实验四 傅里叶变换(FT)及其性质
傅里叶变换性质傅里叶变换的性质证明

F ( ) R ( ) j X ( ) R () jX () F * ()
五.时移特性
若 f(t) F (),
则 f(t t0 ) F ()e j t0 ;
若 F ()F ()ej() 则 f ( t t 0 ) F () e j ( ) t 0
utF 直流 12
余下部 f2(t)分 u(t)1 21 2sgtn),( utj1
f2t微f分 2tt1, f2(t)j1
ut
f1 t
dut f1t
1
dt
1 2
1
o
t
o
t
o
t
2.频域微分性质
若 f(t) F (),则 t( t f ) jF d d
或 j t( t f ) d F d
显然
R ftc ostdt
X
fts
intdt
R R
关于 的奇函数
X X
F F
已 F f t 知 F
F f t F
证明
当 F 1 a 0 时 ,设 f(a a b b t)t e j x t,d 则 tt x b ,d t 1 d x
aa
F 1 f(x )e j axeja ba 1d xa1Faejab
2 E ej24 E 2 E e j2 j2 F 2 F
F 1 2 2 E e j 2 4 E 2 E e j 2
122 E ej2 2 e j2
2 E 2 e j 4 e j 4 2 2 E 2 2 jsi4 n 2
2
对压 所 2 : f缩 2 有 t 5 E S a e j 5 2
傅里叶变换及其性质

αt
1
单边指数函数e-αt; (b) e-αt
的幅度谱
o
(b)
F(j) f(t)ejtdt etejtdt
01 02 e(j)t (j)
01j
1
ja rcta n
ea
a22
其振幅频谱及相位频谱分
解
别为
F ( ) 1
2 2
( ) arctan
例 2.4-3 求图 2.43(a)所示 双边指数 函数的频 谱函数。
02 或
2
B
2(rad/s)
1
Bf
(Hz)
周期信号的能量是无限的,而其平均功率是有界的, 因而周期信号是功率信号。为了方便,往往将周期信 号在1Ω电阻上消耗的平均功率定义为周期信号的功率。 显然,对于周期信号f(t), 无论它是电压信号还是电
流信号,其平均功率均为 T
12 2
P f (t)dt 2.3.3 周期信号的功率T T2
( )
02
-
4
-
2
o
门函数; (b) 门函数的频谱;- 4(c)-幅2 度谱; (d) 相位谱
o 2 4
2 4
-
(c)
(d )
f
(t)
e at
0
f (t)
例 2.4-2 求指数函数f(t)
的1频 谱 函 数 。 e-t (>0)
o
t
(a)
t 0 ( 0)
t 0
图 2.4-2 单边指F(数)函数e-
性。
2.2 周期信号的连续时间傅里叶级数
f (t) Fnejnt
2.2.1 指数形式的傅里叶级数 n
满足Dirichlet条件的周期函数可以展成复指数形式的傅里叶级数:
傅里叶变换的性质课件

c n
1 T0
T0
2 T0
2
f ( t ) e j d0 t t d
c n
1 2
f ( t ) e j td td
F ( ) f ( t ) e j t d t
cn
1 2
F ( )d
(4―22) (4―23) (4―24) (4―25)
现将信号f(t)的傅里叶级数展开式重写如下
1sin2ft]
n
n1,3,5,
4.2 信号的频谱
4.2.1 信号频谱 上一节我们指出,信号可分解为傅里叶级数,即信号
可由系列复数指数函数加权之和构成。一般我们称这 里的复数指数函数ejnΩt为n次谐波,在该函数上所加的权 为谐波的振幅,nΩ为谐波的角频率,可以说所有的信号均 是由系列角频率不同的谐波叠加而成的(角频率可简称 为频率)。
0
t
(a)
F()
2
1
- 0
(b)
图4.8 双边指数信号及其频谱
例4―6 求单位直流信号的频谱。
解 幅度为1的单位直流信号可表示为
f(t)=1,-∞<t<∞
(4―44)
它可以看作是双边指数信号在α取极限趋近0时的 一个特例,即
1limetu(t), 0 0
[1]
[limet 0
u(t)]
lim[et
4.2.4 常见信号的频谱分析举例 例4―2求冲激信号δ(t)的频谱。 解 由频谱函数的定义式(4―28)有
F() (t)ejtdt 1
(t) 1
(4―34) (4―35)
(t)
(1)
0 (a)
F()
1
t
0
(b)
傅里叶变换:频谱搬移,尺度变化很难理解?其实就是FT的基本性质

傅⾥叶变换:频谱搬移,尺度变化很难理解?其实就是FT的基本性质【通信技术基础第7讲】班长说:对于傅⾥叶变换,它存在⼀些美妙的性质。
这些性质不管在考研还是后续的⼯作中,都是你快速做出反应的基础。
傅⾥叶变换“什么也不说,傅⾥叶变换公式需要我!”傅⾥叶的正反变换公式如下:再来⼀张海绵宝宝图开篇:图⽚来源:⽹络。
海绵宝宝啊......今天聊⼀聊4个傅⾥叶变换特性,这些性质有助于我们建⽴起信号分析的尺度与变换概念,多在脑海⾥⾯动态模拟这些性质,你会发现知识可以“脉动”起来!频域与时域对称特性傅⾥叶变化的对称特性,有助于我们快速的计算某些信号的傅⾥叶变换,快速的在脑海中模拟其频谱,从⽽能够果断的做出判断。
如果函数f(t)的频谱为F(w),那么函数F(t)的频谱为f(-w)的2pi倍数。
证明过程如下:对称性证明过程我们可以发现频域与时域存在美妙的对称关系,这不仅可以帮助我们做题,更告诉我们,时域与频域可以“随意切换”!对称性的切换线性特性所谓的线性特性,就是可叠加:其中ai为常数,n为正整数。
傅⾥叶变换的线性,也就是可以叠加的特性,利⽤傅⾥叶的公式很容易就证明了。
相加信号的频谱等于单个信号频谱之和。
讲到这⾥,班长想到了线性空间,正交向量等线性代数的相关知识,傅⾥叶级数就是把空间⾥的元素写成基的线性组合。
可以从另外的视⾓看待傅⾥叶变换。
这篇⽂章不再描述,后期我在与⼤家聊聊。
⾣矩阵尺度变换特性我们经常听说频谱的压缩与扩展,其实就是傅⾥叶变化的尺度变化特性。
我们也可以称之为分辨率的变化:如果函数f(t)的频谱为F(w),那么函数f(t)经过扩展或者压缩,其频谱为F(w)的压缩与扩展。
听起来很难,其实证明过程简单:尺度变化证明通过尺度变化,我们发现⼀个规律:时域的压缩,对应着频域的扩展;时域的扩展,对应着频域的压缩;这⼀条规律对于通信系统很重要。
有了这⼀条规律,我们掌握了频域的频谱压缩扩展技术频谱搬移技术没错,我们可以移动我们的频谱,就像在家搬动沙发⼀样。
傅里叶变换的性质

1 0 1
21 31
即:
T
t
1 e jn1t T n
再求这个级数的傅氏变换
F
1 T n
e
j
n1t
2
T
n
n1
1 n1
n
T t 的频谱函数如图2-25b所示。 F
1
1
0 1
21 31
单位周期冲激序列的傅氏变换仍为周期冲激序列。
9、奇、偶、虚、实性
f t为实函数时, F 的模与幅角、实部与虚部表示形式
-1
0
0
0
/2
0
0
0
/2
例2-5 求如图2.-18所示
f t 的 F 并作图。
f t
A
t
2
2
-A
解 令 f1t Ag t , f t f1tcos0t 0 2 /
图 2 .
F1 ASa / 2
3
4
则
F
1 2
F1
0
F1
0
A
2
S
a
0 2
Sa
0 2
其中 0 2 /
F1以及 F 如图2-19所示。
a a
特别地,当 a 1 时,得到 其频谱亦为原频谱的折叠,即
f t 的折叠函数 f t ,
f t F 。
尺度特性说明,信号在时域中压缩,频域中就扩展;反 之,信号在时域中扩展,在频域中就一定压缩;即信号 的脉宽与频宽成反比。一般来说时宽有限的信号,其频 宽无限,反之亦然。
可以理解为信号波形压缩(扩展)
为
F f te jtdt
f
t co std t
j
f tsin tdt
实验四-离散时间系统的频域分析(附思考题程序)

实验四 离散时间系统的频域分析1.实验目的(1)理解和加深傅里叶变换的概念及其性质。
(2)离散时间傅里叶变换(DTFT)的计算和基本性质。
(3)离散傅里叶变换(DFT)的计算和基本性质。
2.实验原理对离散时间信号进行频域分析, 首先要对其进行傅里叶变换, 通过得到的频谱函数进行分析。
离散时间傅里叶变换(DTFT, Discrete-time Fourier Transform)是傅立叶变换的一种。
它将以离散时间nT (其中 , T 为采样间隔)作为变量的函数(离散时间信号)f(nT)变换到连续的频域, 即产生这个离散时间信号的连续频谱 , 其频谱是连续周期的。
211200)()|()()DTFT kw N knTN N i iwT iwnT N n n F e f nT e f nT e 长度为N 的有限长信号x(n), 其N 点离散傅里叶变换为:10()[()]()kn N N n X k DFT x n x n W 。
X(k)的离散傅里叶逆变换为: 。
DTFT 是对任意序列的傅里叶分析, 它的频谱是一个连续函数;而DFT 是把有限长序列作为周期序列的一个周期, 对有限长序列的傅里叶分析, DFT 的特点是无论在时域还是频域都是有限长序列。
3.实验内容及其步骤(1)复习傅里叶变换的定义及其性质, 加深理解。
(2)熟悉离散时间傅里叶变换的概念及其性质。
参考一: 计算离散时间傅里叶变换, 并绘制图形。
已知有限长序列x(n)={1,2,3,4,5}。
n=-1:3;x=1:5;k=0:500;w=(pi/500)*k;X=x*(exp(-j*2*pi/500)).^(n'*k);magX=abs(X);angX=angle(X);realX=real(X);imagX=imag(X);subplot(2,2,1);plot(w/pi,magX);grid;xlabel('');ylabel('模值 ');title('模值部分');subplot(2,2,2);plot(w/pi,angX);grid;xlabel('pi 为单位');ylabel('弧度');title('相角部分');subplot(2,2,3);plot(w/pi,realX);grid;xlabel('');ylabel('实部');title('实部部分');subplot(2,2,4);plot(w/pi,imagX);grid;xlabel('pi为单位');ylabel('虚部');title('虚部部分');参考二: 计算离散时间傅里叶变换。
实验四 傅里叶变换(FT)及其性质
实验四傅里叶变换(FT)及其性质一、实验目的1、学会运用Matlab求连续时间信号的傅里叶2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质二、实验原理及实例分析(一)傅里叶变换的实现例1:用Matlab 符号运算求解法求单边指数信号)()(2t u e t f t-=的FT 。
例2:用Matlab 符号运算求解法求211)(ωω+=j F 的IFT 。
例3:用Matlab 命令绘出例1中单边指数数信号的频谱图。
例4:用Matlab命令求图示三角脉冲的FT,并画出其幅度谱。
例5:用Matlab数值计算法求例3的三角脉冲幅度频谱图。
(二)FT 的性质1、尺度变换例6:设矩形信号)5.0()5.0()(--+=t u t u t f ,利用Matlab 命令绘出该信号及其频谱图。
同时绘出)2()2/(t f t f 和的频谱图,并加以比较。
下面利用Matlab将常规矩形脉冲信号的频谱和其调制信号(课本例3-4信号)频谱进行比较。
Matlab源程序如下:傅里叶变换的其它性质可用类似的方法验证,希望大家课下练习。
三、实验内容[注意:(1)写代码时j i]1.11.22.12.23、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图。
4、已知门函数自身卷积为三角波信号,试用Matlab命令验证FT的时域卷积定理。
四、实验报告要求实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果图形)、实验思考等。
五、实验思考通过实验自己对课本知识有了更深的理解,也对MATLAB的功能有了进一步的认识,作为一种学习工具,MATLAB功能如此全面,更加激励我去探索开发期强大的功能。
Welcome !!! 欢迎您的下载,资料仅供参考!。
常见信号的傅里叶变换
实验二
连续非周期信号的傅里叶变换(FT)及其性质一、实验目的
在理论学习的基础上,通过本实验熟悉常见信号的傅里叶变换及掌握连续时间傅里叶变换的性质。
二、相关知识
常见信号的傅里叶变换和连续时间傅里叶变换(CTFT)的性质
1、常见连续时间非周期信号及其傅里叶变换列表如下:
在本实验中可以可以对以上信号采取以下常见运算,运算结果表达式列表如下:
三、思考问题
1、X(w)和C k在量纲上分别有什么区别?
2、C k和X(w)是否分别代表周期信号和非周期信号各频率分量的振幅?
3、如果对X(w)在频域进行抽样,即令X(w)用X(KW0)代替,那么在时域对信号会产生什么影响?。
实验四傅里叶变换(FT)及其性质
实验四傅里叶变换(FT)及其性质一、实验目的1学会运用Matlab求连续时间信号的傅里叶2、学会运用Matlab求连续时间信号的频谱图3、学会运用Matlab分析连续时间信号的傅里叶变换的性质二、实验原理及实例分析(一)傅里叶变换的实现在曲廊讨论的刑期信号中・当WW T *〒时•周期信号就鞘化为非闻期信号・当周期<吋・周期信号的各欢锻波幅度及谱线间編将JS近于尢勢小•但類谱的相时形状像持不变・这样*象来由许多谓鎖#!眦的曲期WT号MAttlK谱Ht会连咸用、够成卄周期们号前诠纹顶讲为r有效地分析ir庇期信号的稠¥ tv h •找门引人广忙w叶交换分折法.倩号川卄的傅卑叶更换宦义为FW 士F[/h)]= [ /<Oc **dx肾堀叶反变换定义为/(I) —F * F<(w) I = f Flcube*"血X」博里叶正反变换称为博里"I変换M■简记为/(D*^F<w)#倍号的1•星叶愛換主!8包括MATLAB将号运算和MATLAB散值分析两稈方ifc・ F 而分WlifflUJL探讨.同时•探讨r if续时純信号的極谐圈・L MATLAB 号运算求解隆MATLAB If号散学Ttl箱提供了祈援求解傅里叶变换峙博屢叶反愛换的函数fouritrt) ifouricrt >4Fmiri史t 变換的ifi句格式分为二种*(])F founcrC/) i它丘符号函数_/ W Fomrirr $换•默认屯冋話关「h的瞩数, (Z h)' F-fourieK/^h它返河碉数F £关十符号时象的歯数•血木是默认的心即r -F*v) /f j}<. z 血,(3) F^fouricK/.w^J,屋对按于禺的函数/进抒變换・返叫臥敢FMt英于卫的満fa "■散.即F(r) - "*dw-,反变换的洽句祐式di分为三种.(U f ikurUHF);r的Fourier 换•迪立变址默认为占默认返岡JtJtTi-的戚数.(2)f = ifourier(F*M):它返Wi隕数丿星M的肃数■而不是JK认的工*(-i J f ifuLLrk-rt F, a tT>) *是对关T '■■'的函数F进行变换*返hd Xi J "的rfi独j・伯幫汴审;的是” ifi数(outicri、及ifourtert )KF Gift'S Eft w”嚙进片足是的笛号变址或瘠罚号我达式・例1用Matlab符号运算求解法求单边指数信号f (t) =^'1化)的FT。
傅里叶变换性质证明
2.6 傅里叶变换的性质2.6.1线性若信号和的傅里叶变换分别为和,则对于任意的常数a和b,有将其推广,若,则其中为常数,n为正整数。
由傅里叶变换的定义式很容易证明线性性质.显然傅里叶变换也是一种线性运算,在第一章我们已经知道了,线性有两个含义:均匀性和叠加性。
均匀性表明,若信号乘以常数a,则信号的傅里叶变换也乘以相同的常数a,即叠加性表明,几个信号之和的傅里叶变换等于各个信号的傅里叶变换之和2.6.2 反褶与共轭性设f(t)的傅里叶变换为,下面我们来讨论信号反褶、共轭以及既反褶又共轭后,新信号的傅里叶变换。
(1)反褶f(-t)是f(t)的反褶,其傅里叶变换为(2)共轭(3)既反褶又共轭本性质还可利用前两条性质来证明:设g(t)=f(-t),h(t)=g*(t),则在上面三条性质的证明中,并没有特别指明f(t)是实函数还是复函数,因此,无论f(t)为实信号还是复信号,其傅里叶变换都满足下面三条性质2.6.3 奇偶虚实性已知f(t)的傅里叶变换为。
在一般情况下,是复函数,因此可以把它表示成模与相位或者实部与虚部两部分,即根据定义,上式还可以写成下面根据f(t)的虚实性来讨论F()的虚实性。
(1) f(t)为实函数对比式(2-33)与(2-34),由FT的唯一性可得(1.1)f(t)是实的偶函数,即f(t)=f(-t)X()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时X()=0,于是可见,若f(t)是实偶函数,则F()也是实偶函数,即左边反褶,右边共轭(1.2)f(t)是实的奇函数,即-f(t)=f(-t)R()的积分项是奇函数,而奇函数在对称区间内的积分为零,故这时R()=0,于是可见,若f(t)是实奇函数,则F()是虚奇函数,即左边反褶,右边共轭有了上面这两条性质,下面我们来看看一般实信号(即可能既不是偶信号,又不是奇信号,反正不清楚,或者说是没有必要关心信号的奇偶特性)的FT频谱特点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验四傅里叶变换(FT)及其性质
一、实验目的
1、学会运用Matlab求连续时间信号的傅里叶
2、学会运用Matlab求连续时间信号的频谱图
3、学会运用Matlab分析连续时间信号的傅里叶变换的性质
二、实验原理及实例分析
(一)傅里叶变换的实现
例1:用Matlab 符号运算求解法求单边指数信号
)()(2t u e t f t
-=的FT 。
例2:用Matlab 符号运算求解法求
211
)(ωω+=
j F 的IFT 。
例3:用Matlab 命令绘出例1中单边指数数信号的频谱图。
例4:用Matlab命令求图示三角脉冲的FT,并画出其幅度谱。
例5:用Matlab数值计算法求例3的三角脉冲幅度频谱图。
(二)FT 的性质
1、尺度变换
例6:设矩形信号)5.0()5.0()(--+=t u t u t f ,利用Matlab 命令绘出该信号及其频谱图。
同时绘出)2()2/(t f t f 和的频谱图,并加以比较。
下面利用Matlab将常规矩形脉冲信号的频谱和其调制信号(课本例3-4信号)频谱进行比较。
Matlab源程序如下:
傅里叶变换的其它性质可用类似的方法验证,希望大家课下练习。
三、实验内容
[注意:(1)写代码时j i]
1.1
1.2
2.1
2.2
3、分别利用Matlab符号运算求解法和数值计算法求下图所示信号的FT,并画出其频谱图。
4、已知门函数自身卷积为三角波信号,试用Matlab命令验证FT的时域卷积定理。
四、实验报告要求
实验名称、实验目的、实验原理、实验环境、实验内容(上述几部分代码及结果图形)、实验思考等。
五、实验思考
通过实验自己对课本知识有了更深的理解,也对MATLAB的功能有了进一步的认识,作为一种学习工具,MA TLAB功能如此全面,更加激励我去探索开发期强大的功能。