七年级数学下册综合训练题

合集下载

北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题-含答案

北师大版数学七年级下册综合训练100题含答案(题型:单选、多选、填空、解答题)一、单选题1.如图,一条公路经过两次转弯后又回到原来的方向,如果第一次的拐角为140°,则第二次的拐角为()A.40°B.50°C.140°D.150°2.下列各组中的三条线段能组成三角形的是()A.3,4,8B.5,6,11C.4,5,9D.3,9,73.下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4.如图,直线DE经过点A,DE∥BC,∥B=45°,∥1=65°,则∥2=()A.65°B.70°C.75°D.80°5.下列计算正确的是()A.(a2)3=a5B.a2a3=a6C.a6÷a3=a3D.a2+a3=a5 6.下面不是轴对称图形的是()A.B.C.D .7.下列说法中是真命题的有( )∥一条直线的平行线只有一条.∥过一点与已知直线平行的直线只有一条.∥因为a∥b ,c∥b ,所以a∥c .∥经过直线外一点有且只有一条直线与已知直线平行.A .1个B .2个C .3个D .4个 8.下列计算中 , 正确的是 ( )A .()2236a a =B .()4312a a =C .2510a a x =D .632a a a ÷= 9.下列说法正确的是( )A .“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是随机事件B .“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件C .在一次抽奖活动中,“中奖的概率是”表示抽奖100次就一定会中奖D .“抛掷一枚硬币,硬币落地时正面朝上”是确定事件10.若23a =,25b =,215c =,则( )A .a b c +=B .1a b c ++=C .2a b c +=D .22a b c += 11.如图,AC BC ⊥,直线EF 经过点C ,若134∠=︒,则2∠的大小为( )A .56°B .66°C .54°D .46° 12.能把一个任意三角形分成面积相等的两部分是( )A .角平分线B .中线C .高D .A 、B 、C 都可以13.计算:⋅2a a 的结果是( )A .3aB .2aC .aD .22a 14.计算a 3•a 2的结果是( )A .a 5B .a 6C .a 3+a 2D .3a 215.一次数学活动中,检验两条纸带∥、∥的边线是否平行,小明和小丽采用两种不同的方法:小明对纸带∥沿AB折叠,量得∥1=∥2=50°;小丽对纸带∥沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A.纸带∥的边线平行,纸带∥的边线不平行B.纸带∥、∥的边线都平行C.纸带∥的边线不平行,纸带∥的边线平行D.纸带∥、∥的边线都不平行16.下列运算正确的是()A.a4+a2=a6B.(﹣2a2)3=﹣6a8C.6a﹣a=5D.a2•a3=a517.如图,在长a,宽b的一个长方形的场地的两边修一条公路,若公路宽为x则余下阴影部分的面积是A.2ab ax bx x--+B.2ab ax bx x---C.22ab ax bx x--+D.22ab ax bx x---18.新型冠状病毒的直径约为1mm8000,将18000用科学记数法表示为10na⨯的形式,下列说法正确的是()A.a,n都是负数B.a是正数,n是负数C.a,n都是正数D.a是负数,n是正数19.如图,AD是∥ABC的中线,E,F分别是AD和AD延长线上的点,且DE=DF,连结BF,CE.下列说法:∥∥ABD和∥ACD面积相等;∥∥BAD=∥CAD;∥∥BDF∥∥CDE;∥BF∥CE;∥CE=AE.其中正确的有()A .1个B .2个C .3个D .4个 20.如图,DC EF AB ∥∥,EH DB ∥,则图中与∥AHE 相等的角有( )A .3个B .4个C .5个D .6个 21.下列计算正确的是( )A .9a 3·2a 2=18a 5B .2x 5·3x 4=5x 9C .3 x 3·4x 3=12x 3D .3y 3·5y 3=15y 9 22.下列运算中,计算结果正确的是( )A .a 2•a 3=a 6B .(a 2)3=a 5C .a 2y 3÷y =a 2y 2D .(a 2b )2=a 2b 223.若1,2a b ab -==-,则()()22a b +-的值为( )A .8B .8-C .4D .4- 24.如图,已知CD =CA ,∥D =∥A ,添加下列条件中的( )仍不能证明∥ABC ∥∥DEC .A .∥DEC =∥B B .∥ACD =∥BCEC .CE =CBD .DE =AB 25.下列计算正确的是( )A .448a a a +=B .428a a a ⋅=C .()325a a =D .()2326ab a b = 26.下列运算正确的是( ).A .6a ÷2a =3aB .22532a a a -=C .235()a a a -⋅=D .527a b ab +=27.如图,E ,F 是四边形ABCD 的对角线BD 上的两点,AE ∥CF ,AB ∥CD ,BE =DF ,则下列结论:∥AE =CF ,∥AD =BC ,∥AD ∥BC ,∥∥BCF =∥DAE ,其中正确的个数为( )A .1个B .2个C .3个D .4个 28.1001010.254-⨯计算结果正确的是( ).A .1-B .1C .4D .4- 29.下列运算中,正确的是( )A .6530a a a =B .1836a a a ÷=C .22(2)4a a =D .336+a a a = 30.如图,在∥ABC 和∥DEF 中,给出以下六个条件中,以其中三个作为已知条件,不能判断∥ABC 和∥DEF 全等的是( ) ∥AB=DE ;∥BC=EF ;∥AC=DF ;∥∥A=∥D ;∥∥B=∥E ;∥∥C=∥F ;A .∥∥∥B .∥∥∥C .∥∥∥D .∥∥∥二、多选题31.下列说法正确的是( )A .过任意一点可作已知直线的一条平行线B .同一平面内两条不相交的直线是平行线C .在同一平面内,过直线外一点只能画一条直线与已知直线垂直D .平行于同一直线的两直线平行32.如图,1=2∠∠,=BC EF ,要添加一个条件使ABC DEF ≌△△.添加的条件可以是( )A .B E ∠=∠ B .A D ∠=∠C .AB ED = D .AB ED ∥ 33.以下列数字为长度的各组线段中,能构成三角形的有( )A .1,2,3B .2,3,4C .3,4,5D .4,5,6 34.下列说法中,不正确的是( )A .相等的两个角是直角B .一个角的补角一定是钝角C .若∥1+∥2+∥3=180°,则它们互补D .一个角的余角一定是锐角35.如图,下列结论中正确的是( ).A .∥1与∥2是同旁内角B .∥5与∥6是同旁内角C .∥1与∥4是内错角D .∥3与∥5是同位角36.在自习课上,小红为了检测同学们的学习效果,提出如下四种说法,其中错误的说法是( )A .三角形有且只有一条中线B .三角形的高一定在三角形内部C .三角形的两边之差大于第三边D .三角形按边分类可分为等腰三角形和不等边三角形37.下列运算错误的是( )A .()222436xy x y =B .22124x x -= C .725()()x x x -÷-=- D .()223632xy xy xy ÷=38.(多选)已知22(1)36x k x +-+是一个完全平方式,则k 的值为( ) A .7- B .5- C .5D .739.下列生活中的做法与其背后的数学原理对应正确的是( )A .砌墙时,在两端钉钉子,沿中间的拉线砌墙(两点确定一条直线)B .在景区两景点之间设计“曲桥”(垂线段最短)C .工人师傅砌门时,常用一根木条固定长方形门框(三角形具有稳定性)D .车轱辘设计为圆形(圆上的点到圆心的距离相等)40.下列说法中正确的是( )A .两个三角形关于某直线对称,那么这两个三角形全等B .两个图形关于某直线对称,且对应线段相交,则交点必在对称轴上C .两个图形关于某直线对称,对应点的连线不一定垂直对称轴D .若直线l 同时垂直平分','AA BB ,那么线段''AB A B =41.下列计算正确的是( )A .21211()24xy xy xy -⎛⎫⋅= ⎪⎝⎭B .22(23)(23)23a b a b a b +⋅-=-C .422()a a a --÷=-D .32ab ab ab -=42.已知α∠和∠β互余,给出下列表示∠β的补角的式子,其中正确的有( ) A .180β︒-∠ B .90α︒+∠ C .2αβ∠+∠ D .2βα∠+∠ 43.下列每组中的两个图形,不是全等图形的是 ( )A .B .C .D .44.如图,已知CD AB ⊥于点D ,现有四个条件:∥AD ED =;∥A BED ∠=∠;∥C B ∠=∠;∥CD BD =.那么能得出ADC EDB ≌的条件是( )A.∥∥B.∥∥C.∥∥D.∥∥45.代数式2(1)1--+能配成完全平方式,则k的值不可能是()x k xA.2或1B.2-或1-C.3或1-D.1-或3-46.如图,等腰三角形ABC中,AB=AC,D、E都在BC上,要使△ABD∥∥ACE,添加一个条件可行的是()A.AD=AE B.BD=CE C.BE=CD D.∥BAD=∥CAE 47.如图所示,l是四边形ABCD的对称轴,AD∥BC,现给出下列结论,其中正确的有()A.AB∥CD;B.AB=BC;C.AB∥BC;D.AO=OC 48.在△ABC和△AˊB′C′中,已知∥A=∥A′,AB=A′B′,下面判断中正确的是()A.若添加条件AC=A′C′,则△ABC∥∥A′B′C′B.若添加条件BC=B′C′,则△ABC∥∥A′B′C′C.若添加条件∥B=∥B′,则△ABC∥∥A′B′C′D.若添加条件∥C=∥C′,则△ABC∥∥A′B′C′49.如图,AD 是ABC 的中线,E 、F 分别是AD 和AD 延长线上的点,且DE DF =,连接BF 、CE ,下列说法正确的有( )A .BAD CAD ∠=∠B .ABD △和ACD 的面积相等C .BDF CDE ∆∆≌D .BF CE三、填空题50.已知三角形的三边长分别为3,8,x ,若x 为偶数,则x=_____________________.51.计算:x 6÷x 3=_________.52.如图,AB∥CD ,∥B+∥2=160°,则∥1= _______53.口袋里有大小相同的8个红球、4个白球和4个黄球,从中任意摸出1个球,摸出红球的可能性是____.54.如果直线a//b ,且直线c a ⊥,则直线c 与b 的位置关系_______ (“平行”或“垂直”) 55.两条直线互相垂直时,所得的四个角中有__________个直角.56.已知:如图,C 为BD 上一点,AB AD =.只需添加一个条件则可证明ABC ADC △≌△.这个条件可以是_____.(写出一个即可).57.已知6732α'∠=︒,则α∠的的补角等于__________.58.如图,直线AB ,CD 交于点O ,OE 平分BOC ∠,123∠=︒,则AOD ∠=_________︒.59.已知一张纸的厚度大约为0.0089cm ,这个数用科学记数法表示为______cm . 60.已知ab 2=﹣1,则(﹣ab )(a 2b 5﹣ab 3﹣b )的值为 ___.61.已知3m a =,9n a =,则2m n a +的值为______.62.如图,35A ∠=︒,65C '∠=︒,ABC 与A B C '''关于直线l 对称,则∥B=______.63.若三角形两条边的长分别是3、7,第三条边的长是整数,则第三条边长的最大值是________.64.如图,某海域有三个小岛A ,B ,O ,在小岛O 处观测到小岛A 在它北偏东62°的方向上,观测到小岛B 在它南偏东38°的方向上,则∥AOB 的余角的度数是_____.65.若7a b -=,12ab =-,则22a b += ______ .66.202020198(0.125)⨯-=______67.某商场举办有奖销售活动,每张奖券被抽中的可能性相同.若以每1000张奖券为一个开奖单位,设5个一等奖,15个二等奖,不设其他奖项,则只抽1张奖券恰好中奖的概率是_____.68.如图,AD ,BE ,CF 是△ABC 的三条中线,则AB=2__________,BD=__________,AE= 12__________.69.如图所示,直线PQ∥MN ,C 是MN 上一点,CE 交PQ 于A ,CF 交PQ 于B ,且∥ECF =90°,如果∥FBQ =50°,则∥ECM 的度数为__________;70.如图为6个边长相等的正方形的组合图形,则123-+=∠∠∠__.71.边长为3,x ,5的三条线段首尾顺次相接组成三角形,则x 的取值范围是 _______;若x 为整数,则组成三角形的周长的最大值是 ____________.72.将 0.000103 用科学记数法表示为___________.73.如图,在△ABC 中,AC =6,BC =8,若AC ,BC 边上的中线BE ,AD 垂直相交于O 点,则AB =_____.74.因式分解:281n -=__________________.75.计算:2(615)3x xy x -÷=_________.76.已知多项式(mx+5)(1﹣2x )展开后不含x 的一次项,则m 的值是________ . 77.若16=p a ,38a =,则3-p a 的值为______.78.如图,AD 是∥ABC 的中线,AB =8 cm ,∥ABD 与∥ACD 的周长差为2 cm ,则AC =________cm.79.已知//AB CD ,点M 、N 分别为AB 、CD 上的点,点E 、F 、G 为AB 、CD 内部的点,连接FM 、FN 、EM 、EN 、CM 、GN ,ME NE ⊥于E ,35BMF BME ∠=∠,35DNF DNE ∠=∠,MG 平分AMF ∠,NG 平分CNF ∠,则MGN ∠(小于平角)的度数为______.四、解答题80.如图,∥1=∥2,∥3=100°,求∥4的度数.81.先化简再求值:2(1)(1)(1)x x x +---,其中x =1.82.阅读材料并解答问题:七年级第一学期课本中有这样一个思考题:“你能根据图1中的图形来说明完全平方公式吗?”说明如下:图1中的面积可以表示为2()a b +;图1中的面积又可以表示为222a ab b ++;所以这个图形说明了完全平方公式222()2a b a ab b +=++除了完全平方公式可以用图形的面积来表示,实际上还有一些代数恒等式也可以用这种形式表示.(1)请写出图2所表示的代数恒等式:__________________________________; (2)请画一个图形,使它的面积能表示22(3)()34a b a b a ab b ++=++.83.先化简,再求值:22(2)()(3)52x y x y x y y x ⎡⎤+-+--÷⎣⎦,其中x =﹣3,y =﹣1.84.如图,某英语单词由四个字母组成,且四个字母都关于直线l 对称,请把这个单词填完整,并说出这个英语单词的汉语意思.85.下面是小明同学设计的“作一个角等于已知角”的尺规作图过程:已知:C ∠.求作:一个角,使它等于C ∠.作法:如图:∥在C ∠的两边上分别任取一点A 、B ;∥以点A 为圆心,AC 为半径画弧;以点B 为圆心,BC 为半径画弧;两弧交于点D ; ∥连结AD 、BD .所以D ∠即为所求作的角.请根据小明设计的尺规作图过程,(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下列证明.证明:连结AB ,∥DA=AC ,DB=_____,AB =_______,∥∥DAB ∥∥CAB ( )(填推理依据).∥∥C =∥D .86.计算:m 2m 4+(m 3)2﹣m 8÷m 2.87.如图,直线AB ,CD 相交于点O ,EO AB ⊥,垂足为O ,OF 平分BOD ∠,15BOF =︒∠.求COE ∠的度数.88.如图,已知线段a ,求作以a 为底、以12a 为高的等腰三角形,这个等腰三角形有什么特征?89.计算:23244a a a a -+-+-()()()()90.计算(1) ()()2212324-⎛⎫-+⨯-- ⎪⎝⎭ (2)化简,再求值()()()2222x x x -+--+,其中3x =.91.将幂的运算逆向思维可以得到m n m n a a a +=⋅,m n m n a a a -=÷,()mn m n a a =,()m m m a b ab =,在解题过程中,根据算式的结构特征,逆向运用幂的运算法则,常可化繁为简,化难为易,使问题巧妙获解. (1)2021202115()5⨯= ______ ; (2)若1139273m m ⨯⨯=,求m 的值;92.先化简,再求值:()()()2122x x x +++-,其中=1x -.93.如图,点B 、点D 在线段AE 上,且AD BE =,CD 平分ACB ∠.(1)尺规作图:在线段DE 的上方作DEF ,使得DEF BAC ∠=∠,EF AC =;(2)在(1)的条件下,若60A ∠=︒,40FDE ∠=︒,求BCD ∠的度数.94.今年疫情期间,为防止疫情扩散,人们见面的机会少了,但是随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷,为此,孙老师设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种)进行调查.将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:(1)这次参与调查的共有 人;在扇形统计图中,表示“微信”的扇形圆心角的度数为 ;其它沟通方式所占的百分比为 .(2)将条形统计图补充完整;(3)如果我国有13亿人在使用手机.∥请估计最喜欢用“微信”进行沟通的人数;∥在全国使用手机的人中随机抽取一人,用频率估计概率,求抽取的恰好使用“QQ”的概率是多少?95.(1)计算: 2015021π--+.(2)543()()()a b b a b a -÷-÷-96.如图,正方形ABCD 的对角线AC 的长度为3,E 为与点D 不重合的动点,以DE 为一边作正方形DEFG .设1DE d =,点F G 、与点C 的距离分别为23d d 、.(1)求证:ADE CDG ≌△△(2)求123d d d ++的最小值.97.已知:如图,C 是线段AB 上一点,分别以AC .BC 为边作等边∥DAC 和等边∥ECB ,AE 与BD .CD 相交于点F 、G ,CE 与BD 相交于点H .(1)求证:∥ACE∥∥DCB;(2)求∥AFB的度数.98.先化简下面代数式,再求值:(x+2)(x-2)+x(3-x),其中+1.99.如图:在平面直角坐标系中,∥ABC的三个顶点都在格点上.(1)画出∥ABC关于y轴对称的图形∥A1B1C1;(2)直接写出A1,B1,C1三点的坐标;(3)求∥ABC的面积.参考答案:1.C【分析】由于拐弯前、后的两条路平行,用平行线的性质求解即可.【详解】解:∥拐弯前、后的两条路平行,∥140B C ∠=∠=︒(两直线平行,内错角相等).故选:C .【点睛】本题考查平行线的性质,解答此题的关键是将实际问题转化为几何问题,利用平行线的性质求解.2.D【分析】根据三角形的三边关系定理:三角形两边之和大于第三边,针对每一个选项进行计算,可选出答案.【详解】解:A 、∥3+4<8,∥不能组成三角形,故本选项不符合题意;B 、∥5+6=11,∥不能组成三角形,故本选项不符合题意;C 、∥4+5=9,∥不能组成三角形,故本选项不符合题意;D 、∥3+7>9,∥能组成三角形,故本选项符合题意.故选:D .【点睛】本题主要考查了三角形的三边关系,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.3.D【分析】轴对称图形:如果一个图形沿着一条直线对折后两端完全重合,这样的图形叫做轴对称图形,这条直线叫做对称轴.中心对称图形:把一个图形绕某一个点旋转180︒,如果旋转后的图形能够和原来的图形互相重合.那么这个图形叫做中心对称图形.【详解】A 、是轴对称图形,不是中心对称图形;B 、是轴对称图形,也是中心对称图形;C 、是轴对称图形,不是中心对称图形;D 、不是轴对称图形,是中心对称图形.故选D.【点睛】此题考查的是轴对称图形和中心对称图形的判定,利用它们的定义判断一个图形是轴对称图形还是中心对称图形是解决此题的关键.4.B【分析】由DE ∥BC ,可得:45,DAB B ∠=∠=︒再利用平角的含义可得答案. 【详解】解: DE ∥BC ,∥B =45°,∥1=65°,45,DAB B ∴∠=∠=︒2=180170,DAB ∴∠︒-∠-∠=︒故选:.B【点睛】本题考查的是平角的定义,平行线的性质,掌握两直线平行,内错角相等是解题的关键.5.C【分析】根据幂的运算性质即可完成.【详解】A 、(a 2)3=a 6,故选项错误;B 、a 2a 3=a 5,故选项错误;C 、a 6÷a 3=a 3,故选项正确;D 、a 2与a 3不是同类项,不能合并,故选项错误;故选:C .【点睛】本题考查了幂的运算性质,关键是熟练掌握幂的运算性质.6.B【分析】如果一个图形沿着某条直线对折后,直线两旁的部分能够重合,就称此图形是轴对称图形,这条直线称为对称轴;根据轴对称图形的概念逐项判断即可.【详解】A 、是轴对称图形,不符合题意;B 、不是轴对称图形,故符合题意;C 、是轴对称图形,不符合题意;D 、是轴对称图形,不符合题意;故选:B【点睛】本题考查了轴对称图形的识别,掌握轴对称图形的概念是关键.7.B【详解】试题分析:∥一条直线的平行线只有一条是错误的;∥经过一点有且只有一条直线与已知直线平行,应强调在经过直线外一点,故是错误的. ∥因为a∥b ,a∥c ,所以b∥c ,正确.∥满足平行公理的推论,正确.故选B .考点:1.平行线;2.垂线.8.B【分析】根据同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方逐项分析判断即可求解.【详解】A.()2239a a =故该选项不正确,不符合题意;B.()4312a a =故该选项正确,符合题意;C.257a a a ⋅=故该选项不正确,不符合题意;D.633a a a ÷=故该选项不正确,不符合题意;故选: B .【点睛】本题考查了同底数幂的乘法,同底数幂的除法,幂的乘方,积的乘方,掌握以上运算法则是解题的关键.9.B【详解】试题分析:根据必然事件、不可能事件、随机事件的概念可区别各类事件. 解:A 、“一个不透明的袋中装有5个红球,从中摸出一个球是红球”是必然事件,故A 错误;B 、“在同一年出生的367名学生中,至少有两人的生日是同一天”是必然事件,故B 正确;C 、在一次抽奖活动中,“中奖的概率是”表示抽奖100次可能中奖,故C 错误;D 、“抛掷一枚硬币,硬币落地时正面朝上”是不确定事件,故D 错误;故选B .考点:随机事件;概率的意义.10.A【分析】根据同底数幂乘法的逆运算进行计算即可【详解】解:∥23a =,25b =,215c =,∥21535222+==⨯=⨯=a b c a b∥a b c +=故选:A【点睛】本题考查了同底数幂乘法的逆运算,熟练掌握法则是解题的关键11.A【分析】根据,∥1,∥2,和∥ACB 为180°,且∥ACB 为90°,所以∥1和∥2互余,由∥1度数可求出∥2度数.【详解】解:∥AC BC ⊥,∥90ACB ∠=︒,∥由图可知12180ACB ∠+∠+∠=︒,且90ACB ∠=︒,∥1290∠+∠=︒,∥2901903456∠=︒-∠=︒-︒=︒,故选:A .【点睛】本题考查,补角与余角的概念,能够根据图形中的角的位置关系求出角的度数关系式解决本题的关键.12.B【分析】根据等底同高的三角形的面积相等解答.【详解】解:三角形的中线把三角形分成等底等高的两个三角形,面积相等, 所以,能把一个任意三角形分成面积相等的两部分是中线.故选:B .【点睛】本题考查了三角形的面积,熟记等底同高的三角形的面积相等是解题的关键. 13.A【分析】利用同底幂乘法的运算法则计算可得.【详解】+==2213a a a a ⋅故选:A【点睛】本题考查同底幂的乘法,同底幂的乘法法则和乘方的运算法则容易混淆,需要注意.14.A【详解】根据同底数幂的乘法法则可得,原式= a 5,故选A.15.C【分析】直接利用翻折变换的性质结合平行线的判定方法得出答案.【详解】如图∥所示:∥∥1=∥2=50°,∥∥3=∥2=50°,∥∥4=∥5=180°-50°-50°=80°,∥∥2≠∥4,∥纸带∥的边线不平行;如图∥所示:∥GD与GC重合,HF与HE重合,∥∥CGH=∥DGH=90°,∥EHG=∥FHG=90°,∥∥CGH+∥EHG=180°,∥纸带∥的边线平行.故选C.【点睛】此题主要考查了平行线的判定以及翻折变换的性质,正确掌握翻折变换的性质是解题关键.16.D【分析】根据合并同类项法则、积的乘方、合并同类项法则、同底数幂的乘法法则运算即可求解.【详解】解:A.a4与a2不是同类项,所以不能合并,故本选项不合题意;B.(﹣2a2)3=﹣8a6,故本选项不合题意;C.6a﹣a=5a,故本选项不合题意;D.a2•a3=a5,故本选项符合题意.故选:D.【点睛】本题考查了合并同类项法则、积的乘方、同底数幂的乘法法则,正确记忆运算法则是解题关键.17.A【分析】由图可知,阴影部分的长是a-x,宽是b-x,然后根据长方形的面积公式求解即可.【详解】由题意得(a -x )(b -x )=2ab ax bx x --+.故选A .【点睛】本题考查了多项式与多项式的乘法的应用,多项式与多项式相乘,先用一个多项式的每一项分别乘另一个多项式的每一项,再把所得的积相加.18.B【分析】用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为整数,据此判断即可. 【详解】解:41.251800010-=⨯ 0,0a n ∴><故选B【点睛】此题主要考查了用科学记数法表示较小的数,一般形式为a ×10−n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定,确定a 与n 的值是解题的关键.19.C【详解】解:∥∥AD 是∥ABC 的中线,∥BD =CD ,∥∥ABD 和∥ACD 面积相等;故∥正确;∥若在∥ABC 中,当AB ≠AC 时,AD 不是∥BAC 的平分线,即∥BAD ≠∥CAD .即∥不一定正确;∥∥AD 是∥ABC 的中线,∥BD =CD ,在∥BDF 和∥CDE 中,∥BD =CD ,∥BDF =∥CDE ,DF =DE ,∥∥BDF ∥∥CDE (SAS ).故∥正确;∥∥∥BDF ∥∥CDE ,∥∥CED =∥BFD ,∥BF ∥CE ;故∥正确;∥∥∥BDF ∥∥CDE ,∥CE =BF ,∥只有当AE=BF时,CE=AE.故∥不一定正确.综上所述,正确的结论是:∥∥∥,共有3个.故选C.20.C【分析】根据平行线的性质进行推导解答即可.【详解】解:如图,∥EG BD∥,∥∥1=∥DBA,∥∥,∥AB EF DC∥∥1=∥GEF,∥DBA=∥2,∥DBA=∥3,∥DBA=∥BDC,∥∥1=∥GEF=∥DBA=∥2=∥3=∥BDC,∥图中和∥1相等的角共有5个.故选C.【点睛】本题考查的是平行线的性质,熟悉平行线的性质:“两直线平行,同位角相等”和“两直线平行,内错角相等”,是能够正确解答本题的关键.21.A【分析】根据单项式的乘法法则计算求解即可得出答案.【详解】解:A.325⋅=,故A正确,符合题意;a a a9218B.549x x x⋅=,故B错误,不符合题意;236C.336x x x⋅=,故C错误,不符合题意;3412D.336⋅=,故D错误,不符合题意.3515y y y故选A.【点睛】本题主要考查了单项式与单项式相乘,熟练掌握单项式与单项式相乘的法则是解题的关键.22.C【分析】分别计算选项中的每一项a2•a3=a5,(a2)3=a6,(a2b)2=a4b2,即可求解.【详解】a2•a3=a5,故A不正确;(a2)3=a6,故B不正确;(a2b)2=a4b2,故D不正确;故选:C.【点睛】考核知识点:幂的运算.理解幂的乘方公式是关键.23.B【分析】先利用多项式乘以多项式展开所求的式子,再将已知条件作为整体直接代入求解即可.【详解】解:(a+2)(b−2)=ab−2a+2b−4=ab−2(a−b) −4将a−b=1,ab=−2代入得,ab−2(a−b) −4=−2−2×1 −4=−8.故选:B.【点睛】本题考查了多项式的乘法、多项式化简求值,掌握多项式的乘法法则是解题关键.需注意的是,这类题的考点是将已知条件作为一个整体代入求值,而不是求出a和b 的值.24.C【分析】结合题意,根据全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】增加∥DEC=∥B,得:DEC BD ACD CA ∠=∠⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项A可以证明;∥∥ACD=∥BCE∥ACD ACE BCE ACE∠+∠=∠+∠,即DCE ACB∠=∠∥D ACD CADCE ACB∠=∠⎧⎪=⎨⎪∠=∠⎩∥∥DEC∥∥ABC,即选项B可以证明;增加∥DEC=∥B,得:D A CD CA CE CB ∠=∠⎧⎪=⎨⎪⎩=∥不能证明∥DEC∥∥ABC,即选项C不可以证明;增加DE=AB,得:DE ABD A CD CA=⎧⎪∠=∠⎨⎪=⎩∥∥DEC∥∥ABC,即选项D可以证明;故选:C.【点睛】本题考查了全等三角形的知识;解题的关键是熟练掌握全等三角形的判定性质,从而完成求解.25.D【分析】直接利用合并同类项法则以及同底数幂的乘法运算法则、积的乘方运算法则分别计算得出答案.【详解】A、a4+a4=2a4,故此选项错误;B、a4•a2=a6,故此选项错误;C、(a2)3=a6,故此选项错误;D、(ab3)2=a2b6,正确.故选D.【点睛】此题主要考查了合并同类项以及同底数幂的乘法运算、积的乘方运算,正确掌握相关运算法则是解题关键.26.C【详解】试题分析:根据同底数幂的乘除法法则,合并同类项的定义,进行逐项分析解答,用排除法找到正确的答案.解:A、原式=a6﹣2=a4,故本选项错误,B、原式=(5﹣3)a2=2a2,故本选项错误,C、原式=a2•a3=a5,故本选项正确,D、原式中的两项不是同类项,不能进行合并,故本选项错误,故选C.考点:同底数幂的除法;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.27.D【分析】根据全等三角形的判定得出∥ABE与∥CDF全等,进而利用全等三角形的性质判断即可.【详解】解:∥AE∥CF,AB∥CD,∥∥AEF=∥CFE,∥ABE=∥CDF,∥∥AEB=∥CFD,在∥ABE与∥CDF中ABE CDFBE DFAEB CFD∠=∠⎧⎪=⎨⎪∠=∠⎩,∥∥ABE∥∥CDF(ASA),∥AE=CF,∥BE=DF,∥BE+EF=DF+EF,即BF=DE,在∥ADE与∥CBF中AE CFAED CFB DE BF=⎧⎪∠=∠⎨⎪=⎩,∥∥ADE∥∥CBF(SAS),∥AD=BC,∥ADE=∥CBF,∥BCF=∥DAE∥AD∥BC,故选:D.【点睛】此题主要考查了全等三角形的判定,利用两边且夹角对应相等得出三角形全等是解题关键.28.D【分析】根据积的乘方运算法则计算即可.【详解】−0.25100×4101=−0.25100×4100×4=−(0.25×4)100×4=−1100×4=−1×4=−4.故选D .【点睛】本题主要考查了积的乘方,积的乘方,等于每个因式乘方的积.29.C【分析】分别根据合并同类项的法则、同底数幂的乘法、积的乘方和幂的乘方运算法则逐项判断即得答案.【详解】A 、6511a a a ⋅=故本选项运算错误,不符合题意;B 、18318315a a a a -÷==,故本选项运算错误,不符合题意;C 、22(2)4a a =,故本选项运算正确,符合题意;D 、333+2a a a =,故本选项运算错误,不符合题意.故选:C .【点睛】本题考查了合并同类项的法则和幂的运算性质,属于基础题型,熟练掌握幂的运算性质是解题的关键.30.D【详解】根据全等三角形的判定方法对组合进行判断即可.解:在∥ABC 和∥DEF 中,AB=DE ,∥B=∥C ,BC=EF ,∥∥ABC ∥∥DEF (SAS );∥A 不符合题意;在∥ABC 和∥DEF 中,AB=DE , BC=EF ,AC=DF ,∥∥ABC ∥∥DEF (SSS );∥B 不符合题意; 在∥ABC 和∥DEF 中,∥A=∥D ,∥C=∥F ,AB=DE ,∥∥ABC ∥∥DEF (AAS ),∥C 不符合题意; 在∥ABC 和∥DEF 中,D②③④不能判断∥ABC 和∥DEF 全等,故选D .“点睛”本题考查了全等三角形的判定方法对各选项分析判断利用排除法求解.31.BCD【分析】根据平行线的定义及平行公理进行判断.【详解】A. 若点在直线上,则不可以作出已知直线的平行线,因此 “过任意一点可作已知直线的一条平行线”说法错误;B. “同一平面内两条不相交的直线是平行线”说法正确;C. “在同一平面内,过直线外一点只能画一条直线与已知直线垂直”说法正确;D. “平行于同一直线的两直线平行”说法正确;故选BCD.【点睛】本题主要考查平行线的定义及平行公理,熟练掌握公理、定理是解决本题的关键.32.ABD【分析】已知一边和一角对应相等,再添加任意对对应角相等,或已知角的另一边相等就可以由AAS 、ASA 或SAS 判定两个三角形全等.【详解】解:选项A 中B ∠与E ∠是对应角,能与已知构成ASA 的判定,可以判定三角形全等,故选项A 符合题意;选项B 中A D ∠=∠是对应角,结合已知可以由AAS 判定ABC DEF ≌△△,故选项B 符合题意;选项C 中AB ED =是对应边,但不是两边及其夹角相等,无法判定ABC DEF ≌△△,故选项C 不合题意;选项D 中由已知//AB ED 可得B E ∠=∠,是对应角,结合已知可以由ASA 判定ABC DEF ≌△△,故选项D 符合题意;故选:ABD .【点睛】本此题考查了三角形全等的判定方法,解题的关键是熟练掌握三角形全等的判定方法.判定三角形全等的方法有:SSS ,SAS ,AAS ,ASA ,HL (直角三角形). 33.BCD【分析】根据三角形的三边关系:两边之和大于第三边,两边之差小于第三边,逐项判断即可.【详解】解:A .123+=不能组成三角形,该项不符合题意;B .234+>,该项符合题意;C .345+>,该项符合题意;D .456+>,该项符合题意;故选:BCD .【点睛】本题考查三角形的成立条件,掌握三角形的三边关系是解题的关键. 34.ABC【分析】根据余角及补角的定义可逐项判断求解.【详解】解:A 、相等的两个角不一定是直角,故错误,符合题意;B 、一个钝角的补角是锐角,原说法错误,符合题意;C 、补角是指两个角,原说法错误,符合题意;D 、一个角的余角一定是锐角,说法正确,不符合题意;故选:ABC .【点睛】本题考查了余角和补角,熟知定义是解题的关键,属于基础题.35.AD【分析】根据“三线八角”的概念,结合图形找出他们之间的关系即可.【详解】解:A 、根据图形可知,1∠与2∠是同旁内角,该选项符合题意;B 、根据图形可知,5∠与6∠是内错角,该选项不符合题意;C 、根据图形可知,1∠与4∠不是内错角关系,该选项不符合题意;D 、根据图形可知,∥3与∥5是同位角,该选项符合题意;故选:AD .【点睛】本题考查“三线八角”的概念,能读图识图,从图形中结合“三线八角”的概念准确找到内错角、同位角和同旁内角是解决问题的关键.36.ABC【分析】三角形有三条中线对∥进行判断;钝角三角形三条高,有两条在三角形外部,对∥进行判断;根据三角形三边的关系对∥进行判断;根据三角形的分类对∥进行判断.【详解】解:A .三角形有3条中线,选项A 的说法是错误的;B .三角形的高不一定在三角形内部,选项B 的说法是错误的;C .三角形的两边之差小于第三边,选项C 的说法是错误的;D .三角形按边分类可分为等腰三角形和不等边三角形是正确的.故答案为:ABC .【点睛】本题考查了三角形的有关概念,属于基础题型.要注意等腰三角形与等边三角形两个概念的区别,掌握三角形有三条中线;钝角三角形三条高,有两条在三角形外部,三角形三边的关系;三角形的分类是解题关键.37.ABD【分析】由积的乘方判断,A 由负整数指数幂的含义判断,B 由同底数幂的除法判断,C 由积的乘方与单项式除以单项式判断,D 从而可得答案.【详解】解:()222439xy x y =,故A 符合题意; 2221222=,x x x -=⨯故B 符合题意;。

初中七下数学知识和能力综合训练题6套(有参考解答)

初中七下数学知识和能力综合训练题6套(有参考解答)

七年级下学期数学知识和能力训练题1一、选择题: 1、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m ﹣n 的值是( ) A 、4 B 、2 C 、﹣2 D 、﹣42、当x =3时,代数式3x 2﹣5ax +10的值为7,则a 等于( ) A 、2 B 、﹣2 C 、1 D 、﹣13、已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A 、40° B 、60° C 、80° D 、 90° 二、填空题1、小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了 张;2、已知不等式组 的解集为﹣1<x <2,则(m +n )2019= ;3、已知△ABC 中,∠A=21∠B=31∠C ,则△ABC 为 三角形。

三、解答题1、是否存在负整数k 使得关于x 的方程5x ﹣3k =9的解是非负数?若存在请求出k 的值,若不存在请说明理由.2.已知当x =﹣1时,代数式ax 3+bx +1的值为﹣2009,则当x =1时,代数式ax 3+bx +1的值为多少?3.试确定实数a 的取值范围,使不等式组 恰有两个整数解. x +2>m+nx -1< m -1 ⎩⎨⎧312++x x >0⎩⎨⎧> 345++a x ax ++)1(34七年级下学期数学知识和能力训练题1解答参考一、选择题:1、已知⎩⎨⎧==12y x 是二元一次方程组⎩⎨⎧=-=+18my nx ny mx 的解,则2m ﹣n 的值是( ) A 、4 B 、2 C 、﹣2 D 、﹣4【主要考查学生对二元一次方程组的解的认识及用消元思想解二元一次方程组的熟练程度,难度较低.】选A. 解:将⎩⎨⎧==12y x 代入方程组,得⎩⎨⎧=-=+1282m n n m ,解得⎩⎨⎧==23n m ,故2m ﹣n =2×3﹣2=4. 2、当x =3时,代数式3x 2﹣5ax +10的值为7,则a 等于( ) A 、2 B 、﹣2 C 、1 D 、﹣1【主要考查学生对方程的解的认识及简单的解一元一次方程,难度低.】选A. 解:由题意,得3×32﹣5a ×3+10=7,解得a =2.3、已知△ABC 中,∠B 是∠A 的2倍,∠C 比∠A 大20°,则∠A 等于( ) A 、40° B 、60° C 、80° D 、 90°【主要考查学生将方程思想应用到图形问题中,及对三角形内角和定理的理解,难度不大.】选A.解:由已知,得∠B=∠A ×2,∠C=∠A+20°,又∵△ABC 中,∠A+∠B+∠C=180°,∴∠A+2∠A+∠A+20°=180°,解得∠A=40°.二、填空题:1、小玉买书用48元钱,付款时恰好用了1元和5元的纸币共12张.那么1元的纸币用了 张;【主要考查学生对方程思想在实际生活中的应用,难度不大.但可以练练“一题多解”】 解:(法一)设1元纸币有x 张,则5元纸币有(12﹣x )张.由题意,列方程x +5(12﹣x )=48,解得x =3. 故1元的纸币用了3张.(法二)设1元纸币有x 张,5元纸币有y 张.由题意,列方程组⎩⎨⎧=+=+48512y x y x ,解得⎩⎨⎧==93y x ,故1元的纸币用了3张.(法三)假设12张纸币都是5元的,则应为60元,实际少了60-48=12元,少的钱就是1元和5元之间的差距造成的,所以1元纸币有12÷(5﹣1)=3张.2、已知不等式组 的解集为﹣1<x <2,则(m +n )2019= ;【主要考查学生对一元一次不等式组及其解集的理解,有一定的综合性】解:由不等式组变形,得 ,∵该不等式组的解集为﹣1<x <2,∴⎩⎨⎧-=-+=122n m m ,解得⎩⎨⎧-==12n m∴(m +n )2019=(2﹣1)2019=12019=1.x +2>m+nx -1< m -1 ⎩⎨⎧x < mx >m+n -2⎩⎨⎧3、已知△ABC 中,∠A=21∠B=31∠C ,则△ABC 为 三角形。

期末综合素质 评价练习(含答案)2024-2025学年苏科版七年级数学下册

期末综合素质 评价练习(含答案)2024-2025学年苏科版七年级数学下册

期末综合素质评价一、选择题(每小题3分,共24分)1.下列图形中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.下列运算正确的是()A.(−ab)2=−a2b2B.2a2+a2=3a4C.a6÷a4=a2D.(a+b)2=a2+b23.下列命题中,是真命题的是()A.同位角相等B.0没有相反数C.若a2=b2,则a=b D.等角的余角相等4.如图,点E在AD的延长线上,下列条件能判断AB//CD的是()(第4题)A.∠3=∠4B.∠C+∠ADC=180∘C.∠C=∠CDE D.∠1=∠25.用反证法证明命题“在直角三角形中,至少有一个锐角不大于45∘”时,首先应假设这个直角三角形中()A.两个锐角都大于45∘B.两个锐角都小于45∘C.两个锐角都不大于45∘D.两个锐角都等于45∘6.[2024扬州江都区期中]若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为()A.−3B.3C.0D.17.[2024南通海门区二模]已知x,y满足2x+y=3,且x≥−2,y>2.若k=x −y,则k的取值范围是()(第8题)C.70∘,共30分)浸没式光刻机的成功问世,标志着我国在光刻机领域(第12题)已知a+b=7,ab=6若关于x,y的二元一次方程组(第15题)的逆命题是________________________________________________.(第18题))6分)计算:2|;(1)画出△A1B1C1,使△A1B1C1与△ABC关于直线l成轴对称;(2)画出△ABC向下平移5个单位长度得到的△A2B2C2;(3)画出△A3B3C3,使△A3B3C3与△ABC关于点O成中心对称.23.(8分)“脐橙结硕果,香飘引客来”,赣南脐橙以其“外表光洁美观,肉质脆嫩,风味浓甜芳香”的特点饮誉中外.某公司现欲将一批脐橙运往外地销售,若用2辆A型车和1辆B型车载满脐橙,则一次可运送10t;若用1辆A型车和2辆B型车载满脐橙,则一次可运送11t.现有脐橙31t,计划同时租用A型车a辆,B型车b辆,一次运送完,且恰好每辆车都载满脐橙.根据以上信息,解答下列问题:(1) 1辆A型车和1辆B型车都载满脐橙一次可分别运送多少吨?(2)请你帮该公司设计租车方案.(3)若1辆A型车需租金100元/次,1辆B型车需租金120元/次.请选出费用最少的租车方案,并求出最少租车费用.24.[2024苏州吴江区模拟](8分)只用无刻度的直尺按要求完成下列作图,保留作图痕迹,不写作法.(1)如图①,过正方形的顶点A作一条直线平分这个正方形的面积;(2)如图②,过正方形边上一点P(非顶点)作一条直线平分这个正方形的面积;(3)如图③,五个边长相等的正方形组成了一个“L型”图形,点Q为其中四个小正方形的公共顶点,过点Q作一条直线平分这个“L型”图形的面积.25.(12分)如图①,正方形甲、乙、丙的边长分别为a,b,c,且a+b<c.(1)如图②,将正方形甲、乙拼接在一起,沿着外边框可以画出一个大正方形,用两种不同的方法表示这个大正方形的面积为______________或______________________,从而可以得到一个乘法公式:__________________________________;(2)如图③,将正方形甲、乙、丙拼接在一起,沿着外边框可以画出一个大正方形,类比(1)的思路进行思考,直接写出所得到的等式;(3)用正方形甲、乙、丙构造恰当的图形,说明(c−b−a)2<c2−b2−a2. 26.[2024南京鼓楼区期末](12分)在几何软件中,将△ABC和△DEF按图①所示的方式摆放,其中∠ACB=∠DFE=90∘,∠D=45∘,∠ABC=30∘,点D,A,F,B在同一条直线上.(1)如图①,将△DEF绕点F顺时针旋转,当BC第一次与DE平行时,∠DFA =________;(2)将图①中的△DEF绕点E逆时针旋转一定的角度使点D落在边BC上,过E 作EG//BC,DM平分∠FDB,EN平分∠GED交直线DM于点N.在图②中按以上叙述补全图形(无需尺规作图),并直接写出∠END的度数.(3)如图③,将图①中的△ABC绕点B逆时针旋转.①当BC//DE时,连接AF,BF,则∠DFA−∠FAB=________________________;②若∠DEF与∠ABC的平分线所在直线相交于点Q,∠EQB=27∘,直接写出∠D BA的度数.【参考答案】期末综合素质评价一、选择题(每小题3分,共24分)1.C 2.C 3.D 4.D 5.A 6.A 7.C 8.C 二、填空题(每小题3分,共30分)9.2.8×10−810.611.212.813.3714.−715.80∘16.如果一个数能被4整除,那么这个数是偶数17.−1或218.70[解析]点拨:设∠EDB=x∘,∵△ABC沿DE翻折,点B落在点B′处,∴∠B′DE=∠EDB=x∘ .∵∠B′DC′=40∘,∴∠EDC′=x∘−40∘ .∴∠CDC′=180∘−∠BDE−∠EDC′=220∘−2x∘ .∵△ABC沿DF翻折,点C落在点C′处,∴∠CDF=1∠CDC′=110∘−x∘ .2∵DE//AC,∴∠C=∠EDB=x∘ .∴在△DFC中,∠DFC=180∘−∠C−∠CDF=70∘ .∵DF//AB,∴∠A=∠DFC=70∘ .三、解答题(共66分)19.(1)解:原式=1+(−8)+2=−5.(2)原式=a6+4a6−a6=4a6.20.(1)解:{2x+y=7①,2x−3y=3②,①−②,得4y=4,∴y=1,即为所求.即为所求.型车载满脐橙一次可运送x=3,=4.型车载满脐橙一次可运送3t,1辆B型车载满脐橙一次可运送方案一:租A型车1辆,B型车7辆;方案二:租A型车5辆,B型车4辆;方案三:租A型车9辆,B型车1辆.(3)方案一所需租金为100×1+120×7=940(元);方案二所需租金为100×5+120×4=980(元);方案三所需租金为100×9+120×1=1020(元).因为940<980<1020,所以费用最少的租车方案是方案一,即租A型车1辆,B型车7辆,最少租车费用为940元.24.(1)解:如图①中,直线AC即为所求.(2)如图②中,直线OP即为所求.(3)如图③中,直线QT即为所求.25.(1)(a+b)2;a2+b2+2ab;(a+b)2=a2+b2+2ab(2)解:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac.(3)如图,正方形丁的面积为(c−b−a)2,阴影部分的面积为c2−b2−a2,由图可知(c−b−a)2<c2−b2−a2.26.(1)15∘[解析]点拨:将△DEF绕点F顺时针旋转至第一次BC//DE,延长DF交BC于点M,如图①.∵BC//DE,∠D=45∘,∴∠BMF=180∘−45∘=135∘ .∵∠ABC=30∘,∴∠BFM=180∘−135∘−30∘=15∘ .∴∠DFA=∠BFM=15∘ .(2)解:补全图形如图②.∠END=22.5∘ .[解析]点拨:如图②,过点N作NQ//BC,设∠END=α,∠DNQ=β,则∠ENQ =α+β .∵EG//BC,∴EG//BC//NQ.∴∠GEN=∠ENQ=α+β,∠MDB=∠DNQ=β .∵EN为∠GED的平分线,DM为∠FDB的平分线,∴∠GED=2∠GEN=2(α+β),∠FDB=2∠MDB=2β .∵∠EDF=45∘,∴∠EDB=∠EDF+∠FDB=45∘+2β .∵EG//BC,∴∠GED=∠EDB.∴2(α+β)=45∘+2β .∴α=22.5∘ .即∠END=22.5∘ .逆时针旋转至第二次BC//DE时,如图④,由题意可得,=135∘ .ABC绕点B逆时针旋转会有两种情况,如图=45∘,的平分线上,。

七年级数学下册综合算式专项练习题带有乘方的运算

七年级数学下册综合算式专项练习题带有乘方的运算

七年级数学下册综合算式专项练习题带有乘方的运算综合算式是数学学科中常见的一种类型,它结合了多种运算符号和数学概念,要求学生在解题过程中熟练运用所学知识。

本文将提供一些七年级下册的综合算式专项练习题,其中包含了乘方的运算。

综合算式专项练习题一:1. 计算:(3x - 4y)^2,其中 x = 2,y = 3。

解析:首先,将括号中的表达式平方:(3x - 4y)^2 = (3(2) - 4(3))^2 = (6 - 12)^2 = (-6)^2 = 36。

2. 计算:(a - b)^3,其中 a = 5,b = 2。

解析:同样地,将括号中的表达式立方:(a - b)^3 = (5 - 2)^3 = 3^3 = 27。

综合算式专项练习题二:1. 计算:(2x + 3)^2,其中 x = 4。

解析:将括号中的表达式平方:(2x + 3)^2 = (2(4) + 3)^2 = (8 + 3)^2 = 11^2 = 121。

2. 计算:(a + b)^3,其中 a = 6,b = 2。

解析:将括号中的表达式立方:(a + b)^3 = (6 + 2)^3 = 8^3 = 512。

综合算式专项练习题三:1. 计算:(3x^2 + 2y)^2,其中 x = 2,y = 3。

解析:将括号中的表达式平方:(3x^2 + 2y)^2 = (3(2)^2 + 2(3))^2 = (3(4) + 6)^2 = (12 + 6)^2 = 18^2 = 324。

2. 计算:(a^2 + b)^3,其中 a = 5,b = 2。

解析:将括号中的表达式立方:(a^2 + b)^3 = (5^2 + 2)^3 = (25 + 2)^3 = 27^3 = 19683。

综合算式专项练习题四:1. 计算:(x^3 - 2y)^2,其中 x = 3,y = 1。

解析:将括号中的表达式平方:(x^3 - 2y)^2 = (3^3 - 2(1))^2 = (27 - 2)^2 = 25^2 = 625。

2023-2024学年七年级数学下册 专题03 平行线与三角形综合特训(压轴30题)(解析版)

2023-2024学年七年级数学下册 专题03 平行线与三角形综合特训(压轴30题)(解析版)

专题03平行线与三角形综合特训(压轴30题)一.选择题(共7小题)1.将一直角三角板与两边平行的纸条如图放置.下列结论:(1)∠1=∠2;(2)∠2+∠4=90°;(3)∠3=∠4;(4)∠4+∠5=180°;(5)∠1+∠3=90°.其中正确的共有()A.5个B.4个C.3个D.2个【答案】A【解答】解:如图,根据题意得:AB∥CD,∠FEG=90°,∴∠1=∠2,∠3=∠4,∠4+∠5=180°,∠2+∠4=90°;故(1),(2),(3),(4)正确;∴∠1+∠3=90°.故(5)正确.∴其中正确的共有5个.故选:A.2.如图,若干全等正五边形排成环状.图中所示的是前3个五边形,要完成这一圆环还需()个五边形.A.6B.7C.8D.9【答案】B【解答】解:五边形的内角和为(5﹣2)×180°=540°,所以正五边形的每一个内角为540°÷5=108°,如图,延长正五边形的两边相交于点O,则∠1=360°﹣108°×3=360°﹣324°=36°,360°÷36°=10,∵已经有3个五边形,∴10﹣3=7,即完成这一圆环还需7个五边形.故选:B.3.如图所示,在折纸活动中,小明制作了一张△ABC纸片,点D,E分别是边AB、AC上,将△ABC沿着DE重叠压平,A与A′重合,若∠A=70°,则∠1+∠2=()A.140°B.130°C.110°D.70°【答案】A【解答】解:∵四边形ADA′E的内角和为(4﹣2)•180°=360°,而由折叠可知∠AED=∠A′ED,∠ADE=∠A′DE,∠A=∠A′,∴∠AED+∠A′ED+∠ADE+∠A′DE=360°﹣∠A﹣∠A′=360°﹣2×70°=220°,∴∠1+∠2=180°×2﹣(∠AED+∠A′ED+∠ADE+∠A′DE)=140°.故选:A.4.如图所示,已知等边三角形ABC的边长为1,按图中所示的规律,用2008个这样的三角形镶嵌而成的四边形的周长是()A.2008B.2009C.2010D.2011【答案】C【解答】解:由图中可知:1个三角形组成的图形的周长是3;2个三角形组成的图形的周长是3+1=4;3个三角形组成的图形的周长是3+2=5;…那么2008个这样的三角形镶嵌而成的四边形的周长是3+2007=2010.故选:C.5.如图,在△ABC中,BE,CE,CD分别平分∠ABC,∠ACB,∠ACF,AB∥CD,下列结论:①∠BDC=∠BAC;②∠BEC=90°+∠ABD;③∠CAB=∠CBA;④∠ADB+∠ABC=90°,其中正确的为()A.①②③B.①②④C.②③④D.①②③④【答案】C【解答】解:∵CD平分∠ACF,∠ACF=∠ABC+∠BAC,∴∠ACD=∠DCF=∠ACF=∠ABC+∠BAC.∵∠DCF=∠DBC+∠BDC=∠ABC+∠BDC,∴∠BAC=∠BDC,即∠BAC=2∠BDC,①错误;∵CE平分∠ACB,∴∠ACE=∠ACB,∵∠ACB+∠ACF=180°,∴∠ACE+∠ACD=90°,即∠ECD=90°,∴∠BEC=∠ECD+∠CDB=90°+∠CDB,∵CD∥AB,∴∠CDB=∠ABD,∴∠BEC=90°+∠ABD,故②正确;∵BD平分∠CBA,∴∠CBA=2∠ABD=2∠CDB,∵∠BAC=2∠BDC,∴∠CAB=∠CBA,故③正确;∵BD平分∠ABC,CD平分∠ACF,∴AD为△ABC外角∠MAC的平分线,∴∠MAC=2∠MAD,∵∠MAC=∠ABC+∠ACB,∠MAD=∠ABD+∠ADB,∠ABC=2∠ABD,∴∠ACB=2∠ADB,∴∠ADB=∠ACE,∵CD∥AB,∴∠ABC=∠DCF=∠ACD,∵∠ACE+∠ACD=90°,∴∠ADB+∠ABC=90°,故④正确.故选:C.6.如图,在△ABC中,延长CA至点F,使得AF=CA,延长AB至点D,使得BD=2AB,=36,则S△ABC为()延长BC至点E,使得CE=3CB,连接EF、FD、DE,若S△DEFA.2B.3C.4D.5【答案】A【解答】解:如图,连接AE,CD,设△ABC的面积为m.∵BD=2AB,∴△BCD的面积为2m,△ACD的面积为3m,∵AC=AF,∴△ADF的面积=△ACD的面积=3m,∵EC=3BC,∴△ECA的面积=3m,△EDC的面积=6m,∵AC=AF,∴△AEF的面积=△EAC的面积=3m,∴△DEF的面积=m+2m+6m+3m+3m+3m=18m=36,∴m=2,∴△ABC的面积为2,故选:A.7.若一个多边形截去一个角后,变成十四边形,则原来的多边形的边数可能为()A.14或15B.13或14C.13或14或15D.14或15或16【答案】C【解答】解:如图,n边形,A1A2A3…A n,若沿着直线A1A3截去一个角,所得到的多边形,比原来的多边形的边数少1,若沿着直线A1M截去一个角,所得到的多边形,与原来的多边形的边数相等,若沿着直线MN截去一个角,所得到的多边形,比原来的多边形的边数多1,因此将一个多边形截去一个角后,变成十四边形,则原来的多边形的边数为13或14或15,故选:C.二.填空题(共8小题)8.如图所示,在三角形ABC中,AC=3AE,三角形ABD的面积是三角形ADC面积的2倍,则阴影部分的面积占三角形ABC面积的=.【答案】.【解答】解:连接OC,=S△EOC,则S△AOES△ODC=S△BOD,=S△ABD,又∵S△ADC+S△ODC=(S△AOB+S△BOD),∴S△AOC=S△AOB∴S△AOC=m,设S△AOE=2m,S△AOC=3m,S△AOB=6m,则S△OEC=S△BEC=S△ABC,∵S△ABD=S四边形EODC=6m,∴S△AOB=4m,S△BOD=8m,∴S△ODC=21m,∴S△ABC∴阴影部分的面积占三角形ABC面积de=.9.如图,△ABC的外角∠ACD的平分线CP与内角∠ABC平分线BP交于点P,若∠BPC =36°,则∠CAP=54°.【答案】见试题解答内容【解答】解:过P点作PF⊥BA于F,PN⊥BD于N,PM⊥AC于M,设∠PCD=x°,∵CP平分∠ACD,∴∠ACP=∠PCD=x°,PM=PN,∵BP平分∠ABC,∴∠ABP=∠PBC,PF=PN,∴PF=PM,又∵PF⊥BA于F,PM⊥AC于M,∴∠FAP=∠PAC.∵∠BPC=36°,∴∠ABP=∠PBC=(x﹣36)°,∴∠BAC=∠ACD﹣∠ABC=2x°﹣(x°﹣36°)﹣(x°﹣36°)=72°,∴∠CAF=108°,∴∠FAP=∠PAC=54°.故答案为:54°.10.如图,在△ABC中,∠A=α,∠ABC的平分线与∠ACD的平分线交于点A1,得∠A1,则∠A1=.∠A1BC的平分线与∠A1CD的平分线交于点A2,得∠A2,…,∠A2009BC的平分线与∠A2009CD的平分线交于点A2010,得∠A2010,则∠A2010=.【答案】见试题解答内容【解答】解:∵∠ACD=∠A+∠ABC,∠A1CD=∠A1+∠A1BC,∠ACD=2∠A1CD,∠ABC=2∠A1BC,∴2∠A1CD=∠A+2∠A1BC,即∠A1CD=∠A+∠A1BC,∴∠A1==,由此可得∠A2010=.故答案为:,.11.已知△ABC中,∠A=α.在图(1)中∠B、∠C的角平分线交于点O1,则可计算得∠BO1C=90°+;在图(2)中,设∠B、∠C的两条三等分角线分别对应交于O1、O2,则∠BO2C=60°+α;请你猜想,当∠B、∠C同时n等分时,(n﹣1)条等分角线分别对应交于O1、O2,…,O n﹣1,如图(3),则∠BO n﹣1C=+(用含n和α的代数式表示).【答案】见试题解答内容【解答】解:在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,∵O2B和O2C分别是∠B、∠C的三等分线,∴∠O2BC+∠O2CB=(∠ABC+∠ACB)=(180°﹣α)=120°﹣α;∴∠BO2C=180°﹣(∠O2BC+∠O2CB)=180°﹣(120°﹣α)=60°+α;在△ABC中,∵∠A=α,∴∠ABC+∠ACB=180°﹣α,B和O n﹣1C分别是∠B、∠C的n等分线,∵O n﹣1BC+∠O n﹣1CB=(∠ABC+∠ACB)=(180°﹣α)=﹣∴∠O n﹣1.C=180°﹣(∠O n﹣1BC+∠O n﹣1CB)=180°﹣(﹣)∴∠BO n﹣1=+.故答案为:60°+α;+.12.珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,如图,若∠ABC=120°,∠BCD=80°,则∠CDE=20度.【答案】见试题解答内容【解答】解:过点C作CF∥AB,已知珠江流域某江段江水流向经过B、C、D三点拐弯后与原来相同,∴AB∥DE,∴CF∥DE,∴∠BCF+∠ABC=180°,∴∠BCF=60°,∴∠DCF=20°,∴∠CDE=∠DCF=20°.故答案为:20.13.如图,在△ABC中,∠A=α、∠ABC与∠ACD的平分线交于点A1,得∠A1;∠A1BC 与∠A1CD的平分线相交于点A2,得∠A2;…;∠A2010BC与∠A2010CD的平分线相交于点A2011,得∠A2011,则∠A2011=.【答案】见试题解答内容【解答】解:∵∠ABC与∠ACD的平分线交于点A1,∴∠A1=180°﹣∠ACD﹣∠ACB﹣∠ABC=180°﹣(∠ABC+∠A)﹣(180°﹣∠A﹣∠ABC)﹣∠ABC=∠A=;同理可得,∠A2=∠A1=,…∴∠A2011=.故答案为:.14.如图,在第1个△ABA1中,∠B=40°,∠BAA1=∠BA1A,在A1B上取一点C,延长AA1到A2,使得在第2个△A1CA2中,∠A1CA2=∠A1A2C;在A2C上取一点D,延长A1A2到A3,使得在第3个△A2DA3中,∠A2DA3=∠A2A3D;…,按此做法进行下去,第3个三角形中以A3为顶点的内角的度数为17.5°;第n个三角形中以A n为顶点的底角的度数为.【答案】见试题解答内容【解答】解:∵在△ABA1中,∠B=40°,AB=A1B,∴∠BA1A=(180°﹣∠B)=(180°﹣40°)=70°,∵A1A2=A1C,∠BA1A是△A1A2C的外角,∴∠CA2A1=∠BA1A=×70°=35°;同理可得,∠DA3A2=×70°=17.5°,∠EA4A3=×70°,以此类推,第n个三角形的以A n为顶点的底角的度数=.故答案为:17.5°,.15.如图a是长方形纸带,∠DEF=α°,将纸带沿EF折叠成图b,再沿BF折叠成图c,则图c中的∠CFE的度数是(180﹣3α)°(用含α的代数式表示).【答案】180﹣3α.【解答】解:∵AD∥BC,∠DEF=α°,∴∠BFE=∠DEF=α°,∴∠EFC=180°﹣α°(图a),∴∠BFC=∠BFC=180°﹣α°﹣α°=180°﹣2α°(图b),∴∠CFE=180°﹣2α°﹣α°=180°﹣3α°(图c).故答案为:180﹣3α.三.解答题(共15小题)16.已知ABCD为四边形,点E为边AB延长线上一点.【探究】:(1)如图1,∠ADC=110°,∠BCD=120°,∠DAB和∠CBE的平分线交于点F,则∠AFB=25°;(2)如图2,∠ADC=α,∠BCD=β,且α+β>180°,∠DAB和∠CBE的平分线交于点F,则∠AFB=;(用α,β表示)(3)如图3,∠ADC=α,∠BCD=β,当∠DAB和∠CBE的平分线AG,BH平行时,α,β应该满足怎样的数量关系?请证明你的结论;【挑战】:如果将(2)中的条件α+β>180°改为α+β<180°,再分别作∠DAB和∠CBE的平分线,若两平分线所在的直线交于点F,则∠AFB与α,β有怎样的数量关系?请画出图形并直接写出结论.【答案】(1)25°;(2);(3)若AG∥BH,则α+β=180°;90°﹣.【解答】解:(1)如图1.∵BF平分∠CBE,AF平分∠DAB,∴∠FBE=∠CBE,∠FAB=∠DAB.∵∠D+∠DCB+∠DAB+∠ABC=360°,∴∠DAB+∠ABC=360°﹣∠D﹣∠DCB=360°﹣120°﹣110°=130°.又∵∠F+∠FAB=∠FBE,∴∠F=∠FBE﹣∠FAB===(180°﹣130°)=25°;(2)如图2.由(1)得:∠AFB=,∠DAB+∠ABC=360°﹣∠D﹣∠DCB.∴∠AFB==.(3)若AG∥BH,则α+β=180°.证明:如图3.若AG∥BH,则∠GAB=∠HBE.∵AG平分∠DAB,BH平分∠CBE,∴∠DAB=2∠GAB,∠CBE=2∠HBE.∴∠DAB=∠CBE.∴AD∥BC.∴∠DAB+∠DCB=α+β=180°.挑战:如图4.∵AM平分∠DAB,BN平分∠CBE,∴∠BAM=,.∵∠D+∠DAB+∠ABC+∠BCD=360°,∴∠DAB+∠ABC=360°﹣∠D﹣BCD=360°﹣α﹣β.∴∠DAB+180°﹣∠CBE=360°﹣α﹣β.∴∠DAB﹣∠CBE=180°﹣α﹣β.∵∠ABF与∠NBE是对顶角,∴∠ABF=∠NBE.又∵∠F+∠ABF=∠MAB,∴∠F=∠MAB﹣∠ABF.∴∠F===90°﹣.17.已知直线MN与PQ互相垂直,垂足为O,点A在射线OQ上运动,点B在射线OM上运动,点A,B均不与点O重合.(1)如图1,AI平分∠BAO,BI平分∠ABO,则∠AIB=135°.(2)如图2,AI平分∠BAO交OB于点I,BC平分∠ABM,BC的反向延长线交AI的延长线于点D.①若∠BAO=30°,则∠ADB=45°.②在点A,B的运动过程中,∠ADB的大小是否会发生变化?若不变,求出∠ADB的度数;若变化,请说明理由.(3)如图3,已知点E在BA的延长线上,∠BAO的平分线AI,∠OAE的平分线AF与∠BOP的平分线所在的直线分别相交于点D,F.在△ADF中,如果有一个角的度数是另一个角的3倍,请直接写出∠ABO的度数.【答案】(1)135°;(2)①45°,②不变.∠ADB=45°(3)60°或45°.【解答】解:(1)∵AI平分∠BAO,BI平分∠ABO,∴,∴∠BIC=180°﹣∠IBA﹣∠IAB=====90°+α,∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∴,故答案为:135°.(2)①∵直线MN与PQ互相垂直,垂足为O,∴∠BOA=90°,∵∠BAO=30°,∴∠ABM=120°,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠BAD==15°,∴∠ADB=∠CBA﹣∠BAD=60°﹣15°=45°,故答案为:45.②不变,∠ADB=45°.设∠BAO=α,∵AI平分∠BAO交OB于点I,BC平分∠ABM,∴,∠MBA=90°+α,,∴∠ADB=∠CBA﹣∠BAD=45,∴不变,∠ADB=45°.(3)∵∠BAO的平分线AI,∠OAE的平分线AF,∴∠DAF=90°,∵一个角是另一角的3倍,∴分两种情况讨论:①当∠DAF=3∠ADF时,∠ADF=30°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=15°,∴∠OAB=30°,∴∠OBA=90°﹣30°=60°;②当∠AFD=3∠ADF时,∠ADF=22.5°,∵OF为∠BOP的平分线,∴∠DOA=135°,∴∠OAI=22.5°,∴∠OAB=45°,∴∠OBA=90°﹣45°=45°.∴∠OBA等于60°或45°.18.直线MN与直线PQ垂直相交于O,点A在直线PQ上运动,点B在直线MN上运动.(1)如图1,已知AE、BE分别是∠BAO和∠ABO角的平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM的角平分线,又DE、CE分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小是否会发生变化?若发生变化,请说明理由;若不发生变化,试求出其值.(3)如图3,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ的角平分线及延长线相交于E、F,在△AEF中,如果有一个角是另一个角的3倍,试求∠ABO的度数.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=45°,∴∠AEB=135°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ垂直相交于O,∴∠AOB=90°,∴∠OAB+∠OBA=90°,∴∠PAB+∠MBA=270°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=135°,∴∠F=45°,∴∠FDC+∠FCD=135°,∴∠CDA+∠DCB=225°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=112.5°,∴∠E=67.5°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°.在△AEF中,∵有一个角是另一个角的3倍,故有:①∠EAF=3∠E,∠E=30°,∠ABO=60°;②∠EAF=3∠F,∠E=60°,∠ABO=120°(舍去);③∠F=3∠E,∠E=22.5°,∠ABO=45°;④∠E=3∠F,∠E=67.5°,∠ABO=135°(舍去).∴∠ABO为60°或45°.19.已知AM∥CN,点B为平面内一点,AB⊥BC于B.(1)如图1,直接写出∠A和∠C之间的数量关系∠A+∠C=90°;(2)如图2,过点B作BD⊥AM于点D,求证:∠ABD=∠C;(3)如图3,在(2)问的条件下,点E、F在DM上,连接BE、BF、CF,BF平分∠DBC,BE平分∠ABD,若∠FCB+∠NCF=180°,∠BFC=3∠DBE,求∠EBC的度数.【答案】见试题解答内容【解答】解:(1)如图1,AM与BC的交点记作点O,∵AM∥CN,∴∠C=∠AOB,∵AB⊥BC,∴∠A+∠AOB=90°,∴∠A+∠C=90°,故答案为:∠A+∠C=90°;(2)如图2,过点B作BG∥DM,∵BD⊥AM,∴DB⊥BG,即∠ABD+∠ABG=90°,又∵AB⊥BC,∴∠CBG+∠ABG=90°,∴∠ABD=∠CBG,∵AM∥CN,BG∥AM,∴CN∥BG,∴∠C=∠CBG,∴∠ABD=∠C;(3)如图3,过点B作BG∥DM,∵BF平分∠DBC,BE平分∠ABD,∴∠DBF=∠CBF,∠DBE=∠ABE,由(2)可得∠ABD=∠CBG,∴∠ABF=∠GBF,设∠DBE=α,∠ABF=β,则∠ABE=α,∠ABD=2α=∠CBG,∠GBF=β=∠AFB,∠BFC=3∠DBE=3α,∴∠AFC=3α+β,∵∠AFC+∠NCF=180°,∠FCB+∠NCF=180°,∴∠FCB=∠AFC=3α+β,△BCF中,由∠CBF+∠BFC+∠BCF=180°,可得(2α+β)+3α+(3α+β)=180°,①由AB⊥BC,可得β+β+2α=90°,②由①②联立方程组,解得α=15°,∴∠ABE=15°,∴∠EBC=∠ABE+∠ABC=15°+90°=105°.20.如图,已知直线l1∥l2,l3、l4和l1、l2分别交于点A、B、C、D,点P在直线l3或l4上且不与点A、B、C、D重合.记∠AEP=∠1,∠PFB=∠2,∠EPF=∠3.(1)若点P在图(1)位置时,求证:∠3=∠1+∠2;(2)若点P在图(2)位置时,请直接写出∠1、∠2、∠3之间的关系;(3)若点P在图(3)位置时,写出∠1、∠2、∠3之间的关系并给予证明;(4)若点P在C、D两点外侧运动时,请直接写出∠1、∠2、∠3之间的关系.【答案】见试题解答内容【解答】解:(1)证明:过P作PQ∥l1∥l2,由两直线平行,内错角相等,可得:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPE+∠QPF,∴∠3=∠1+∠2.(2)∠3=∠2﹣∠1;证明:过P作直线PQ∥l1∥l2,则:∠1=∠QPE、∠2=∠QPF;∵∠3=∠QPF﹣∠QPE,∴∠3=∠2﹣∠1.(3)∠3=360°﹣∠1﹣∠2.证明:过P作PQ∥l1∥l2;同(1)可证得:∠3=∠CEP+∠DFP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠CEP+∠DFP+∠1+∠2=360°,即∠3=360°﹣∠1﹣∠2.(4)过P作PQ∥l1∥l2;①当P在C点上方时,同(2)可证:∠3=∠DFP﹣∠CEP;∵∠CEP+∠1=180°,∠DFP+∠2=180°,∴∠DFP﹣∠CEP+∠2﹣∠1=0,即∠3=∠1﹣∠2.②当P在D点下方时,∠3=∠2﹣∠1,解法同上.综上可知:当P在C点上方时,∠3=∠1﹣∠2,当P在D点下方时,∠3=∠2﹣∠1.21.如图1,已知线段AB,CD相交于点O,连接AD,CB,我们把形如图1的图形称之为“8字形”.如图2,在图1的条件下,∠DAB和∠BCD的平分线AP和CP相交于点P,并且与CD,AB分别相交于点M,N,试解答下列问题:(1)在图1中,请直接写出∠A、∠B、∠C、∠D之间的数量关系;(2)在图2中,若∠D=40°,∠B=36°,试求∠P的度数;(3)如果图2中∠D和∠B为任意角时,其他条件不变,试问∠P与∠D、∠B之间存在着怎样的数量关系(直接写出结论即可)【答案】见试题解答内容【解答】解:(1)在△AOD中,∠AOD=180°﹣∠A﹣∠D,在△BOC中,∠BOC=180°﹣∠B﹣∠C,∵∠AOD=∠BOC(对顶角相等),∴180°﹣∠A﹣∠D=180°﹣∠B﹣∠C,∴∠A+∠D=∠B+∠C;(2)∵∠D=40°,∠B=36°,∴∠OAD+40°=∠OCB+36°,∴∠OCB﹣∠OAD=4°,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,又∵∠DAM+∠D=∠PCM+∠P,∴∠P=∠DAM+∠D﹣∠PCM=(∠OAD﹣∠OCB)+∠D=×(﹣4°)+40°=38°;(3)根据“8字形”数量关系,∠OAD+∠D=∠OCB+∠B,∠DAM+∠D=∠PCM+∠P,所以,∠OCB﹣∠OAD=∠D﹣∠B,∠PCM﹣∠DAM=∠D﹣∠P,∵AP、CP分别是∠DAB和∠BCD的角平分线,∴∠DAM=∠OAD,∠PCM=∠OCB,∴(∠D﹣∠B)=∠D﹣∠P,整理得,2∠P=∠B+∠D.22.如图(1),在△ABC中,∠ABC、∠ACB的平分线相交于点O(a)若∠A=60°,求∠BOC的度数;(b)若∠A=n°,则∠BOC=90°+n°;(c)若∠BOC=3∠A,则∠A=36°;(2)如图(2),在△A′B′C′中的外角平分线相交于点O′,∠A′=40°,求∠B′O′C′的度数;(3)上面(1),(2)两题中的∠BOC与∠B′O′C′有怎样的数量关系?【答案】见试题解答内容【解答】解:(1)(a)∵∠ABC、∠ACB的平分线相交于点O,∴∠1=∠ABC,∠2=∠ACB,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣60°)=60°,∴∠BOC =180°﹣60°=120°;(b ))∵∠ABC 、∠ACB 的平分线相交于点O ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=×(180°﹣n °)=90°﹣n °,∴∠BOC =180°﹣(90°﹣n °)=90°+n °.故答案为:90°+n °;(c )∵∠ABC 、∠ACB 的平分线相交于点O ,∠BOC =3∠A ,∴∠1=∠ABC ,∠2=∠ACB ,∴∠1+∠2=(∠ABC +∠ACB )=(180°﹣∠A )=90°﹣∠A ,∴90°﹣∠A +3∠A =180°,解得∠A =36°故答案为:36°;(2)∵∠A ′=40°,∴∠A ′的外角等于180°﹣40°=140°,∵△A ′B ′C ′另外的两外角平分线相交于点O ′,三角形的外角和等于360°,∴∠1+∠2=×(360°﹣140°)=110°,∴∠B ′O ′C ′=180°﹣110°=70°;(3)∵由(1)知,∠BOC =,由(2)知,∠B ′O ′C ′=180°﹣,∴∠B ′O ′C ′=180°﹣∠BOC .23.已知,BC ∥OA ,∠B =∠A =100°,试回答下列问题:(1)如图1所示,求证:OB ∥AC ;(2)如图2,若点E 、F 在BC 上,且满足∠FOC =∠AOC ,并且OE 平分∠BOF .试求∠EOC 的度数;(3)在(2)的条件下,若平行移动AC,如图3,那么∠OCB:∠OFB的比值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值.【答案】见试题解答内容【解答】解:(1)∵BC∥OA,∴∠B+∠O=180°,又∵∠B=∠A,∴∠A+∠O=180°,∴OB∥AC;(2)∵∠B+∠BOA=180°,∠B=100°,∴∠BOA=80°,∵OE平分∠BOF,∴∠BOE=∠EOF,又∵∠FOC=∠AOC,∴∠EOF+∠FOC=(∠BOF+∠FOA)=∠BOA=40°;(3)结论:∠OCB:∠OFB的值不发生变化.理由为:∵BC∥OA,∴∠FCO=∠COA,又∵∠FOC=∠AOC,∴∠FOC=∠FCO,∴∠OFB=∠FOC+∠FCO=2∠OCB,∴∠OCB:∠OFB=1:2=;24.有一款灯,内有两面镜子AB、BC,当光线经过镜子反射时,入射角等于反射角,即图1、图2中的∠1=∠2,∠3=∠4.(1)如图1,当AB⊥BC时,说明为什么进入灯内的光线EF与离开灯的光线GH互相平行.(2)如图2,若两面镜子的夹角为α°(0<α<90)时,进入灯内的光线与离开灯的光线的夹角为β°(0<β<90),试探索α与β的数量关系.(3)若两面镜子的夹角为α°(90<α<180),进入灯内的光线与离开灯的光线所在直线的夹角为β°(0<β<90).直接写出α与β的数量关系.【答案】见试题解答内容【解答】(1)证明:如图1所示:∵∠1=∠2,又∵∠5=180°﹣∠1﹣∠2=180°﹣2∠2,∴∠5=180°﹣2∠2,同理∠6=180°﹣2∠3,∵∠2+∠3=90°,∴∠5+∠6=180°,∴EF∥GH,即进入灯内的光线EF与离开灯的光线GH互相平行.(2)解:2α+β=180°,理由如下:如图2所示:由(1)所证,有∠5=180°﹣2∠2,∠6=180°﹣2∠3,∵∠2+∠3=180°﹣∠α,∴∠β=180°﹣∠5﹣∠6=2(∠2+∠3)﹣180°=2(180°﹣∠α)﹣180°=180°﹣2∴α与β的数量关系为:2α+β=180°,(3)解:2α﹣β=180°.25.如图,四边形ABCD,BE、DF分别平分四边形的外角∠MBC和∠NDC,若∠BAD=α,∠BCD=β.(1)如图1,若α+β=105°,求∠MBC+∠NDC的度数;(2)如图1,若BE与DF相交于点G,∠BGD=45°,请直接写出α,β所满足的数量关系式;(3)如图2,若α=β,判断BE,DF的位置关系,并说明理由.【答案】(1)105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确);(3)BE∥DF,理由见答案.【解答】解:(1)∵四边形ABCD的内角和为360°,∴α+β=∠A+∠BCD=360°﹣(∠ABC+∠ADC),∵∠MBC和∠NDC是四边形ABCD的外角,∴∠MBC=180°﹣∠ABC,∠NDC=180°﹣∠ADC,∴∠MBC+∠NDC=180°﹣∠ABC+180°﹣∠ADC=360°﹣(∠ABC+∠ADC),=105°;(2)β﹣α=90°(或α﹣β=﹣90°等均正确).理由:如图1,连接BD,由(1)有,∠MBC+∠NDC=α+β,∵BE、DF分别平分四边形的外角∠MBC和∠NDC,∴∠CBG=∠MBC,∠CDG=∠NDC,∴∠CBG+∠CDG=∠MBC+∠NDC=(∠MBC+∠NDC)=(α+β),在△BCD中,∠BDC+∠CBD=180°﹣∠BCD=180°﹣β,在△BDG中,∠BGD=45°,∠GBD+∠GDB+∠BGD=180°,∴∠CBG+∠CBD+∠CDG+∠BDC+∠BGD=180°,∴(∠CBG+∠CDG)+(∠BDC+∠CBD)+∠BGD=180°,∴(α+β)+180°﹣β+45°=180°,∴β﹣α=90°.(3)BE∥DF.理由:如图2,过点C作CP∥BE,则∠EBC=∠BCP,∴∠DCP=∠BCD﹣∠BCP=β﹣∠EBC,由(1)知∠MBC+∠NDC=α+β,∵α=β,∴∠MBC+∠NDC=2β,又∵BE、DF分别平分∠MBC和∠NDC,∴∠EBC+∠FDC=(∠MBC+∠NDC)=β,∴∠FDC=β﹣∠EBC,又∵∠DCP=β﹣∠EBC,∴∠FDC=∠DCP,∴CP∥DF,又CP∥BE,∴BE∥DF.26.已知,AB∥CD,点E为射线FG上一点.(1)如图1,若∠EAF=30°,∠EDG=40°,则∠AED=70°;(2)如图2,当点E在FG延长线上时,此时CD与AE交于点H,则∠AED、∠EAF、∠EDG之间满足怎样的关系,请说明你的结论;(3)如图3,DI平分∠EDC,交AE于点K,交AI于点I,且∠EAI:∠BAI=1:2,∠AED=22°,∠I=20°,求∠EKD的度数.【答案】见试题解答内容【解答】解:(1)如图,延长DE交AB于H,∵AB∥CD,∴∠D=∠AHE=40°,∵∠AED是△AEH的外角,∴∠AED=∠A+∠AHE=30°+40°=70°,故答案为:70;(2)∠EAF=∠AED+∠EDG.理由:∵AB∥CD,∴∠EAF=∠EHC,∵∠EHC是△DEH的外角,∴∠EHG=∠AED+∠EDG,∴∠EAF=∠AED+∠EDG;(3)∵∠EAI:∠BAI=1:2,∴设∠EAI=α,则∠BAE=3α,∵∠AED=22°,∠I=20°,∠DKE=∠AKI,又∵∠EDK+∠DKE+∠DEK=180°,∠KAI+∠KIA+∠AKI=180°,∴∠EDK=α﹣2°,∵DI平分∠EDC,∴∠CDE=2∠EDK=2α﹣4°,∵AB∥CD,∴∠EHC=∠EAF=∠AED+∠EDG,即3α=22°+2α﹣4°,解得α=18°,∴∠EDK=16°,∴在△DKE中,∠EKD=180°﹣16°﹣22°=142°.27.如图,在△ABC中,BD、CD分别是∠ABC、∠ACB的平分线,BP、CP分分别是∠ABC、∠ACB的外角平分线.(1)当∠A=40°时,分别求∠D和∠P的度数.(2)当∠A的大小变化时,试探究∠D+∠P的度数是否变化.如果不变化,求出∠D+∠P的值;如果变化,请说明理由.【答案】见试题解答内容【解答】解:(1)在△ABC中,∠ABC+∠ACB=180°﹣∠A,∵BD、CD分别是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠DBC+∠DCB=(∠ABC+∠ACB)=(180°﹣∠A)=90°﹣∠A,在△BCD中,∠BDC=180°﹣(∠DBC+∠DCB)=180°﹣(90°﹣∠A)=90°+∠A=90°+20°=110°;∵BP、CP分别是∠ABC与∠ACB的外角平分线,∴∠CBP=∠CBE,∠BCP=∠BCF,∴∠CBP+∠BCP=∠CBE+∠BCF=(∠CBE+∠BCF)=(∠A+∠ACB+∠A+∠ABC)=(180°+∠A),∴∠BPC=180°﹣(∠CBP+∠BCP)=180°﹣(180°+∠A)=90°﹣∠A=90°﹣×40°=70°.(2)∠D+∠P的值不变.∵由(1)知∠D=90°+∠A,∠P=90°﹣∠A,∴∠D+∠P=180°.28.直线MN与直线PQ相交于O,点A在射线OP上运动,点B在射线OM上运动.(1)如图1,若∠AOB=80°,已知AE、BE分别是∠BAO和∠ABO的角平分线,点A、B在运动的过程中,∠AEB的大小是否会发生变化?若发生变化,请说明变化的情况;若不发生变化,试求出∠AEB的大小.(2)如图2,若∠AOB=80°,已知AB不平行CD,AD、BC分别是∠BAP和∠ABM 的角平分线,AD、BC的延长线交于点F,点A、B在运动的过程中,∠F=50°;DE、CE又分别是∠ADC和∠BCD的角平分线,点A、B在运动的过程中,∠CED的大小也不发生变化,其大小为:∠CED=65°.(3)如图3,若∠AOB=90°,延长BA至G,已知∠BAO、∠OAG的角平分线与∠BOQ 的角平分线及其延长线相交于E、F,则∠EAF=90°;(4)如图3,若AF,AE分别是∠GAO,∠BAO的角平分线,∠AOB=90°,在△AEF 中,如果有一个角是另一个角的4倍,则∠ABO的度数=36°或45°.【答案】见试题解答内容【解答】解:(1)∠AEB的大小不变,∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∵AE、BE分别是∠BAO和∠ABO角的平分线,∴∠BAE=∠OAB,∠ABE=∠ABO,∴∠BAE+∠ABE=(∠OAB+∠ABO)=50°,∴∠AEB=130°;(2)∠CED的大小不变.延长AD、BC交于点F.∵直线MN与直线PQ相交于O,∴∠AOB=80°,∴∠OAB+∠OBA=80°,∴∠PAB+∠MBA=280°,∵AD、BC分别是∠BAP和∠ABM的角平分线,∴∠BAD=∠BAP,∠ABC=∠ABM,∴∠BAD+∠ABC=(∠PAB+∠ABM)=140°,∴∠F=50°,∴∠FDC+∠FCD=140°,∴∠CDA+∠DCB=220°,∵DE、CE分别是∠ADC和∠BCD的角平分线,∴∠CDE+∠DCE=115°,∴∠E=65°;故答案为:50°,65°;(3)∵∠BAO与∠BOQ的角平分线相交于E,∴∠EAO=∠BAO,∠EOQ=∠BOQ,∴∠E=∠EOQ﹣∠EAO=(∠BOQ﹣∠BAO)=∠ABO,∵AE、AF分别是∠BAO和∠OAG的角平分线,∴∠EAF=90°;故答案为:90°;(4)在△AEF中,∵有一个角是另一个角的4倍,故有:①∠EAF=4∠E,∠E=22.5°,∠ABO=45°;②∠EAF=4∠F,∠E=67.5°,∠ABO=135°(舍去);③∠F=4∠E,∠E=18°,∠ABO=36°;④∠E=4∠F,∠E=72°,∠ABO=144°(舍去).∴∠ABO为36°或45°.故答案为:36°或45°.29.(1)如图1,AC平分∠DAB,∠1=∠2.求证:AB∥CD;(2)如图2,在(1)的条件下,AB的下方两点E、F,满足:BF平分∠ABE,CF平分∠DCE,若∠CFB=20°,∠DCE=70°,求∠ABE的度数;(3)如图3,在(1)、(2)的条件下,若P是射线BE上一点,G是CD上任一点,PQ 平分∠BPG,PQ∥GN,GM平分∠DGP,求∠MGN的度数.【答案】见试题解答内容【解答】(1)证明:∵AC平分∠DAB,∴∠1=∠CAB,∵∠1=∠2,∴∠2=∠CAB,∴AB∥CD;(2)解:如图2,∵BF平分∠ABE,CF平分∠DCE,∴∠DCF=∠DCE=35°,∠ABE=2∠ABF,∵CD∥AB,∴∠2=∠DCF=35°,∵∠2=∠CFB+∠ABF,∠CFB=20°,∴∠ABF=15°,∴∠ABE=2∠ABF=30°;(3)解:如图3,根据三角形的外角性质,∠1=∠BPG+∠B,∵PQ平分∠BPG,GM平分∠DGP,∴∠GPQ=∠BPG,∠MGP=∠DGP,∵AB∥CD,∴∠1=∠DGP,∴∠MGP=(∠BPG+∠B),∵PQ∥GN,∴∠NGP=∠GPQ=∠BPG,∴∠MGN=∠MGP﹣∠NGP=(∠BPG+∠B)﹣∠BPG=∠B,根据前面的条件,∠B=30°,∴∠MGN=×30°=15°.30.将一副三角板中的两块直角三角尺的直角顶点O按如图方式叠放在一起.(1)如图(1)若∠BOD=35°,求∠AOC的度数,若∠AOC=135°,求∠BOD的度数.(2)如图(2)若∠AOC=150°,求∠BOD的度数.(3)猜想∠AOC与∠BOD的数量关系,并结合图(1)说明理由.(4)三角尺AOB不动,将三角尺COD的OD边与OA边重合,然后绕点O按顺时针或逆时针方向任意转动一个角度,当∠AOD(0°<∠AOD<90°)等于多少度时,这两块三角尺各有一条边互相垂直,直接写出∠AOD角度所有可能的值,不用说明理由.【答案】见试题解答内容【解答】解:(1)若∠BOD=35°,∵∠AOB=∠COD=90°,∴∠AOC=∠AOB+∠COD﹣∠BOD=90°+90°﹣35°=145°,若∠AOC=135°,则∠BOD=∠AOB+∠COD﹣∠AOC=90°+90°﹣135°=45°;(2)如图2,若∠AOC=150°,则∠BOD=360°﹣∠AOC﹣∠AOB﹣∠COD=360°﹣150°﹣90°﹣90°=30°;(3)∠AOC与∠BOD互补.∵∠AOB=∠COD=90°,∴∠AOD+∠BOD+∠BOD+∠BOC=180°.∵∠AOD+∠BOD+∠BOC=∠AOC,∴∠AOC+∠BOD=180°,即∠AOC与∠BOD互补.(4)OD⊥AB时,∠AOD=30°,CD⊥OB时,∠AOD=45°,CD⊥AB时,∠AOD=75°,OC⊥AB时,∠AOD=60°,即∠AOD角度所有可能的值为:30°、45°、60°、75°.。

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)

七年级数学下册综合算式专项练习题使用分配律的乘法运算(含有负数)在数学中,乘法是一项基本运算。

而分配律则是乘法运算中的重要性质之一。

在本篇文章中,我们将介绍一些综合算式专项练习题,这些题目将帮助我们更好地理解和应用分配律的乘法运算。

同时,这些练习题也包含了负数的运算,帮助我们更深入地理解数学中的负数概念。

让我们开始吧!1. 计算下列表达式:(-3) × (4 + 5)解答:首先,根据分配律,我们可以将这个算式分解为两个部分,即(-3) ×4和(-3) × 5。

然后,我们分别计算这两个部分:(-3) × 4 = -12(-3) × 5 = -15最后,将这两个部分的结果相加:-12 + (-15) = -27因此,(-3) × (4 + 5) = -27。

2. 计算下列表达式:(-2) × (-7 + 3)解答:× (-7)和(-2) × 3。

然后,我们分别计算这两个部分:(-2) × (-7) = 14(-2) × 3 = -6最后,将这两个部分的结果相加:14 + (-6) = 8因此,(-2) × (-7 + 3) = 8。

3. 计算下列表达式:(-5) × (10 - 2)解答:按照分配律,我们将这个算式分解为两个部分,即(-5) × 10和(-5) ×(-2)。

然后,我们分别计算这两个部分:(-5) × 10 = -50(-5) × (-2) = 10最后,将这两个部分的结果相加:-50 + 10 = -40因此,(-5) × (10 - 2) = -40。

4. 计算下列表达式:2 × (-6 + 3)解答:× (-6)和2 × 3。

然后,我们分别计算这两个部分:2 × (-6) = -122 ×3 = 6最后,将这两个部分的结果相加:-12 + 6 = -6因此,2 × (-6 + 3) = -6。

初一下学期数学综合卷及答案

初一下学期数学综合卷及答案

七 年 级 数 学 试 题一、选择题(共10个小题。

每小题2分,共20分)1.下列计算正确的是( ).A 、3332x x x ⋅=B .235()x x =C .358x x x +=D .444()xy x y =2.下列命题中正确的有( ).①相等的角是对顶角; ②若a//b ,b//c ,则a ∥c ;③同位角相等; ④邻补角的平分线互相垂直.A 、0个B .1个C .2个D .3个3.已知a<b ,则下列不等式一定成立的是( ).A 、55a b +>+B .22a b -<-C .3322a b > D 、770a b -<4.如图,由AD ∥BC 可以得到的结论是( ).A 、∠1=∠2B .∠1=∠4C 、∠2=∠3D .∠3=∠45.利用数轴确定不等式组102x x +≥⎧⎨<⎩的解集,正确的是( ).6.已知点A(1,0), B(0,2),点P 在x 轴上,且△PAB 的面积为5,则点P 的坐标为( )A 、(-4,0)B 、(6,0)C 、(-4,0)或(6,0)D 、无法确定7.一个多边形的每一个外角都等于40。

,那么这个多边形的内角和为( ).A 、1260°B .900°C 、1620°D .360°8.已知(2)(1)x kx --化简后的结果中不含有x 的一次项,则k 的值为( ).A 、一1B .—12 C 、12 D .19.若关于x ,y 的二元一次方程组42x y k x y k -=⎧⎨+=⎩的解也是二元一次方程210x y -=的解,则k 的值为( ). A 、2 B .一2 C 、0.5 D .一0.510.已知正整数a 、b 、c 中,c 的最大值为6,且a <b <c ,则以a 、b 、c 为三边的三角形共有( ).A 、4个B .5个C .6个D .7个二、填空题(共6个小题,每小题3分.共18分)11.如图,AB ∥CD ,∠A=32°,∠C=70°,则∠F=___________。

冀教版数学七年级下册综合训练100题含答案

冀教版数学七年级下册综合训练100题含答案

冀教版数学七年级下册综合训练100题含答案(单选题、多选题、填空题、解答题)一、单选题1.把22a a -分解因式,正确的是( ) A .()2a a - B .()2a a +C .()222a -D .()2a a -【答案】A【分析】提取公因式a 即可. 【详解】解:22=(2)a a a a --, 故选A .【点睛】本题考查了分解因式,熟练掌握提取公因式法分解因式是解题关键. 2.北斗三号全球卫星导航系统正式开通运行,北斗导航系统创新融合了导航与通信能力,亚太地区通信能力可以达到每次14000比特,能传输文字,还可以传输语音和图片.其中,数字14000用科学记数法可表示为( ) A .14×103 B .1.4×103C .14×104D .1.4×104【答案】D【分析】根据科学记数法-表示较大的数求解. 【详解】数字14000用科学记数法可表示为1.4×104. 故选:D .【点睛】本题考查了科学记数法(将一个数字表示成 a ×10的n 次幂的形式,其中1≤|a |<10,n 表示整数) .3.如图,已知∠1=39°,∠2=39°,∠3=54°,则∠4的度数是( )A .39°B .51°C .54°D .126°【答案】D【分析】由已知可得∠1=∠2,进而可得AB ∠CD ,然后根据平行线的性质解答即可. 【详解】解:∠∠1=39°,∠2=39°, ∠∠1=∠2,∠AB∠CD,∠∠3+∠4=180°,∠∠3=54°,∠∠4=126°,故选:D.【点睛】本题考查了平行线的判定和性质,属于基础题型,熟练掌握平行线的判定和性质是解题关键.4.下列运算结果中正确的是()A.a2•a3=a6B.(a3)3=a6C.(﹣2a)3=﹣2a3D.a2+a2=2a2【答案】D【分析】根据同底数幂的乘法、幂的乘方、积的乘方及合并同类项可进行排除选项.【详解】解:A、a2⋅a3=a5,故原计算错误,该选项不符合题意;B、(a3)3=a9,故原计算错误,该选项不符合题意;C、(-2a)3=-8a3,原计算错误,该选项不符合题意;D、a2+ a2=2 a2,正确,该选项符合题意;故选:D .【点睛】本题主要考查同底数幂的乘法、幂的乘方、积的乘方及合并同类项,熟练掌握同底数幂的乘法、幂的乘方、积的乘方及合并同类项的运算法则是解题的关键.5.在同一平面内有三条直线,若其中有两条且只有两条直线平行,则这三条直线交点的个数为()A.0B.1C.2D.3【答案】C【分析】同一平面内有三条直线,如果其中只有两条平行,则第三条直线与这两条直线各有一个交点.【详解】解:根据题意,第三条直线与这两条平行直线各有一个交点.故选:C.【点睛】本题主要考查了同一平面内,一条直线与两条平行线的位置关系,要么平行,要么相交.6.下列各式从左到右属于因式分解的是( ) A .xy 2(x ﹣1)=x 2y 2﹣xy 2B .(a +3)(a ﹣3)=a 2﹣9C .2021a 2﹣2021=2021(a +1)(a ﹣1)D .x 2+x ﹣5=(x ﹣2)(x +3)+1【答案】C【分析】根据因式分解的定义逐项判断即可.【详解】解:A .xy 2(x ﹣1)=x 2y 2﹣xy 2,是整式乘法,不是因式分解,故本选项不符合题意;B .(a +3)(a ﹣3)=a 2﹣9,是整式乘法,不是因式分解,故本选项不符合题意;C .2021a 2﹣2021=2021(a +1)(a ﹣1),从左边到右边变形是因式分解,故本选项符合题意;D .x 2+x ﹣5=(x ﹣2)(x +3)+1,等式右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意; 故选C .【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解. 7.下列各数属于用科学记数法表示的是( ) A .410610⨯ B .60.10610⨯C .63.510⨯D .63610⨯【答案】C【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:A .106×104,106>10,故用科学记数法表示错误; B .0.106×106,0.106<1,故用科学记数法表示错误; C .3.5×106,用科学记数法表示正确;D .36×106,36>10,故用科学记数法表示错误. 故选:C .【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 8.下列图形中具有稳定性的是( ) A .梯形 B .长方形C .平行四边形D .钝角三角形【答案】D【分析】根据三角形具有稳定性解答即可.【详解】解:A 、梯形不具有稳定性,不符合题意; B 、长方形不具有稳定性,不符合题意; C 、平行四边形不具有稳定性,不符合题意; D 、钝角三角形具有稳定性,符合题意; 故选:D .【点睛】本题考查的是三角形的稳定性,熟记三角形具有稳定性是解题的关键. 9.若22-()-)(-3x x m x n x =+,则m +n 的值为( ) A .4 B .8 C .-4 D .6【答案】A【分析】利用多项式乘以多项式法则计算,根据多项式相等的条件求出m 与n 的值即可.【详解】由()()()222333x x m x n x x n x n --=+-=+--,可得23n -=-,3m n -=-, 解得: 1n =,3m =. ∠314m n +=+=, 故选择:A .【点睛】本题考查了多项式乘以多项式的计算,根据多项式相等的条件求出m 与n 的值是解题的关键.10.已知(m +n )2=18,(m ﹣n )2=2,那么m 2 +n 2=( ) A .20 B .10 C .16 D .8【答案】B【分析】根据完全平方公式可得()222218m n m mn n +=++=,()22222m n m mn n -=-+=,再把两式相加即可求得结果.【详解】由题意得()222218m n m mn n +=++=,()22222m n m mn n -=-+=, 把两式相加可得:()()22222222222()20m n m n m mn n m mn n m n +-=++-+=+=++,则2210m n +=, 故选:B .【点睛】本题主要考查了完全平方公式的知识,熟练掌握完全平方公式是解答本题的关键.11.如图,直线a∠b,点B在直线b上,且AB∠BC,∠1=55°,则∠2的度数为()A.35°B.45°C.55°D.75°【答案】A【分析】求出∠ABC=90°,根据平角求出∠3,根据平行线的性质得出∠2=∠3,即可得出答案.【详解】∠AB∠BC,∠∠ABC=90°,∠∠1=55°,∠∠3=180°−55°−90°=35°,∠直线a∠b,∠∠3=∠2=35°,故选A.【点睛】本题考查平行线的性质,解题的关键是掌握平行线的性质.12.如图所示:若m∠n,∠1=105°,则∠2=()A.55°B.60°C.65°D.75°【答案】D【分析】由m∠n,根据“两直线平行,同旁内角互补”得到∠1+∠2=180°,然后把∠1=105°代入计算即可得到∠2的度数.【详解】∠m∠n,∠∠1+∠2=180°(两直线平行,同旁内角互补),而∠1=105°,∠∠2=180°-105°=75°.故选D.【点睛】本题考查了平行线的性质:两直线平行,同旁内角互补. 13.已知216y my -+是关于y 的完全平方式,则m 的值为( ) A .9 B .±9C .36D .±36【答案】A【分析】由题意先利用完全平方公式对式子进行变形,再根据完全平方公式的乘积二倍项即可确定m 的值.【详解】解:因为216y my -+是关于y 的完全平方式, 所以22211+1623y y my my =-⨯⨯-+,则有22=(3)y y m 解得9m =. 故选:A.【点睛】本题主要考查完全平方式,熟练掌握完全平方公式是解题的关键. 14.如图,已知∠1=∠2,则有( )A .AD ∠BCB .AB ∠CDC .∠ABC =∠ADCD .AB ∠CD【答案】B【分析】根据平行线的判定解答即可. 【详解】∠∠1=∠2, ∠AB ∠CD , 故选:B .【点睛】此题考查平行线的判定和性质问题,解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题是一道探索性条件开放性题目,能有效地培养学生“执果索因”的思维方式与能力.15.据国家新闻出版广电总局电影局数据,2017年国庆中秋节假期全国城市影院电影票房约26亿元,总票房创下该档期新纪录,26亿用科学记数法表示正确的是 ( ) A .26×108 B .2.6×108C .26×109D .2.6×109【答案】D【详解】分析:由科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.详解:26亿=2600000000=2.6×109.点睛:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 16.下列命题是真命题的是 A .无限小数是无理数B .相反数等于它本身的数是0和1C .对角线互相平分且相等的四边形是矩形D .等边三角形既是中心对称图形,又是轴对称图形 【答案】C【详解】分析是否为真命题,需要分别分析各题设是否能推出结论,从而利用排除法得出答案.A 、无限小数不一定是无理数,无限循环小数不有理数,故原命题是假命题;B 、相反数等于它本身的数只是0,故原命题是假命题;C 、对角线互相平分且相等的四边形是矩形,故原命题是真命题;D 、等边三角形是轴对称图形,不是中心对称图形,故原命题是假命题. 故选C .17.已知x a m =,y a n =,则23x y a +的值为( ) A .23m n + B .23m n +C .23m nD .23m n【答案】C【分析】先根据同底数幂的乘法进行变形,再根据幂的乘方变形,最后整体代入求出即可.【详解】解:x a m =,y a n =,23232323()()x y x y x y a a a a a m n +∴===,故选:C .【点睛】本题考查了同底数幂的乘法,幂的乘方的应用,能灵活运用法则进行变形是解此题的关键,用了整体代入思想.18.如图,l 1∠l 2,将一副直角三角板作如下摆放,图中点A 、B 、C 在同一直线上,∠1=80°,则∠2的度数为( )A .100°B .120°C .130°D .150°【答案】C【分析】过点C 作CM ∠l 1,则l 1∠l 2∠CM ,根据平行线的性质及角的和差求解即可. 【详解】解:如图,过点C 作CM ∠ l 1,∠l 1∠l 2, ∠l 1∠l 2∠CM ,∠∠1+∠ECM =180°,∠2=∠ACM , ∠∠1=80°,∠∠ECM =180°-80°=100°, ∠∠ACE =30°,∠∠ACM =∠ACE +∠ECM =30°+100°=130°, ∠∠2=∠ACM =130°. 故选C .【点睛】此题考查了平行线的判定与性质,解题的关键熟记两直线平行、同旁内角互补,两直线平行、同位角相等.19.小时候我们常常唱的一首歌“小燕子穿花衣,年年春天来这里”,研究表明小燕子从北方飞往南方过冬,迁徙路线长达25 000千米左右,将数据25 000用科学记数法表示为( ) A .32510⨯ B .42.510⨯C .52.510⨯D .50.2510⨯【答案】B【分析】科学记数法的表示形式为a ×10n 的形式,其中1≤|a |<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>10时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】解:25000=42.510⨯,【点睛】此题考查科学记数法,注意n 的值的确定方法,当原数大于10时,n 等于原数的整数数位减1,按此方法即可正确求解. 20.下列方程中,是二元一次方程的是( ) A .235x y -= B .21x x +=C .12x x +=D .8xy =21.能用下列三根长度的木棒摆成三角形的是( ) A .3cm ,8cm ,4cm B .8cm ,7cm ,15cm C .11cm ,5cm ,5cm D .13cm ,12cm ,20cm【答案】D【分析】根据最短的两根木棒长度和大于第三根木棒长度即可组成三角形进行判断. 【详解】解:A 、348+<,故不能摆成三角形; B 、8715+=,故不能摆成三角形; C 、5511+<,故不能摆成三角形; D 、121320+>,故能摆成三角形; 故选:D .【点睛】此题考查了三角形组成的条件:最短的两边和大于第三边即可组成三角形,熟记组成条件是解题的关键.22.在“(1)同位角相等(2)两直线平行(3)是判定(4)是性质”中,语序排列有(a ).(1)(2)(4);(b ).(1)(2)(3);(c ).(2)(1)(3);(d ).(2)(1)(4),其中语序排列正确的个数有( ) A .0个B .1个C .2个D .3个【分析】根据两直线平行,同位角相等是性质,同位角相等,两直线平行式判定进行求解即可.【详解】解:两直线平行,同位角相等是性质,同位角相等,两直线平行式判定, ∠b 和d 正确, 故选C .【点睛】本题主要考查了平行线的性质与判定,解题的关键在于能够熟练掌握平行线的性质与判定条件.23.中国的《九章算术》是世界现代数学的两大源泉之一,其中有一问题:“今有牛五、羊二,直金十两,牛二、羊五,直金八两”.问牛、羊各直金几何?“译文:今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”.问牛、羊每头各值金多少设牛、羊每头各值金x 两、y 两,依题意,可列出方程组为( )A .5210258x y y x +=⎧⎨+=⎩B .5210258x y x y +=⎧⎨+=⎩C .2582510x y x y +=⎧⎨+=⎩D .2510258x y x y +=⎧⎨+=⎩【答案】B【分析】根据“今有牛5头,羊2头,共值金10两;牛2头,羊5头,共值金8两”,即可得出关于x ,y 的二元一次方程组,此题得解.【详解】解:依题意得:5210258x y x y +=⎧⎨+=⎩,故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.24.某班学生分组搞活动,若每组7人,则余下4人;若每组8人,则有一组少3人.设全班有学生x 人,分成y 个小组,则可得方程组( )A .7483x y x y +=⎧⎨-=⎩B .7483y x y x =-⎧⎨=+⎩C .7483y x y x =-⎧⎨+=⎩D .7483y x y x =+⎧⎨=+⎩【答案】B【分析】此题中的关键性的信息是:①若每组7人,则余下4人;②若每组8人,则有一组少3人.据此即可得出关于x ,y 的二元一次方程组. 【详解】解:根据若每组7人,则余下4人,得方程74y x =-; 根据若每组8人,则有一组少3人,得方程83y x =+.可列方程组为7483y x y x =-⎧⎨=+⎩.故选:B .【点睛】本题考查了由实际问题抽象出二元一次方程组,找准等量关系,正确列出二元一次方程组是解题的关键.25.若221193a ma a ⎛⎫++=- ⎪⎝⎭,则m 的值为( ).A .2B .3C .23-D .2326.下列计算正确的是( ) A .a 2•a 4=a 8 B .(-2a 2)3=-6a 6 C .a 4÷a =a 3 D .2a +3a =5a 2【答案】C【分析】根据同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项逐个选项判断即可.【详解】A 、a 2•a 4=a 6,故A 错误; B 、(-2a 2)3=-8a 6,故B 错误; C 、a 4÷a =a 3,故C 正确; D 、2a +3a =5a ,故D 错误, 故选:C .【点睛】本题考查了同底数幂的乘法、积的乘方、同底数幂的除法、合并同类项,熟记法则并根据法则计算是解题关键.27.下列各式从左到右的变形中,为因式分解的是( ) A .211()x x x x+=+B .22()a b ab ab a b +=+C .25(2)(3)x x x x +-=-+D .2(3)(3)9a a a +-=-【答案】B【分析】直接利用因式分解的定义分析得出答案.28.如图,在ABC 中,∠52A =︒,ABC ∠和∠ACD 的平分线交于点1A ,得1A ∠,1A BC ∠和1A CD ∠的平分线交于点2A ,得∠2A ,同理可得3A ∠,则3∠=A ______度.A .26°B .15°C .10°D .6.5°29.以方程组2127x y t x y t +=-⎧⎨-=+⎩的解x ,y 分别作为某个点的横、纵坐标,得到一个点(x ,y),若点(x ,y)在第四象限,则t 的取值范围是( ) A .-5<t <-2 B .t >-2 C .-2<t <5 D .t >-5【答案】B【详解】解这个方程组得2{5x t y t =+=-- ,又因点(x ,y )在第四象限,可得20{50t t +--,解得t>-2,故选B. 点睛:先求出解方程组的解,然后根据第四象限内点的坐标特征,列出关于t 的不等式组,从而得出t 的取值范围.30.如图,直线AB 、CD 被直线EF 所截,∠1=50°,下列说法错误的是( )A .如果∠5=50°,那么AB∠CDB .如果∠4=130°,那么AB∠CDC .如果∠3=130°,那么AB∠CD D .如果∠2=50°,那么AB∠CD【答案】D【详解】试题分析:根据平行线的判定定理对各选项进行逐一判断即可. 解:A 、∠∠1=∠2=50°,∠若∠5=50°,则AB∠CD ,故本选项正确; B 、∠∠1=∠2=50°,∠若∠4=180°﹣50°=130°,则AB∠CD ,故本选项正确; C 、∠∠3=∠4=130°,∠若∠3=130°,则AB∠CD ,故本选项正确;D 、∠∠1=∠2=50°是确定的,∠若∠2=150°则不能判定AB∠CD ,故本选项错误. 故选D .考点:平行线的判定.二、多选题31.下面各组线段中,能组成三角形的是( ) A .3,6,3 B .10,5,4C .7,8,14D .2,3,4【答案】CD【分析】根据三角形的三边关系,即可求解. 【详解】解:A 、∠336+=,∠不能组成三角形,故本选项不符合题意; B 、∠5410+<,∠不能组成三角形,故本选项不符合题意; C 、7814+>,∠能组成三角形,故本选项符合题意; D 、∠234+>,∠能组成三角形,故本选项符合题意; 故选:CD【点睛】本题主要考查了三角形的三边关系,熟练掌握三角形的两边之和大于第三边,两边之差小于第三边是解题的关键.32.如图,AB CD ∥,EF 交AB ,CD 于点M ,N ,连接DA 并延长交EF 于点E ,连接BC 并延长交EF 于点F .下列结论正确的是( ).A .12∠=∠B .3B ∠=∠C .E F ∠=∠D .45∠=∠【答案】AD【分析】根据平行线的性质:两直线平行,同位角相等,内错角相等即可得出结果. 【详解】解:∠AB ∠CD , ∠∠1=∠2,∠4=∠5, 故选:AD .【点睛】题目主要考查平行线的性质,熟练掌握运用平行线的性质是解题关键. 33.下列实数是不等式529x x ≥+的解为( )A .2B .C .3.5D .【答案】CD【分析】根据一元一次不等式的解法,移项、合并,系数化为1求出不等式的解集,再根据各选项确定答案. 【详解】解:移项得,5x −2x ≥9, 合并同类项得,3x ≥9,34.下列说法不正确的是( ) A .x =﹣3是不等式x >﹣2的一个解 B .x =﹣1是不等式x >﹣2的一个解 C .不等式x >﹣2的解是x =﹣3 D .不等式x >﹣2的解是x =﹣1【答案】ACD【分析】根据不等式解集和解的概念求解可得.【详解】解:A 、∠32-<- ,∠x =﹣3不是不等式x >﹣2的一个解,此选项符合题意;B .∠12->- ,∠x =﹣1是不等式x >﹣2的一个解,此选项不符合题意;C .不等式x >﹣2的解有无数个,此选项符合题意;D .不等式x >﹣2的解有无数个,此选项符合题意; 故选ACD .【点睛】本题主要考查不等式的解集,不等式的解是一些具体的值,有无数个,用符号表示;不等式的解集是一个范围,用不等号表示,不等式的每一个解都在它的解集的范围内.35.下列计算不正确的是( ) A .551023a a a += B .22422a a a = C .352()a a =D .()22349a b a b -=【答案】ACD【分析】根据合并同类项、单项式乘单项式、幂的乘方、积的乘方和幂的乘方进行运算后即可判断.【详解】解:A .55523a a a +=,错误,符合题意; B .22422a a a =,正确,不符合题意; C .236()a a =,错误,符合题意; D .()22346a b a b -=,错误,符合题意.故选:ACD .【点睛】此题考查了合并同类项、单项式乘单项式、幂的乘方、积的乘方等知识,熟练掌握法则是解题的关键. 36.下列运算错误的是( ) A .(﹣2xy ﹣1)﹣3=6x 3y 3 B .2(2)4--=- C .352(2)3a a a -÷=5a 3 D .(-x )7÷x 2=-x 537.若()2214x k x --+是完全平方式,则k 的值为( ).A .2-B .1-C .2D .3【答案】BD【分析】由完全平方式的特点可得214k 或214,k 再解方程即可.【详解】解: ()2214x k x --+是完全平方式,214k 或214,k解得:1k =-或3,k = 故选BD .【点睛】本题考查的是完全平方式的特点,掌握“利用完全平方式的特点建立方程求解”是解本题的关键.38.如图,AB ∠EF ∠DC ,EG ∠BD , 则图中与∠1相等的角有( )A .∠DHEB .∠DBAC .∠CDBD .∠DEF【答案】ABC【分析】根据平行线的性质进行分析判断. 【详解】解:∠AB ∠EF ∠DC ,EG ∠BD , ∠∠1=∠DBA (两直线平行,同位角相等), ∠DBA =∠DHE (两直线平行,同位角相等), ∠DBA =∠CDB (两直线平行,内错角相等), ∠DEF =∠A (两直线平行,同位角相等), ∠∠1=∠DHE =∠DBA =∠CDB , 故选:ABC .【点睛】考查了平行线的性质.此题平行线较多,涉及的角也较多,正确灵活运用性质,做到不重不漏是关键.39.已知22(3)16x m x --+是一个完全平方式,则m 的值是( ) A .7- B .1 C .-1 D .7【答案】CD【分析】先将原式变形为()22234x m x +-+,根据题意可得()23=8m -±,解出m ,即可求解.【详解】解:∠()22316x m x +-+是一个完全平方式,∠()()22222=2423162344x x x m x x m x +-+=+-±⨯++,∠()23=8m -±,即()23=8m -或()23=8m --, 解得:7m = 或1m =- . 故选CD .【点睛】本题主要考查了完全平方式的特征,熟练掌握完全平方公式含有三项:首平方,尾平方,首尾二倍在中央,首尾同号是解题的关键. 40.方程4316x y +=的所有非负整数解为( )A .14x y =⎧⎨=⎩B .22x y =⎧⎨=⎩C .28x y =-⎧⎨=⎩D .40x y =⎧⎨=⎩【详解】解: 41.下列不等式变形一定成立的是( ) A .若22a c b c ->-,则a b < B .若a b >,则ac bc -<- C .若22ac bc >,则22a b -<- D .若||||a bc c >,则a b >42.下列选项中,能利用图形的面积关系解释平方差公式的是( )A .B .C .D .【答案】ACD【分析】根据两个图象中的阴影部分的面积相等进行验证.【详解】解:A 、阴影部分的面积22a b - =(a +b )(a -b ),是平方差公式,故本选项符合题意;B 、阴影部分的面积2a •2b =4ab =()()22a b a b +--,不是平方差公式,故本选项不符合题意;C 、阴影部分的面积22a b -=(a +b )(a -b ),是平方差公式,故本选项符合题意;D 、阴影部分的面积22a b -=(a +b )(a -b ),是平方差公式,故本选项符合题意; 故选:ACD .【点睛】本题考查了整式的乘法公式,用整式表示图形的面积是解题的关键. 43.已知直线l 外一点P 到直线l 上两点,A B 的距离分别为6和7,则点P 到直线l 的距离可能为( ) A .4 B .5 C .6 D .7【答案】ABC【分析】根据点到直线的距离是垂线段的长度,可得答案.【详解】点P 为直线l 外一点,当点P 到直线l 上两点A ,B 的距离分别为6和7,则点P 到直线l 的距离不大于6.故选ABC .【点睛】本题考查了点到直线的距离,点到直线的距离是垂线段的长度,利用垂线段最短是解题关键.44.下列说法中不正确的是( ) A .图形平移的方向只有水平方向和竖直方向 B .图形平移后,它的位置、大小、形状都不变 C .图形平移的方向不是唯一的,可向任何方向平行移动 D .图形平移后对应线段不可能在一直线上【答案】ABD【分析】图形的平移可以是各个方向的移动,平移后对应点的连线互相平行,平移后图形的大小,形状都没有发生改变,只是位置的变动,由此进行逐一判断即可. 【详解】解:A 、图形平移的方向可以是任意方向,故此选项符合题意; B 、图形平移后,它的大小、形状都不变,位置会发生变化,故此选项符合题意; C 、图形平移的方向不是唯一的,可向任何方向平行移动,故此选项不符合题意; D 、图形平移后对应线段可能在一直线上,故此选项符合题意; 故选ABD .【点睛】本题主要考查了图形的平移问题,解题的关键在于能够熟练掌握平移的概念.45.如图,为估计池塘岸边A ,B 两点间的距离,小方在池塘的一侧选取一点O ,测得8OA =米,6OB =米,A ,B 间的距离可能是( )A .12米B .10米C .15米D .8米【答案】ABD【分析】根据三角形的三边之间的关系逐一判断即可得到答案. 【详解】解:△AOB 中,8,6,AO BO ==86∴-<AB <86,+2∴<AB <14,,,A B D ∴符合题意,C 不符合题意; 故选:,,.A B D【点睛】本题考查的是三角形的三边关系的应用,掌握三角形的任意两边之和大于第三边,任意两边之差小于第三边是解题的关键.46.如果实数m ,n 满足m n >,那么下列不等式正确的是( ) A .2m nm +< B .2m nm +> C .2m nn +< D .2m nn +> 【答案】AD【分析】根据不等式的性质对各选项进行判断即可.47.将多项式244x +加上一个单项式后,使它能成为另一个整式的完全平方,下列添加单项式正确的是( )A .4xB .8xC .8x -D .4x 【答案】BCD【分析】把244x +分别加上各选项的单项式,再按完全平方公式分解因式即可得到答案.【详解】解:()2244+441x x x x +=++不是完全平方式,故A 不符合题意; ()()22244+842141,x x x x x +=++=+是完全平方式,故B 符合题意;()()22244842141,x x x x x +-=-+=-是完全平方式,故C 符合题意;()2242442,x x x ++=+是完全平方式,故D 符合题意; 故选:,,.B C D【点睛】本题考查的是完全平方式,利用完全平方公式分解因式,理解完全平方式是解题的关键.48.(多选)如图,已知GF AB ⊥,12∠=∠,B AGH ∠=∠,则下列结论正确的有( )A .GH BC ∥B .DE FG ∥C .HE 平分AHG ∠D .HE AB ⊥ 【答案】ABD 【分析】根据平行线的性质和判定逐个判断即可.【详解】解:∠B AGH ∠=∠,∠GH BC ∥,故A 正确;∠1HGF ∠=∠,∠12∠=∠,∠2HGF ∠=∠,∠DE FG ∥,故B 正确;∠DE FG ∥,∠F AHE ∠=∠,∠12D ∠=∠=∠,∠2∠不一定等于AHE ∠,故C 错误;∠GF AB ⊥,GF HE ∥,∠HE AB ⊥,故D 正确;故选:ABD【点睛】本题考查了平行线的性质和判定,能灵活运用定理进行推理是解此题的关键,注意:平行线的判定定理有:∠同位角相等,两直线平行,∠内错角相等,两直线平行,∠同旁内角互补,两直线平行,反之亦然.49.已知关于x ,y 的方程组3453x y a x y a+=-⎧⎨-=⎩,给出下列结论,其中正确的有( ) A .5,1x y =⎧⎨=-⎩是方程组的解 B .x ,y 的值都为非负整数的解有4个C .x ,y 的值可能互为相反数D .当1a =时,方程组的解也是方程4x y a +=-的解的未知数的值.50.某数学兴趣小组对关于x 的不等式组3x x m >⎧⎨≤⎩讨论得到以下结论,其中正确的是( )A .若5m =,则不等式组的解集为35x <≤B .若不等式组无解,则m 的取值范围为3m <C .若2m =,则不等式组的解集为32x <≤D .若不等式组有解,则m 的取值范围为3m > 【答案】AD【分析】按照解一元一次不等式组的步骤,进行计算即可解答.【详解】解:A 、若m =5,则不等式组的解集为3<x ≤5,故A 符合题意;B 、若不等式组无解,则m 的取值范围为m ≤3,故B 不符合题意;C 、若m =2,则不等式组的解集为无解,故C 不符合题意;D 、若不等式组有解,则m 的取值范围为m >3,故D 符合题意;故选:AD .【点睛】本题考查了解一元一次不等式组,熟练掌握解一元一次不等式组是解题的关键.三、填空题51.把命题“对顶角相等”改写成“如果……,那么……”的形式:______________.【答案】如果两个角是对顶角,那么这两个角相等【分析】先找到命题的题设和结论,再写成“如果…,那么…”的形式.【详解】解:把命题“对顶角相等”改写成“如果……,那么……”的形式为: 如果两个角是对顶角,那么这两个角相等.故答案为:如果两个角是对顶角,那么这两个角相等【点睛】本题主要考查了将原命题写成条件与结论的形式,“如果”后面是命题的条件,“那么”后面是条件的结论,解决本题的关键是找到相应的条件和结论,比较简单.52.将4a 2﹣8ab +4b 2因式分解后的结果为___.【答案】24()a b -【分析】先提取公因式4,再利用完全平方式即可求出结果.【详解】222224844(2)4()a ab b a ab b a b -+=-+=-.故答案为:24()a b -【点睛】本题考查因式分解.掌握提公因式和公式法进行因式分解是解答本题的关键.53.因式分解:2441a a ++=______________ 【答案】2(21)a +【分析】根据完全平方公式即可得出答案.【详解】根据完全平方公式可得,原式=()()2224121a a a ++=+,故答案为()221a +.【点睛】本题考查的是公式法分解因式,熟练掌握完全平方公式是解题关键. 54.去年天猫“双十一”成交额达268400000000元,将这一数据用科学记数法可表示______. 【答案】112.68410⨯【分析】用科学记数法表示较大的数时,一般形式为10n a ⨯,其中11|0|a ≤<,n 为整数.【详解】解:11268400000000 2.68410=⨯.故答案为:112.68410⨯.【点睛】本题考查了科学记数法,科学记数法的表示形式为10n a ⨯的形式,其中11|0|a ≤<,n 为整数.确定n 的值时,要看把原来的数,变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值10≥时,n 是正数;当原数的绝对值1<时,n 是负数,确定a 与n 的值是解题的关键.55.某汽车厂改进生产工艺后,每天生产的汽车比原来每天生产的汽车多6辆,那么现在15天的产量就超过了原来20天的产量,设原来每天生产汽车x 辆,则列出的不等式为________.【答案】()15620x x +>【分析】首先根据题意可得改进生产工艺后,每天生产汽车(x+6)辆,根据关键描述语:现在15天的产量就超过了原来20天的产量列出不等式即可.【详解】解:设原来每天最多能生产x 辆,由题意得:15(x+6)>20x ,故答案为:()15620x x +>【点睛】此题主要考查了由实际问题抽象出一元一次不等式,关键是正确理解题意,抓住关键描述语.56.若20226m =,20224n =,则2022m n -=______. 【答案】1.5【分析】利用同底数幂的除法的逆运算求解即可.【详解】解:∠20226m =,20224n =,∠20222022202264 1.5m n m n -=÷=÷=.故答案为:1.5.【点睛】本题主要考查同底数幂的除法的逆运算,解答的关键是熟练掌握同底数幂的除法的逆运算法则.57.不等式组24015x x ->⎧⎨+<⎩的解集是______. 【答案】2<x <4【分析】求出每个不等式的解集,再根据找不等式组解集的规律求出不等式组的解集即可.【详解】解:24015x x ->⎧⎨+<⎩①②, 解不等式∠得:x >2,解不等式∠得:x <4,∠不等式组的解集为2<x <4,故答案为:2<x <4.【点睛】本题考查了解一元一次不等式组能正确运用不等式的基本性质求出不等式的解集是解此题的关键,难度适中.58.方程组2520x y x y +=⎧⎨-=⎩的解为______. 【答案】12x y =⎧⎨=⎩【分析】利用加减消元法解二元一次方程组即可得.【详解】解:2520x y x y +=⎧⎨-=⎩①②, 由∠2+⨯∠得:45x x +=,解得1x =,将1x =代入∠得:20y -=,解得2y =,则方程组的解为12x y =⎧⎨=⎩, 故答案为:12x y =⎧⎨=⎩. 【点睛】本题考查了解二元一次方程组,熟练掌握消元法是解题关键.59.关于x 的方程:3x a b x b c x c a c a b ------++=,0abc ≠,则x =________.60.已知2P m m =-,2Q m =-(m 为任意实数),则P 、Q 的大小关系为______.【答案】P Q >【分析】直接求出P-Q 的差,利用完全平方公式以及偶次方的性质求出即可.【详解】∠P=m 2−m ,Q=m−2(m 为任意实数),∠P−Q=m 2−m−(m−2)=m 2−2m+2=(m−1)2+1>0∠P Q >.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

七年级数学下册综合训练
一.选择题:(下面每小题都给出编号为A,B,C,D 的四个答案,其中有且只有一个是符合题意的,请选择符合题意的答案的编号,填在题后的括号内,本题共20分,每小题2分,
选错,多选,不选都给零分)
1.以下列各组线段长为边,能组成三角形的是( )
A .1cm ,2cm ,4cm B.2cm ,3cm ,6cm C.4cm ,6cm , 8cm D. 5cm ,6cm ,12cm 2.下列运算正确的是( )
A.a 5·a 6=a 30 B.(a 5)6=a 30 C. a 5+a 6=a 11 D. a 5÷a 6=56
4.下列事件中,是不可能事件的是( )
A.晚上19:00打开电视,在播放新闻,
B.水往高处流
C.丁丁买彩票中了特等奖 ,
D.在0O C ,水会结冰
5.如图,某同学把一块三角形的玻璃打碎成三片,
要到玻璃店去配一块完全一样形状的玻璃.那么最省 事的办法是带( )去配. A.① B.② C.③ D.①和② 6.化简x 2-y 2
(x -y)2 的结果是( )
A . x+y
x -y
B .1
C .x -y x+y
D .x -y
7.4张扑克牌如图(1)所示放在桌子上,小敏把其中一张旋转180º后得到如图(2)
所示,那么她所旋转的牌从左数起是( ) A.第一张 B.第二张 C.第三张 D.第四张
3.把一个正方形三次对折后沿虚线剪下, 如图所示: 则所得的图形是( ) ①


第5题图
8.计算[(-x )3]2÷(-x 2)3所得的结果是(x ≠0)( )
A.-1
B.-x 10
C.0
D.-x 12
9.甲,乙两人进行百米跑比赛,当甲离终点还有1米时,乙离终点还有2米,那么,当甲到达终点时,乙离终点还有( )米 (假设甲乙的速度保持不变)
A.98
99
B. 10099
C. 1
D. 9998
10.如图,宽为50 cm 的矩形图案由10个全等的小长方形拼成,其中一个小长方形的面积为( )
A. 400 cm 2
B. 500 cm 2
C. 600 cm 2
D. 4000 cm 2
二.填空题:(把正确答案填在空格内,本题共30分,每小题3分)
11.七年级(1)班共有48名少先队员要求参加志愿者活动,根据实际需要,少先队大队部从中随机选择12名少先队员参加这次活动,该班少先队员小明能参加这次活动的概率是_________.
12.若代数式x 2―4
x ―2
的值为0,则x =____________;
当b= 时,分式
1
4+b
无意义。

13.如图,平面镜A 与B 之间夹角为110°,光
线经平面镜A 反射到平面镜B 上,再反射出
去,若21∠=∠,则1∠的度数为 . 14.若非零实数a ,b 满足
a 2 =a
b -
14 b 2,则b
a
=___________. 15.小华要从长度分别为5cm 、6cm 、11cm 、16cm 的四根小木棒中选出三根摆成一个
三角形,
那么他选的三根木棒的长度分别是:_ , , (单位:cm). 16.方程组325
28
x y x y +=⎧⎨
-=⎩的解为
21
110°
A
B
(第13题图)
第10题图
17.观察下列图形:
其中既是轴对称图形又是中心对称图形的为 (填序号) 18.分式方程:1
x+1 =2
5-x
的解为
19.一列列车自2004年全国铁路第5次大提速后,速度提高了26千米/时,现在该列车从甲站到乙站所用的时间比原来减少了1小时,已知甲、乙两站的路程是312千米,若设列车提速前的速度是x 千米,则根据题意可列出方程为
20. 如图,G 是△AFE 两外角平分线的交点, P 是△ABC 的两外角平分线的交点, F,C 在AN 上,又B,E 在AM 上; 如果∠FGE =66O ,那么∠P = 三.解答题:(下面每小题必须有解题过程,本题共50分)
21.计算:(每小题3分,共12分)
⑴a -5a ⑵1-x -y x+y ⑶1x +1 1-x ⑷9-x 21+x ÷ x+3
―x ―1
22.因式分解(每小题3分,共12分)
⑴a 2b -b 3 ⑵1-n +m -mn ⑶x 2―2x +1―y 2 ⑷(x -y)2+(x +y)(x -y) 23.(每小题3分,共6分)
⑴分析图6①,②,④中阴影部分的分布规律,按此规律在图6③中画出其中的阴影部分.
⑵由16个相同的小正方形拼成的正方形网格,现将其中的两个小正方形涂黑(如图)。

请你用两种不同的方法分别在下图中再将两个空白的小正方形涂黑,使它成为轴对称图形。

① ② ③ ④ ⑤ ⑥
A
B E
F
G
C M
N P
24.(本题6分)请你用三角板、圆规或量角器等工具,画∠POQ=60°,在它的边OP上截取OA=50 mm,OQ上截取OB=70 mm,连结AB,画∠AOB的平分线与AB交于点C,并量出AC和OC 的长 . (结果精确到1 mm,不要求写作法).
25.(本题6分)西部山区某县响应国家“退耕还林”号召,将该县一部分耕地改还为林地。

改还后,林地面积和耕地面积共有180km2, 耕地面积是林地面积的25%。

试分别求出改还后耕地与林地面积?
26.(本题6分)七年级(1)班的一个综合实践活动小组去A,B两个超市调查去年和今年“五一节”期间的销售情况,下图是调查后小敏与其它两位同学进行交流的情景:
根据他们的对话,试请你分别求出A、B两个超市今年“五一节”期间的销售额?
答案
1.C
2.B
3.C
4.B
5.C
6.A
7.A
8.A
9.B 10.A 11.1
4
12.-2 ,-4 13.35O 14.2 15. 6,11,16 16.x=3,y=-2 17. ③⑥ 18.x=1 19.312x -1= 312
x+26
20.66O
21.⑴a 2-5a ⑵2y x+y ⑶1
x -x 2
⑷x -3
22.⑴b(a -b)(a+b) ⑵(1+m)(1-n)⑶(x ―1―y)(x -1+y) ⑷2x(x -y) 23.⑴
⑵略
24.略25.改还后耕地面积为36平方公里,林地面积为144平方公里 26.A, B 两超市今年五一节的销售额分别为115万元,55万元.。

相关文档
最新文档