,则a2010=a4×502+2=a2=-,5.【答案】A解:∵数列{a n}满足,∴a2k-1+a2k=-(2k-1).则数列{a n}的前20项的和=-(1+3+……+19)=-=-100.6.【答案】D解:∵等比数列{a n}的各项均为正数,且a5a6+a4a7=18,∴a5a6=a4a7=9,∴log3a1+log3a2+…+log3a10=log3(a1×a2×…×a10)=log3(a5a6)5==10.7.【答案】a n=(n+1)•2n解:∵S n=2a n-2n+1(n∈N+),∴n=1时,a1=2a1-4,解得a1=4;n≥2时,a n=S n-S n-1=2a n-2n+1-,化为:a n-2a n=2n,∴=1,∴数列是等差数列,公差为1,首项为2.∴=2+(n-1)=n+1,∴a n=(n+1)•2n.8.【答案】a n=2n+1-3解:∵a n+1=2a n+3,两边同时加上3,得a n+1+3=2a n+6=2(a n+3)∴=2数列{a n+3}是一个等比数列,首项a1+3=4,公比为2故数列{a n+3}的通项公式是a n+3=4•2n-1=2n+1,∴a n=2n+1-3,9.【答案】7解:根据题意数列{a n}满足a n+2-2a n+1+a n=0则数列{a n}是等差数列,又由a4=,则a1+a7=a2+a6=a3+a5=2a4=π,函数f(x)=sin2x+2cos2=sin2x+cosx+1,f(a1)+f(a7)=sin2a1+cosa1+1+sin2a7+cosa7+1=sin2a1+cosa1+1+sin2(π-a1)+cos(π-a1)+1=2,同理可得:f(a2)+f(a6)=f(a3)+f(a5)=2,f(a4)=sinπ+cos+1=1,则数列{y n}的前7项和f(a1)+f(a2)+f(a3)+f(a4)+f(a5)+f(a6)+f(a7)=7;10.【答案】(-∞,2)解:∵数列{a n}的通项公式为a n=n+(n=1,2,3,…),数列{a n}是递增数列,∴a n+1-a n=(n+1)-n+=>0恒成立所以=∴当n=1时,有最小值2,即实数λ的取值范围是(-∞,2).11.【答案】-1解:由题意可得,a n=a1+(n-1)(-1)=a1+1-n,S n==2,再根据若S1,S2,S4成等比数列,可得=S1•S4,即=a1•(4a1-6),解得a1=-12.【答案】1n(n+1)解:因为a1,a2-a1,a3-a2,…,a n-a n-1,…是首项为1、2公差为1的等差数列,所以当n≥2时a n=a1+(a2-a1)+(a3-a2)+…+(a n-a n-1)=n+,又因为a1=1满足上式,所以,13.解:(Ⅰ)∵S n=a n+n2−1(n∈N∗),当n ≥2时,a n =S n −S n−1=a n +n 2−1−[a n−1+(n −1)2−1], 整理得:a n -1=2n -1,∴a n =2n +1; (Ⅱ)由(Ⅰ)知,S n =n 2+2n , ∴a n a n+1S n=(2n+1)(2n+3)n 2+2n =4n 2+8n+3n 2+2n=4+3n 2+2n .∴当n =1时,c 1=<4+1>=0,当n ≥2时,有0<3n 2+2n <1.∴c n =3n 2+2n =32(1n −1n+2)(n ≥2). ∴T n =c 1+c 2+…+c n=0+32(12−14+13−15+14−16+⋯+1n−1−1n+1+1n −1n+2) =32(12+13−1n+1−1n+2)=5n 2+3n−84n 2+12n+8.验证n =1成立,∴T n =5n 2+3n−84n 2+12n+8. 14.(1)证明:a 1=1,a n +1=2a n +1.可得:a n +1+1=2(a n +1).∴数列{a n +1}是等比数列,公比为2,首项为2.∴a n +1=2n ,可得a n =2n -1.(2)解:n •(a n +1)=n •2n .数列{n •(a n +1)}的前n 项和T n =2+2×22+3×23+…+n •2n , ∴2T n =22+2×23+…+(n -1)•2n +n •2n +1, ∴-T n =2+22+…+2n -n •2n +1=2(2n −1)2−1-n •2n +1=(1-n )•2n +1-2,故T n =(n -1)•2n +1+2.15.(1)证明:数列{a n }满足a n >0,4(n +1)a n 2-na n +12=0,∴2√n +1a n =√n a n +1,即n+1√n+1=2n √n ,∴数列{n√n }是以a 1为首项,以2为公比的等比数列.(2)解:由(1)可得:n √n =a 1×2n−1,∴a n 2=n a 12•4n -1.∵b n =a n 2tn,∴b 1=a 12t,b 2=a 22t2,b 3=a 32t3, ∵数列{b n }是等差数列,∴2×a 22t2=a 12t+a 32t3,∴2×2a 12×4t=a 12+3a 12×42t2, 化为:16t =t 2+48,解得t =12或4.(3)解:数列{b n }是等差数列,由(2)可得:t =12或4. ①t =12时,b n =na 12⋅4n−112n=na 124×3n,S n =n(a 1212+na 124×3n)2,∵对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 1212+na 124×3n )2-a 14n 2=16×ma 124×3m,∴a 12(n3+n 23n −n 2)=4m 3m ,n =1时,化为:-13a 12=4m3m >0,无解,舍去. ②t =4时,b n =na 12⋅4n−14n=na 124,S n =n(a 124+na 124)2,对任意的n ∈N *,均存在m ∈N *,使得8a 12S n -a 14n 2=16b m 成立,∴8a 12×n(a 124+na 124)2-a 14n 2=16×ma 124,∴n a 12=4m ,∴a 1=2√m n.∵a 1为正整数,∴√m n=12k ,k ∈N *.∴满足条件的所有整数a 1的值为{a 1|a 1=2√mn,n ∈N *,m ∈N *,且√m n=12k ,k ∈N *}.。
2024年高考数学高频考点(新高考通用)等差数列中Sn的最值问题(精讲+精练)解析版

【一轮复习讲义】2024年高考数学高频考点题型归纳与方法总结(新高考通用)素养拓展19等差数列中Sn 的最值问题(精讲+精练)一、等差数列的通项公式和前n 项和公式1.等差数列的通项公式如果等差数列{}n a 的首项为1a ,公差为d ,那么它的通项公式是1(1)=+-n a a n d .2.等差数列的前n 项和公式设等差数列{}n a 的公差为d ,其前n 项和11()(1)22+-=+=n n n a a n n S na d .注:数列{}n a 是等差数列⇔2=+n S An Bn (、A B 为常数).二、等差数列的前n 项和的最值1.公差0{}>⇔n d a 为递增等差数列,n S 有最小值;公差0{}<⇔n d a 为递减等差数列,n S 有最大值;公差0{}=⇔n d a 为常数列.2.在等差数列{}n a 中(1)若100,><a d ,则满足1+≥0⎧⎨≤0⎩m m a a 的项数m 使得n S 取得最大值m S ;(2)若100,<>a d ,则满足1+≤0⎧⎨≥0⎩m m a a 的项数m 使得n S 取得最小值m S .即若100>⎧⎨<⎩a d ,则n S 有最大值(所有正项或非负项之和);若100<⎧⎨>⎩a d ,则n S 有最小值(所有负项或非正项之和).【典例1】(2022·全国·统考高考真题)记n S 为数列{}n a 的前n 项和.已知221nn S n a n+=+.二、题型精讲精练一、知识点梳理又4a ,7a ,9a 成等比数列,所以2749a a a =⋅,即()()()2111638a a a +=+⋅+,解得112a =-,所以13n a n =-,即有1123210,0a a a a <<<<= .则当12n =或13n =时,()min 78n S =-.【整体点评】(2)法一:根据二次函数的性质求出n S 的最小值,适用于可以求出n S 的表达式;法二:根据邻项变号法求最值,计算量小,是该题的最优解.【题型训练-刷模拟】一、单选题若5,故②正确;当8n =或9n =时,n S 取得最大值,所以211k a b +-=或12,故选:B【点睛】关键点点睛:本题考查的是等差数列的前n 项和最大值问题,思路是不难,大,即确定数列是递减数列,判断前多少项为非负项即可,但关键点在于如何求得正负项分界的项,即求得90a =,100a <,所以这里的关键是利用()217e 1ln 21a bS a b --≤≤-+,构造函数()e 1x f x x =--,利用导数判断函数单调性,结合最值解决这一问题.二、多选题三、填空题1四、解答题32.(2023·全国·高三专题练习)设等差数列{}n a 的前n 项和为n S ,且1121526,a S S =-=.(1)求{}n a 的通项公式;(2)求n S ,并求n S 的最小值.【答案】(1)228n a n =-;(2)227n S n n =-,最小值为182-.【分析】(1)设等差数列{}n a 的公差为d ,根据等差数列前n 项和公式由1215S S =列出方程即可解出d ,从而可得数列{}n a 的通项公式;(2)根据二次函数的性质或者邻项变号法即可判断何时n S 取最小值,并根据等差数列前n 项和公式求出nS。
第75课--利用Sn与an的关系求数列的通项

第75课利用n S 与n a 的关系求数列的通项基本方法:已知数列前n 项和n S 和与第n 项n a 关系,求数列通项公式,常用11,1,2n nn S n a S S n -ì=ï=í-³ïî,将所给条件化为关于前n 项和的递推关系或是关于第n 项的递推关系.若满足等比数列或等差数列定义,用等比数列或等差数列通项公式求出数列的通项公式,否则适当变形构造等比或等数列求通项公式.一、典型例题1.设数列{}n a 的前n 项和为n S ,且12n n S a =-+,求数列{}n a 的通项公式.答案:12n n a -=解析:由已知,有12n n S a =-+,当1n =时,11112S a a ==-+,即11a =;当2n ³时,1122n n n n n a S S a a --=-=-,即12n n a a -=,∴数列{}n a 是首项为1,公比为2的等比数列,∴12n n a -=.2.已知数列{}n a 的前n 项的和为n S ,满足21a =,1631n n S a +=-.(1)求数列{}n a 的通项公式;(2)设2n n b a =,数列{}n b 的前n 项和与积分别为n R 与n T ,求n R 与n T .答案:(1)23n n a -=;(2)918n n R -=,n T =()13n n -.解析:(1)1631n n S a +=- ,1631n n S a -\=-()2n ³,两式相减得1633n n n a a a +=-()2n ³,13n n a a +\=()2n ³,所以当2n ³时,{}n a 是公比为3的等比数列,222(233)n n n a a n --=×=³;1n 时,由12631a a =-得113a =,满足上式,所以通项公式为23n n a -=.(2)221239n n n n b a --===,得11b =,公比为9,1991198n n n R --==-,1211231999n n n T b b b b -== ()()111212993n n n n n --+++-=== .二、课堂练习1.已知数列{}n a 的前n 项和为n S ,且满足12a =,1420(2,)n n S S nn *---=N ,求数列{}n a 的通项公式.答案:212n n a -=解析:当3n ³时,11242(42)0n n n n S S S S --------=,∴14n n a a -=,又∵12a =,∴2148a a ==,满足上式,所以数列{}n a 是首项为2,公比为4的等比数列,∴121242n n n a --=´=.2.若正项数列{}n a 的前n 项和为n S ,首项11a =,)1n PS +点在曲线()21y x =+上.求数列{}n a 的通项公式n a .答案:21n a n =-解析:由)211n S +=+1=,而1==,所以数列是以1为首项,1为公差的()11n =+-´,即2n S n =,由公式11,1 ,2n nn S n a S S n -ì=ï=í-³ïî,得1,1 21,2n n a n n ì=ï=í-³ïî,所以21n a n =-.三、课后作业1.设数列{}n a 的各项均为正数,且对任意的n *ÎN ,均有22n n n a S a =-,其中n S 为数列{}n a 的前n 项和,求数列{}n a 的通项公式.答案:n a n=解析:∵对任意的n *ÎN ,均有22n n n a S a =-,∴当1n =时,21112a a a =-,10a >,解得11a =;当2n ³时,22n n n a S a =-,21112n n n a S a ---=-,两式相减可得221112(2)n n n n n n a a S a S a ----=---,整理得11n n a a --=,∴数列{}n a 是首项为1,公差为1的等差数列,∴1(1)n a n n =+-=.2.数列{}n a 的前n 项和n S 满足12n n S a a =-,且123,1,a a a +成等差数列,求数列{}n a 的通项公式.答案:2nn a =解析:由题意,当2n ³时,1112n n S a a --=-,又因为12n n S a a =-,且1n n n a S S -=-,则12(2)n n a a n -=³,所以213212,24a a a a a ===,又123,1,a a a +成等差数列,则2312(1)a a a +=+,所以1112(21)4a a a +=+,解得12a =,所以数列{}n a 是以2为首项,2为公比的等比数列,所以1222n n n a -=´=.3.已知各项都是正数的数列{}n a 的前n 项和为n S ,且22n n n S a a =+,数列{}n b 满足112b =,12n n n nb b b a +=+.求数列{}n a ,{}n b 的通项公式.答案:n a n =,2n n nb =解析:22n n n S a a =+①,21112n n n S a a +++=+②,② ①得221112n n n n n a a a a a +++=-+-,即()()1110n n n n a a a a +++--=,因为{}n a 是正数数列,所以110n n a a +--=,即11n n a a +-=,所以{}n a 是等差数列,其中公差为1,在22n n n S a a =+中,令1n =,得11a =,所以n a n =;由12n n n n b b b +=+得1112n n b b +=×+,所以数列n b n 是等比数列,其中首项为12,公比为12,所以12n n b n =,所以2n n n b =.。
高中数学-数列求通项公式方法汇总及经典练习(含答案)

高中数学-数列求通项公式方法汇总及经典练习(含答案)1、定义法:直接求首项和公差或公比。
2、公式法:1 (1) (2)n n nn S n a S S n -=⎧=⎨-≥⎩两种用途(列举),结果要验证能否写成统一的式子.例、数列{}n a 的各项都为正数,且满足()()2*14nna S n N +=∈,求数列的通项公式.解一:由()()2*14nna S n N +=∈得()()()221114411n n n n n aS S a a +++=-=---化简得()()1120n n n n a a a a +++--=,因为10,2n n n a a a +>∴-=,又()2111441S a a ==-得11a =,故{}n a 是以1为首项,2为公差的等差数列,所以21n a n =-.解二:由()()2*14nn a S n N +=∈,可得()11,12n n n a S S n -=-∴=--≥化简可得)211n S -=,即1=,又11S =,所以数列是首项为1,公差为1的等差数列,∴n =,从而2n S n =,所以121n n n a S S n -=-=-,又11a =也适合,故21n a n =-.练习:已知数列{a n }的前n 项和S n 满足120n n n a S S -+=(2n ≥),a 1=21,求n a . 答案:a n =⎪⎪⎩⎪⎪⎨⎧≥--=)2()1(21)1(21n n n n .扩展一:作差法例、在数列}{n a 中,11a =,212323(1)n a a a na n n ++++=-+,求n a .解:由212323(1)n a a a na n n ++++=-+,得2123123(1)(2)1n a a a n a n n -++++-=-+-,两式相减,得66n na n =-+,∴ 1 (=1)66 (2)n n a n n n⎧⎪=-⎨≥⎪⎩.练习(理):已知数列{}n a 满足11231123(1)(2)n n a a a a a n a n -==++++-≥,,求n a .解:由123123(1)(2)n n a a a a n a n -=++++-≥,得1123123(1)n n n a a a a n a na +-=++++-+,两式相减,得1n n n a a na +-=,即11(2)n na n n a +=+≥,所以13222122![(1)43]2n n n n n a a a n a a n n a a a a a ---=⋅⋅⋅⋅=-⋅⋅⨯=又由已知,得2122a a a =+,则211a a ==,代入上式,得!13452n n a n =⋅⋅⋅⋅⋅=, 所以,{}n a 的通项公式为 1 (1)! (2)2n n a n n =⎧⎪=⎨≥⎪⎩.扩展二、作商法例、在数列}{n a 中,11a =,对所有的2n ≥,都有2123n a a a a n ••••=,求n a .解:∵2123n a a a a n ••••=,∴21232(1)n a a a a n -••••=-,故当2n ≥时,两式相除,得22(1)n n a n =-, ∴221 (=1) (2)(1)n n a n n n ⎧⎪=⎨≥⎪-⎩.3、 叠加法:对于型如)(1n f a a n n =-+类的通项公式.例、在数列{n a }中,31=a ,)1(11++=+n n a a n n ,求通项公式n a .答案:na n 14-=. 例、已知数列{}n a 满足112231n n n n a a ++=++-(*n N ∈),352a =,求通项n a .解:由112231n nn n aa ++=++-,两边同除以12n +,得()111131112222n n n n n n n a a n ++++-=-+≥,列出相加得121212121332323212212121-+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+-⎥⎥⎦⎤⎢⎢⎣⎡⎪⎭⎫ ⎝⎛++⎪⎭⎫ ⎝⎛+=---n a a n n n n又由已知求得16a =,∴()*231n n n n N a n ∈=•++.练习:已知数列}a {n 满足3a 132a a 1nn 1n =+⋅+=+,,求数列}a {n 的通项公式.答案:1n 32n 31332a n nn -+=++--⋅=.4、叠乘法:一般地,对于型如1+n a =f (n)·n a 的类型例(理)、已知数列{}n a 满足112(1)53nn n a n a a +=+⨯=,,求数列{}n a 的通项公式.解:因为112(1)53nn n a n a a +=+⨯=,,所以0n a ≠,则12(1)5n n na n a +=+,故13211221n n n n n a a a a a a a a a a ---=⋅⋅⋅⋅⋅121[2(11)5][2(21)5][2(11)5]3n n n n --=-+-++⨯⨯(1)1(1)(2)21122[(1)32]53325!n n n n n n n n n ---+-+++-=-⋅⋅⨯⨯⨯=⨯⨯⨯,所以数列{}n a 的通项公式为(1)12325!n n n n a n --=⨯⨯⨯.练习:在数列{a n }中,112a =,11(1n n n a a a n --=⋅+≥2),求n a . 答案:)1(1+=n n a n . 5、构造法:型如a n+1=pa n +f(n) (p 为常数且p ≠0, p ≠1)的数列(1)f(n)= q (q 为常数) 一般地,递推关系式a +1=pa n +q (p 、q 为常数,且p ≠0,p ≠1)等价与)1(11pqa p p q a n n --=--+,则{p q a n --1}为等比数列,从而可求n a .例、已知数列{}n a 满足112a =,132n n a a --=(2n ≥),求通项n a . 解:由132n n a a --=,得111(1)2n n a a --=--,又11210a -=≠,所以数列{1}n a -是首项为12,公比为12-的等比数列,∴11111(1)()1()22n nn a a -=---=+-. 练习:已知数列}{n a 的递推关系为121+=+n n a a ,且11=a ,求通项n a . 答案:12-=n na .(2) f(n)为等比数列,如f(n)= q n (q 为常数) ,两边同除以q n ,得111+=++nn n n qa p q a q ,令nn n a b q =,则可转化为b n+1=pb n +q 的形式求解.例、已知数列{a n }中,a 1=65,1111()32n n n a a ++=+,求通项n a . 解:由条件,得2 n+1a n+1=32(2 n a n )+1,令b n =2 n a n ,则b n+1=32b n +1,b n+1-3=32(b n -3) 易得 b n =3)32(341+--n ,即2 n a n =3)32(341+--n , ∴ a n =n n 2332+-. 练习、已知数列{}n a 满足1232n n n a a +=+⨯,12a =,求通项n a .答案:31()222nn a n =-.(3) f(n)为等差数列,如1n n a Aa Bn C +=++型递推式,可构造等比数列.(选学,注重记忆方法)例、已知数列{}n a 满足11=a ,11212n n a a n -=+-(2n ≥),求.解:令n n b a An B =++,则n n a b An B =--,∴11(1)n n a b A n B --=---,代入已知条件, 得11[(1)]212n n b An B b A n B n ---=---+-,即11111(2)(1)2222n n b b A n A B -=++++-,令202A +=,1022A B +-=,解得A=-4,B=6,所以112n n b b -=,且46n n b a n =-+, ∴{}n b 是以3为首项、以12为公比的等比数列,故132n n b -=,故13462n n a n -=+-. 点拨:通过引入一些尚待确定的系数,经过变形与比较,把问题转化成基本数列(等差或等比数列)求解. 练习:在数列{}a n 中,132a =,1263n n a a n --=-,求通项a n . 答案:a n nn -+=69912·().解:由1263n n a a n --=-,得111(63)22n n a a n -=+-,令11[(1)]2n n a An B a A n B -++=+-+,比较系数可得:A=-6,B=9,令n n b a An B =++,则有112n n b b -=,又1192b a A B ==++,∴{}n b 是首项为92,公比为12的等比数列,所以b n n =-92121(),故a n n n-+=69912·(). (4) f(n)为非等差数列,非等比数列法一、构造等差数列法例、在数列{}n a 中,1112(2)2()n n n n a a a n λλλ+*+==++-∈N ,,其中0λ>,求数列{}n a 的通项公式.解:由条件可得111221n nn nn n a a λλλλ+++⎛⎫⎛⎫-=-+ ⎪⎪⎝⎭⎝⎭,∴数列2n n n a λλ⎧⎫⎪⎪⎛⎫-⎨⎬ ⎪⎝⎭⎪⎪⎩⎭是首项为0,公差为1的等差数列,故21nnn a n λλ⎛⎫-=- ⎪⎝⎭,∴(1)2n n n a n λ=-+. 练习:在数列{a n }中,a na n a n n n n n 1132212==+++++,()()(),求通项a n 。
史上最全的数列通项公式的求法13种

最全的数列通项公式的求法数列是高考取的要点内容之一,每年的高考题都会观察到,小题一般较易,大题一般较难。
而作为给出数列的一种形式——通项公式,在求数列问题中特别重要。
本文给出了求数列通项公式的常用方法。
一、直接法依据数列的特点,使用作差法等直接写出通项公式。
二、公式法①利用等差数列或等比数列的定义求通项② 若 已 知 数 列 的 前 n项 和 S n 与 a n 的 关 系 , 求 数 列 a n的 通 项 a n 可 用 公 式a n S 1 n 1S nSn 1n 求解 .2(注意:求完后必定要考虑归并通项)( 1) n , n 1 .求数列 a n 的通项公式 .例 2.①已知数列 a n 的前 n 项和 S n 知足 S n 2a n②已知数列 a n 的前 n 项和 S n 知足 S nn2n 1,求数列 a n 的通项公式 .③ 已知等比数列 a n 的首项 a 1 1,公比 0 q 1,设数列 b n 的通项为 b na n 1 a n2,求数列b n 的通项公式。
③ 分析:由题意, b n 1 a n 2 a n 3 ,又 a n 是等比数列,公比为 q∴bn 1an 2an 3q ,故数列 b n 是等比数列, b 1 a 2 a 3a 1q a 1q 2 q(q 1) ,b na n 1 a n 2∴ b nq(q 1) q n 1 q n (q 1)三、概括猜想法假如给出了数列的前几项或能求出数列的前几项,我们能够依据前几项的规律,概括猜想出数列的通项公式,而后再用数学概括法证明之。
也能够猜想出规律,而后正面证明。
四、累加(乘)法关于形如 a n 1an f ( n) 型或形如 a n 1 f (n)a n 型的数列,我们能够依据递推公式,写出n取 1 到 n 时的全部的递推关系式,而后将它们分别相加(或相乘)即可获得通项公式。
例 4.若在数列 a n 中, a 1 3 , a n 1 a n n ,求通项 a n 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b1
6 , bn
Sn
1 an
4
n N*
.
(I)求数列an 的通项公式;
1 (Ⅱ)记数列
bn
的前 n 项和为 Tn ,来自明: Tn1 2.
16.(2020·福建省高三期末)记 Sn 为数列an 的前 n 项和.已知 an 0 , 6Sn an2 3an 4 .
(1)求an 的通项公式;
于( )
A. 2
B.0
C.2
D.4
5.(2020·河南省高三期末)已知数列an 满足 a1 4a2 7a3 3n 2 an 4n ,则
a2a3 a3a4 a21a22 ( )
5
A.
8
3
B.
4
二、填空题
C. 5 4
5
D.
2
6.(2020·山西省高三期末)已知数列 an 的前 n 项和为 Sn ,若 Sn 2 2n1 ,则 an ______.
31 A.
16
B. 31 2
1
C.
32
31
D.
32
3.(2020·全国高三专题练习)已知数列 an 的前 n 项和为 Sn ,若 3Sn 2an 3n ,则 a2018 ( )
A. 22018 1
B. 32018 6
C.
1 2
2018
7 2
D.
1 2018 3
10 3
4.(2020·海南省高三)已知数列 an 的前 n 项和为 Sn ,且 Sn1 Sn n2 25n n N * ,则 a12 a13 等
B. 32018 6
C.
1 2
2018
7 2
D.
1 2018 3
10 3
【答案】A
【解析】由题意可得: 3Sn 2an 3n,3Sn1 2an1 3n 1 , 两式作差可得: 3an1 2an1 2an 3 ,即 an1 2an 3 , an1 1 2 an 1 ,
结合 3S1 2a1 3 3a1 可得: a1 3, a1 1 2 ,
Sn am ,则称an 是“回归数列”.
(1)①前 n 项和为 Sn 2n 的数列an 是否是“回归数列”?并请说明理由;
②通项公式为 bn 2n 的数列bn 是否是“回归数列”?并请说明理由;
(2)设an 是等差数列,首项 a1 1,公差 d 0 ,若an 是“回归数列”,求 d 的值;
(2)设 bn
an2
a2 n 1
an an 1
,求数列
bn
的前 n 项和 Tn .
17.(2020·海南省高三)已知
Sn
是数列an 的前 n 项和,且
Sn
3 2
an1 .
(1)求an 的通项公式;
(2)设 bn
log3
an
1 log3 an1
,求数列
bn
的前 n 项和 Tn .
18.(2020·北京市十一学校高三月考)若对任意的正整数 n ,总存在正整数 m ,使得数列an 的前 n 项和
【新高考】数学 强化训练
专题 4 如何由数列前 n 项和 Sn 求数列通项公式 an
一、单选题
1.(2020·贵州省高三期末)设等比数列 的前 项和为 ,且
,则 ( )
A.
B.
C.
D.
2.(2020·陕西省西安中学高三期末)已知 Sn 为数列an 的前 n 项和, Sn 1 an ,则 S5 ( )
C.
D.
【答案】C
【解析】当 时,
;
当 时,
,解得
.
故选 C.
2.(2020·陕西省西安中学高三期末)已知 Sn 为数列an 的前 n 项和, Sn 1 an ,则 S5 ( )
31 A.
16
B. 31 2
【答案】D
【解析】
n
2
时,
SSnn11
an 1 an1
,
1
C.
32
31
D.
32
两式相减,整理得 2an an1 ,
(Ⅰ)证明:an 1 是等比数列;
(Ⅱ)求 a1 a3 a5 a2 n1 的值.
14.(2020·安徽省六安一中高三月考)已知数列
an
前
n
项和为
Sn
,
a1
2,
Sn1
Sn
(n
1)(
3 n
an
2)
.
(1)求数列an 的通项公式;
(2)求数列an 的前 n 项和 Sn .
15.(2020·山东省高三月考)已知数列an 的前 n 项和为 Sn ,且 Sn 2an a1 n N* ,数列bn 满足
S5 ______.
10.(2020·江苏省海安高级中学高三)设 Sn 为数列{an}的前 n 项和,若 Sn=nan﹣3n(n﹣1)(n∈N*),且 a2=11,则 S20 的值为_____.
11.(2020·河南省南阳中学高三月考)已知数列an 的前 n 项和为 Sn ,点 (n, Sn )(n N * ) 在函数
7.(2020·黑龙江省高考模拟)已知数列{an} 的前 n 项和 Sn 满足, Sn 3an 2 .数列{nan}的前 n 项和为 Tn ,
则满足Tn 100 的最小的 n 值为______.
8.(2020·湖南省长郡中学高三月考)已知数列 an 的前 n 项和为 Sn , a1 4, 4Sn a1 a2 an1 n 1 ,则 an ______. 9.(2020·广东省高三月考)设数列 an 的前 n 项和为 Sn .若 S2 4 ,an1 2Sn 1 ,n N * ,则 a1 ______;
y 2x2 x 的图像上,则数列 的通项公式为
.
12.(2020·全国高三专题练习)已知数列an 的前 n 项和为
Sn
,且满足 2Sn
an
1 3n
n N*
,
S2020 _______________.
三、解答题
13.(2020·山西省高三期末)已知数列an 的前 n 项和为 Sn ,满足 Sn 2an n n N* .
(3)是否对任意的等差数列an ,总存在两个“回归数列”bn 和cn ,使得 an bn cn n N 成立,
请给出你的结论,并说明理由.
专题 4 如何由数列前 n 项和 Sn 求数列通项公式 an
一、单选题
1.(2020·贵州省高三期末)设等比数列 的前 项和为 ,且
,则 ( )
A.
B.
∵ a1
1 2
,∴
an an1
1 2
,所以an 是首项为
1 2
,公比为
1 2
的等比数列,
∴ S5
1 2
1
1 2
5
1 1
31 32
,故选
D.
2
3.(2020·全国高三专题练习)已知数列 an 的前 n 项和为 Sn ,若 3Sn 2an 3n ,则 a2018 ( )
A. 22018 1