人教B版必修3高中数学3.2《古典概型》word教学案

合集下载

人教B版高中数学必修三《3.2.1 古典概型》_9

人教B版高中数学必修三《3.2.1 古典概型》_9

教学设计古典概型(第一课时)《古典概型》教学设计一、教材分析1、教材的地位和作用:本节课是高中数学必修3第三章概率的第二节古典概型的第一课时,是在学生学习了随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,他的引入避免了大量的重复试验,而且得到的是概率的准确值,学习它有利于理解概率的概念,有利于解释生活中的一些问题。

同时古典概型也是后面学习几何概型、条件概率的基础,因此在教材中有着承上启下的作用,在概率论中占有重要的地位。

2、教材的处理:结合教参与学生的学习能力,我将《古典概型》安排了2节课时。

本节课是第一课时。

为了激发学生的学习热情,实施趣味教学,我利用了实例引出古典概型的概念。

之后,再由浅入深,由低到高地设置了问题探究,逐步加深学生对古典概型计算公式的记忆和理解。

由此,我对教材的引入、例题、练习做了适当的补充和修改。

这给学生提供了学数学、用数学的机会,体现了新课程的理念。

3、教材的重点、难点教学重点:古典概型的概念及其概率计算公式的应用;教学难点:古典概型的概念及基本事件个数的判断.二、学情分析1、对象:本课时面对的学生是高二理科学生,已经具备了一定的归纳、猜想能力,但在数学的应用意识和能力方面尚需进一步培养.通过前面的学习,学生已经了解了概率的意义,掌握了概率的基本性质,知道了互斥事件和对立事件的概率加法公式,这三者形成了学生思维的“最近发展区”。

2、学情:学生经过一个多学期的高中生活,多数学生对数学学习有一定的兴趣,因此能够积极主动参与自主学习,合作探究,讨论交流,但由于学生各方面能力发展不够均衡,仍有小部分学生这方面能力需要加强。

3、心理:厌倦老师的单独说教,希望教师能创设便于他们进行思考探索的空间,给他们发表自己见解和表现才华的机会。

三、教学目标分析根据新课改理念,以教材为背景,设计本节课的教学目标如下:1、知识与技能目标:(1)理解并掌握古典概型的概念及其概率计算公式;(2)会用列举法计算一些随机事件所含的基本事件的个数。

高中数学人教B版必修3 3.2 教学设计 《古典概型》(人教)

高中数学人教B版必修3 3.2 教学设计 《古典概型》(人教)

《古典概型》◆教学目标【知识与能力目标】①结合一些具体实例,让学生理解并掌握古典概型的两个特征及其概率计算公式;②会用图表法、列举法和树状图法计算一些随机事件件所含的基本事件数及事件发生的概率。

【过程与方法能力目标】经历推导古典槪型的过程,使学生初步学会把一些实际问题转化为古典概型,体验由特殊到一般的数学思想方法。

【情感态度价值观目标】用具有现实意义的实例,激发学生的学习兴趣培养学生对各种不同的实际情况的分析、判断、探索,培养学生的应用能力。

渗透数形结合、分类讨论的思想方法。

◆教学重难点◆【教学重点】理解古典概型的含义及其概率的计算公式。

【教学难点】如何判断一个试验是否为古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

◆教学过程一、新课导入试验一、抛掷一枚均匀的硬币,试验的结果有__个,其中“正面朝上”的概率=___.出现“反面朝上”的概率=___.试验二、掷一粒均匀的骰子,试验结果有___ 个,其中出现“点数5”的概率=___.试验三、转8等份标记的转盘,试验结果有___个,出现“箭头指向4”的概率=___.引导学生填写答案,并提出问题:上述三个试验有什么特点?借助具体试验中的基本事件,发现它们的共同特征,概括出古典概型的定义。

师生活动:通过引导,使学生逐步归纳出它们间的共性。

归纳上述三个试验的特点:(1)有限性在一次试验中,可能出现的结果只有有限个,即只有有限个不同的基本事件。

(2)等可能性每个基本事件发生的可能性是均等的。

我们把具有这样两个特征的随机试验的数学模型称为古典概型。

三个实验都是古典槪型,因此从试验出发寻找出它们的共同点,进而得到古典概型的定义。

同时让同学自己探索培养了学生猜想、化归、观察比较、归纳问题的能力。

二、探究新知1.古典概型的定义:①试验中所有可能出现的基本事件只有有限个:(有限性)②每个基本事件出现的可能性相等。

(等可能性)我们将具有这两个特点的槪率模型为古典概率模型,简称为古典概型。

3.古典概型(通用)-人教B版必修三教案

3.古典概型(通用)-人教B版必修三教案

3.古典概型(通用)-人教B版必修三教案一、教学目标1.了解古典概型的定义和基本性质。

2.熟练掌握事件的概念和互斥事件、独立事件的概念。

3.能够应用古典概型的方法计算事件的概率。

二、教学内容1. 古典概型的定义和基本性质1.1 古典概型的定义古典概型指的是在同等条件下,每个基本事件发生的概率相等的概率模型。

通常用基本事件的总数和每个基本事件发生的概率来描述。

1.2 古典概型的基本性质•古典概型的基本事件满足互异性和等可能性。

•事件是基本事件的子集,事件发生的概率是包含这些基本事件的概率之和。

•所有基本事件的概率之和等于1。

2. 事件的概率2.1 事件的概率概率是指某件事发生的可能性大小或发生的频率。

事件的概率用P(A)表示,其中A是一个事件。

2.2 互斥事件的概率互斥事件指的是两个事件不能同时发生的事件。

如果事件A和事件B是互斥事件,那么P(A或B) = P(A) + P(B)。

2.3 独立事件的概率独立事件指的是两个事件之间没有相互影响的事件。

如果事件A和事件B是独立事件,那么P(A且B) = P(A) × P(B)。

3. 应用古典概型计算事件的概率3.1 应用古典概型计算事件的概率古典概型的计算方法是统计基本事件数目和每个基本事件发生的概率。

如果事件A包括n个基本事件,那么P(A) = n(A) / n。

3.2 理解概率的意义概率是事件发生的可能性大小,是用0到1之间的数值表示的。

概率越大,事件发生的可能性就越大。

三、教学方法本学习周期我们采用讲授教学法、课堂练习和小组合作学习法。

1.讲授教学法:通过理论课教学,让学生全面了解古典概型的定义、基本性质和具体应用方法。

2.课堂练习:在理论教学后,引导学生进行一些应用练习,巩固古典概型的理论知识。

3.小组合作学习法:组织学生分组,进行小组合作学习。

每个小组选择一个合适的实际问题,运用所学的知识,进行实际计算。

四、教学流程教学环节教师活动学生活动复习导入提问引导回答问题理论教学讲解理论记笔记知识点讲解详细讲解听讲理解课堂练习出题目回答问题实例分析分析实例讨论解决方法小组讨论和报告组织小组工作分享成果五、教学评估教学评估是指对教学过程进行评价和反馈,以判断教学效果和改进教学方法。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2 古典概型》

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2 古典概型》
丹东二中“红色先锋杯”课堂教学示范研讨活动
授课人
关丽红
授课单位
高一、2021
授课时间
课题
3.2.1 古典概型
课型
新授课
知识与技能:理解古典概型及其概率计算公式,会用列举法等计算

知识与技能
一些随机事件所含的基本事件数及事件发生的概率;
学 过程与方法 自主学习,合作交流,通过古典概型探究求实际问题概率的方法;
题,并进
取出的两件产品中恰有一件次品的概率
行归纳总

学生自主探究 例 3、在例 2 中,把“每次取出后不放回”这一条件换成“每
次取出后放回”,其余不变,求取出的两件中恰好有一件次
品的概率
变式提高,在原有基
础上改变条件,进一步 培养学生
加深理解,培养严谨的 思维发散
科学态度
能力,以
例 4(教材 P104)甲、乙两人做出拳游戏(锤子、剪刀、布)

情感、态度与

激情投入,体会概率思想,养成实事求是的科学态度
价值观
教学重点 古典概型及其概率计算公式
教学难点 古典概型的实际应用
教学方法
采用启发探究、观察、归纳、 抽象、概括、合作交流的教学方法
教学手段 多媒体辅助教学
教学内容
教师意图
学生 活动
一课前检测
课前检测
学生测试
写出下列试验的基本事件空间:
通过两道典型题 老师点评
①一先一后掷两枚硬币,观察正反面出现的情况;
回顾基本事件空间的
表示法
②从含有两件正品 a1, a2 和一件次品 b1 的 3 件产品中每次任
取 1 件,每次取出后不放回,连续取两次,观察结果

人教版高中必修3(B版)3.2.1古典概型教学设计

人教版高中必修3(B版)3.2.1古典概型教学设计

人教版高中必修3(B版)3.2.1古典概型教学设计一、教学目标1.了解概率基本概念和古典概型;2.掌握古典概型求解计算方法;3.能够运用古典概型求解实际问题。

二、教学重难点1.古典概型的概念和计算方法;2.古典概型在实际问题中的应用。

三、教学内容和教学步骤1. 古典概型(1)基本概念•概率的基本概念:假设在一定的条件下,某事件发生的可能性大小。

概率的大小介于0和1之间。

•古典概率:又叫正向概率,是指在理论条件已经确定的前提下,事件发生的可能性。

•古典概型:又叫等可能概型,是指每次试验中,所有基本事件发生的可能性相等。

(2)求解方法•古典概型求解方法:–等可能性原理;–分类统计法。

(3)应用•古典概型的应用场景:–筛子、扑克牌等游戏类问题;–球、盒、袋等装有物品的容器类问题;–排队问题等。

2. 教学步骤(1)引入知识通过教师提问,了解学生对概率的基本概念的掌握程度。

(2)讲解知识点讲解古典概型的基本概念、计算方法、以及应用场景。

(3)练习提供古典概型的练习题,让学生通过练习深入理解和掌握古典概型的概念和计算方法。

(4)拓展针对学生关注点和问题,提供拓展阅读材料,让学生更深入地了解古典概型的应用场景。

四、教学评价通过课堂小测验、作业、期中/期末考试等方式进行教学评价,以检验学生对古典概型的理解和掌握程度。

同时通过教师和学生的反馈,对教学进行评价和反思。

五、教学资源•人教版高中数学(B)教材;•练习题、复习资料;•古典概型案例分析;•录屏视频及参考资料。

人教B版高中数学必修3-3.2《3.2.1古典概型》参考教案1

人教B版高中数学必修3-3.2《3.2.1古典概型》参考教案1
[例题3]
掷红、蓝两颗骰子,事件A={红骰子的点数大于3},事点数大于3}发生的概率.
教师明晰:古典概型的情况下概率的一般加法公式.
设A,B是Ω中的两个事件.
P(A∪B)=P(A)+P(B)-P(A∩B),
特别地,当A∩B=时,P(A∪B)=P(A)+P(B).
四、教学方法
结合课标中“概率教学的核心问题是让学生了解随机现象与概率的意义”的要求,和教参中“概率教学需加强与现实生活的联系,以科学的态度评价身边的一些随机现象”的建议,“古典概型”第1课时的教学本着激发学生兴趣,层层深入,让学生自觉用数学的眼光观察生活,培养数学应用意识的想法,结合本节课的教学目标,进行古典概型的例题设计.
由于这个例子的基本事件是由甲乙两人出拳的结果构成,是一个二维的例子,于是为了数清基本事件的个数,可以将其列举出来,在这里介绍了“树状图”和“直角坐标系中的点”这两种常用的列举方法.
在解决问题的过程中,使学生发现“写出基本事件空间”、“列出随机事件的构成”是解题关键,这/maths/Lab/TWODICES.XLS
重点:古典概型的概念
难点:利用古典了很多教案作参考,了解到教学的重点和难点,确定课堂教现场放给学生观看,以加深印象。引导学生找出古典概深对古典概Tc0ODE2.html
一、问题情境
1.掷一颗骰子,观察出现的点数.这个试验的基本事件空间Ω={1,2,3,4,5,6}.它有6个基本事件.由于骰子的构造是均匀的,因而出现这6种结果的机会是均等的,均为.
2.一先一后掷两枚硬币,观察正反面出现的情况.这个试验的基本事件空间Ω={(正,正),(正,反),(反,正),(反,反)}.它有4个基本事件.因为每一枚硬币"出现正面"与"出现反面"的机会是均等的,所以可以近似地认为出现这4种结果的机会是均等的,均为.

人教版高中数学必修3《古典概型》教案

人教版高中数学必修3《古典概型》教案古典概型一、教材分析教材的地位和作用:本节课是高中数学必修3第三章概率的第二节,古典概型的第一课时。

本节课在教材中起着承前启后的作用。

古典概型的引入避免了大量的重复试验,而且得到的概率是精确值。

古典概型是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型为后续学习几何概型奠定了知识和方法基础,同时有助于理解概率的概念,有利于计算一些事件的概率,并解释生活中的一些概率问题。

二、学情分析认知分析:本节课是在学生学习了统计、随机事件的概率之后,几何概型之前,尚未学习排列组合的情况下学习的新知识。

学生已经了解了概率的基本性质,知道了互斥事件与对立事件的概率加法公式能力分析:我校学生基础比较薄弱,自学能力较差,对抽象的知识理解较困难。

作为高二的学生他们具备一定的观察、类比、分析、归纳能力,但对知识的理解和方法的掌握上存在一些问题。

情感分析:问卷调查显示,多数学生对概率的学习有一定的兴趣,但对抽象的定义和公式存在惧怕心理。

并且学生习惯了小组合作学习。

三、教学目标新课程强调获得知识的过程比知识本身更有价值。

新课标重视过程教学、情感教学。

根据新课程标准,结合学生心理发展的需求,制定以下三维教学目标:知识与技能目标:正确理解两个概念:基本事件与古典概型,掌握古典概型的概率计算公式。

过程与方法目标:创设情境,设计一些具有实际生活背景的问题,引导学生积极思考。

进一步发展学生的观察、类比、分析、归纳能力,让学生体会从特殊到一般的数学方法情感态度与价值观目标:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的兴趣和热情;感受数学的应用价值,并尝试用数学的视野去关注生活中的数学问题。

四、教学重难点及突破难点的关键教学重点:理解古典概型及其概率计算公式教学难点:如何正确运用古典概型的概率计算公式关键:通过实例,特别是举一些破坏古典概型两个特征的例子,以突破古典概型识别的难点。

《古典概型》教学设计

《古典概型》教学设计一、教材分析《古典概型》是高中数学人教B版必修3第三章概率的第二节内容,安排2课时教学内容,本节是第一课时。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,它与日常生活有很大的联系。

通过对古典概型的学习能够更有利于理解概率的概念,帮助解决生活中的一些实际问题,能够有效的激发学生的学习热情。

同时,它也起到承前启后的作用,能够为后续学习其他概率打下基础。

同时文章内容含有骰子及扑克等可用于赌博的工具,可借此向学生渗透赌博的危害性。

二、学情分析在第一节的学习中,学生通过学习已经了解了基本事件、概率的意义,并学习了互斥事件与对立时间的概率加法公式。

他们已具备一定的观察,分析,归纳能力,但由于学生的基础知识比较薄弱,所以对于知识的理解与运用并不理想,在解题中思维不够缜密,解题过程不够完整。

好在部分学生对数学学习仍然有一定的兴趣,且师生关系融洽,上课氛围良好,虽然对学习数学有畏难情绪,但仍能积极学习。

三、教学内容分析通过掷硬币观察哪面向上与掷骰子观察出现的点数两个试验,归纳古典概型的两个特征,得出古典概型的概念,并通过实例引出古典概型的概率公式。

通过日常生活中的实例对教学进行引导,更便于学生理解和接受。

然后通过典型实例加以引申,让学生能够把生活中的实际问题转化为古典概型并加以解答。

四、教学方法分析在教学中采用引导发现法,结合问题进行教学。

通过“提出问题—思考问题—解决问题”的教学过程,借助生活实例,引导学生进行观察、讨论、归纳、总结,进而得出古典概型的定义及概率公式。

通过实际问题的提出,激发学生的学习兴趣,调动学生的主体能动性,让学生参与到学习中来。

鼓励学生在学习中提出自己的困惑,培养学生发现问题、解决问题的能力。

并结合教学内容,对学生进行社会主义核心价值观教育与德育教育。

五、教学目标1.知识与技能目标:(1)正确理解古典概型的两大特点,会判断所给试验是否为古典概型。

(2)理解古典概型的概率计算公式,并会简单应用。

人教B版高中数学必修三《3.2.1 古典概型》_37

《古典概型》教学设计一、教材分析本节课是人教B版高中数学3(必修)第三章概率的第二节古典概型的第二课时,是在学习随机事件的概率和基本事件的概念之后,尚未学习排列组合的情况下教学的。

古典概型是一种特殊的数学模型,也是一种最基本的概率模型,在概率论中占有相当重要的地位。

学好古典概型可以为其它概率的学习奠定基础,同时有利于理解概率的概念,有利于计算一些事件的概率,有利于解释生活中的一些问题。

二、核心素养目标1.了解基本事件的特点,理解古典概型的定义及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率,培养学生逻辑推理和数学运算的核心素养。

2.通过学生自主观察分析试验让学生理解古典概型的特征;让学生观察骰子试验,归纳总结出古典概型的概率计算公式,体现了化归的重要思想,培养学生数学抽象、数据分析的核心素养。

3.让学生初步学会把一些实际问题转化成古典概型,能解释概率在实际问题中的意义,培养数学建模核心素养。

三、重点、难点重点:理解古典概型的概念及利用古典概型概率计算公式求解随机事件的概率。

难点:如何判断一个试验是否是古典概型,分清在一个古典概型中某随机事件包含的基本事件的个数和试验中基本事件的总数。

四、教学方法:探究法、讨论法、讲授法五、教学过程:(一)复习回顾:1、基本事件及特点;2、会用列举法列举基本事件.随堂练习1:从甲、乙、丙三个人中任选两人参加活动,有哪些基本事件?练习2:集合A={2,3},B={1,2,3},从集合A,B中任取一个数,有哪些基本事件?(二)情景引入:两个试验:(1)抛一枚质地均匀的硬币的试验;(2)掷一颗质地均匀的骰子的试验.问题:(1)它们的基本事件有哪些?(2))试验1和试验2有什么共同特点?(三)讲授新课:1.古典概型的概念经概括两个试验总结后得到:(1)试验中所有可能出现的基本事件只有有限个;(有限性)(2)每个基本事件出现的可能性相等。

(等可能性)我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

高中数学新人教版B版精品教案《人教版B高中数学必修3 3.2.1 古典概型》79

课堂教学教案我们将具有这两个特点的概率模型称为古典概率概型,简称古典概型。

问题:判断下列概型是否为古典概型(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗为什么?(2)略(见课件)(三)古典概型概率公式:例1 先后抛掷两颗骰子,求:(1)点数之和为5的概率;(2)出现两个4点的概率。

四、课堂练习1掷一颗骰子,则掷得奇数点的概率2盒中装有4个白球和5个黑球,从中任取一球,取得白球的概率3一枚硬币连掷三次,至少出现一次正面的概率为4掷两颗骰子,掷得点数相等的概率,掷得点数之和为7的概率。

概率问题在生活与学习问题中的应用:例1,例2课堂小测:1小明、小刚、小亮三人正在做游戏,现在要从他们三人中选出一人去帮助王奶奶干活,则小明被选中的概率,小明没被选中的概率。

2抛掷一枚均匀的骰子,它落地时,朝教师引导学生从古典概型的两个特点进行分析思考做答思考:在古典概型中,基本事件出现的概率是多少?随机事件出现的概率如何计算?掷一枚质地均匀的骰子的试验,可能出现几种不同的结果?如何计算“出现偶数点”的概率呢?教师提出问题,引导学生分析试验中“出现偶数点”这一事件的概率,先通过用概率加法公式求出随机事件的概率,再对比概率结果,发现其中的联系。

教师讲解例题,并根据例题得出求古典概型概率的步骤根据公式学生自主完成练习,并提问学生公布答案用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想培养学生掌握“理论的辨证思想检测所学,进一步强化对公式的记忆以问题的形式提问,加强记忆,巩固本节课的重点内容1将一个骰子先后抛掷2次,观察向上的点数问:⑴两数之和是3的倍数的结果有多少种?两数之和是3的倍数的概率是多少?⑵两数之和不低于10的结果有多少种?两数之和不低于10的的概率是多少?10分钟15分钟3分钟1分钟上的点数为6的概率。

朝上的点数为奇数的概率。

朝上的点数为0的概率,朝上的点数大于3的概率。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省古蔺县中学高中数学必修三:3.2古典概型
教学目标:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本事件数及事件发生的概率。

教学重点:通过实例,理解古典概型及其概率计算公式,会用列举法计算一些随机事件所含的基本
事件数及事件发生的概率。

教学过程:
1.古典概型是最简单的随机试验模型,也是很多概率计算的基础,而且有不少实际应用. 古典概型有两个特征:
(1)样本空间是有限的,
},,,{21n ωωω =Ω,其中i ω
, i=1, 2, …,n, 是基本事件. (2)各基本事件的出现是等可能的,即它们发生的概率相同.
很多实际问题符合或近似符合这两个条件,可以作为古典概型来看待. 在“等可能性”概念的基础上,很自然地引进如下的古典概率(classical probability)定义.
例2 一次投掷两颗骰子,求出现的点数之和为奇数的概率。

解法1 设 表示“出现点数之和为奇数”,用 记“第一颗骰子出现 点,第二颗骰子
出现 点”,6,...2,1,=j i 。

显然出现的36个基本事件组成等概样本空间,其中
包含的基本
事件个数为 ,故。

解法2 若把一次试验的所有可能结果取为:(奇,奇),(奇,偶),(偶,奇),(偶,
偶),则它们也组成等概样本空间。

基本事件总数 , 包含的基本事件个数 ,故。

解法3 若把一次试验的所有可能结果取为:{点数和为奇数},{点数和为偶数},也组成等概
样本空间,基本事件总数 , 所含基本事件数为1,故。

注 找出的基本事件组构成的样本空间,必须是等概的。

解法2中倘若解为:(两个奇),
(一奇一偶),(两个偶)当作基本事件组成样本空间,则得出 ,错的原因就是它不是
等概的。

例如 (两个奇)
,而 (一奇一偶) 。

本例又告诉我们,同一问题可取不同的样本空间解答。

相关文档
最新文档