高考物理公式大全

合集下载

高中物理高考所有公式大全(最全整理)

高中物理高考所有公式大全(最全整理)

高中物理高考所有公式大全(最全整理) 高中物理现行高考常用公式一、力学1.1 静力学物理概念规律名称公式重力 G=mg (g随高度增加而变小、纬度增加而变大)摩擦力 (1) 滑动摩擦力:f=μN (2) 静摩擦力:大小范围O≤f≤fm(fm为最大静摩擦力与正压力有关)浮力、密度浮力F浮=ρ液gV排;密度ρ=m/V压强、液体压强压强p=F/S;液体压强p=ρgh胡克定律 F=kx(在弹性限度内)万有引力定律 F=Gm1m2/r^2向心力F=mω^2r近地卫星 mg=G(Mm/R^2);地球赤道上G=mg/R;同步卫星mg=mω^2r;第一宇宙速度mg=mV^2/R=gR=GM/R;行星密度ρ=3M/(4πR^3)双星系统 F合=F1+F2+2F1F2cosα;tanθ=F2sinα/F1+F2cosα互成角度的二力的合成 F合=sqrt(Fx^2+Fy^2);tanα=Fy/Fx共点力的平衡条件 F合=0或Fx=0或Fy=01.3 动力学物理概念规律名称公式牛顿第二运动定律 F合=ma或a=F/m或者ΣFx=maΣFy=ma向心力 F=mω^2r牛顿第三定律 F=-F'1.2 运动学物理概念规律名称公式匀速直线运动 s=vt匀变速直线运动 t=(v-v0)/a,s=v0t+1/2at^2平均速度 v=s/t匀加速或匀减速直线运动 Vt/2=V0+1/2at^2,s=V0t+1/2at^2自由落体运动 h=1/2gt^2,v=gt竖直上抛运动 h=1/2gt^2,t=2v/g,v=gt斜抛运动 h=v0t+1/2gt^2,d=v0cosθt,hmax=v0^2sin^2θ/2g注:公式中的μ为摩擦系数,N为法向压力,ρ为密度,S为面积,k为弹簧劲度系数,G为万有引力常数,m为质量,r为距离,ω为角速度,α为角加速度,F为力,a为加速度,v为速度,v0为初速度,g为重力加速度,h为高度,d为水平距离,θ为发射角度。

高考物理公式归纳总结

高考物理公式归纳总结

高考物理公式归纳总结物理是高考理科中重要的一门科目,公式的应用是解题的关键。

在备考过程中,对物理公式的归纳总结能够帮助学生掌握各个领域的公式,并能够准确应用于解题过程中。

本文将对高考物理中常见的公式进行归纳总结。

一、力学公式1. 牛顿第二定律:F=ma2. 动能公式:K=1/2mv²3. 动能定理:A=(ΔK)/t=Fv4. 万有引力定律:F=G(m₁m₂)/r²5. 等加速度运动公式:v=v₀+at6. 位移公式:s=v₀t+1/2at²7. 等加速度运动的平均速度公式:v=1/2(v₀+v)8. 等加速度运动的位移公式:s=v₀t+1/2at²9. 自由落体运动公式:h=1/2gt²10. 平抛运动公式:h=(v₀²sin²α)/2g二、热学公式1. 热传导定律:Q=tλs/Δt2. 热膨胀公式:ΔL=αL₀Δt3. 热平衡公式:mcΔθ=msΔθ4. 理想气体状态方程:PV=nRT5. 理想气体的等温过程:P₁V₁=P₂V₂6. 理想气体的绝热过程:P₁V₁ᵏ=P₂V₂ᵏ7. 理想气体的等容过程:P₁V₁=P₂V₂三、光学公式1. 薄透镜公式:1/f = 1/v - 1/u2. 成像公式:h₁/h₂ = v/u = -b/a3. 折射定律:n₁sinθ₁=n₂sinθ₂4. 光的小孔衍射公式:λ=DS/d5. 杨氏双缝干涉公式:λ=xL/d四、电学公式1. 电流定义公式:I=Q/t2. 电阻公式:R=ρl/A3. 电阻与导线温度关系:R₂ = R₁(1+α(T₂-T₁))4. 电阻与长度关系:R₂= R₁(l₂/l₁)5. 电阻与截面积关系:R₂= R₁(A₁/A₂)6. 电压公式:U=IR7. 等效电阻公式:R₀ = R₁+R₂+R₃+...8. 欧姆定律:U=IR9. 等效电路电阻公式:1/R=1/R₁+1/R₂+...五、电磁学公式1. 磁感应强度公式:B=F/Isinθ2. 洛仑兹力公式:F=qvBsinθ3. 电动势公式:ε=Blv4. 法拉第电磁感应公式:ε=ΔΦ/Δt5. 安培环路定理:∮B·ds=μ₀I以上是高考物理中常见的公式归纳总结。

高考物理万能公式

高考物理万能公式

高考物理万能公式
下面是一些高考物理中常用的公式:
1.速度公式:
速度(v) = 位移(s) / 时间(t)
2.加速度公式:
加速度(a) = 变化的速度(v) / 时间(t)
3.力的计算公式:
力(F) = 质量(m) ×加速度(a)
4.质能转化公式:
能量(E) = 质量(m) ×光速的平方(c^2)
5.简单机械工作公式:
功(W) = 力(F) ×位移(d) × cosθ,其中θ是力F与位移d之间的夹角
6.压强公式:
压强(P) = 力(F) / 表面积(A)
7.密度公式:
密度(ρ) = 质量(m) / 体积(V)
8.等离子体阻尼公式:
阻尼力(F) = 阻尼系数(b) ×速度(v)
9.牛顿第二定律:
力(F) = 质量(m) ×加速度(a)
10.角动量公式:
角动量(L) = 质量(m) ×速度(v) × r,其中r为质点到旋转轴的距离
11.电功率公式:
电功率(P) = 电流(I) ×电压(U)
12.电阻公式:
电阻(R) = 电压(U) / 电流(I)
请注意,这只是一些常见的物理公式,具体的题目还要根据实际情况选择合适的公式进行运用。

在解题时,可以根据已知条件和问题要求进行公式的选择和变形。

高考物理常用公式

高考物理常用公式

高考物理常用公式高中物理现行高考常用公式一、力学1.1 静力学物理概念规律名称公式重力 - - G=mg(g随高度、纬度而变化)摩擦力 - 滑动摩擦力:f=μN 静摩擦力:大小范围O≤f≤fm(fm为最大静摩擦力与正压力有关)浮力、密度 - 浮力F浮=ρ液gV排;密度ρ=m/V压强、液体压强 - 压强p=F/S;液体压强p=ρgh胡克定律 - F=kx(在弹性限度内)万有引力定律 - F=Gm1m2/r^2近地卫星 - mg=G(M+m)/r^2第一宇宙速度 - mg=mV^2/R行星密度 - ρ=3M/4πR^3双星系统 - F=Gm1m2/r^2互成角度的二力的合成 - F合=F1^2+F2^2+2F1F2cosαF2sinα tanθ=F1cosα+F2cosα F合=√(F1^2+F2^2+2F1F2cosα)正交分解法 - Fx=Fcosα Fy=Fsinα力矩 - M=FL(不要求)共点力的平衡条件 - F合=0或ΣFx=0 ΣFy=0有固定转轴物体的平衡条件 - M合=0或M逆=M顺共面力的平衡条件 - F合=0,M合=01.3 动力学物理概念规律名称公式牛顿第二运动定律 - F合=ma或a=F/m 或ΣFx=maΣFy=ma 向心力 - F=mω^2R 或F=GmM/R^2牛顿第三定律 - F=F'1.2 运动学物理概念规律名称公式匀速直线运动 - s=vt匀变速直线运动 - v=(v0+v)/2 a=(v-v0)/t s=vt+1/2at^2匀加速或匀减速直线运动 - v^2-v0^2=2as s=v0t+1/2at^2 平均速度:v=(v0+v)/2高中物理现行高考常用公式一、力学1.1 静力学物理概念规律名称公式重力 - - G=mg(其中g随高度和纬度变化)摩擦力 - 滑动摩擦力:f=μN 静摩擦力:O≤f≤fm(fm为最大静摩擦力与正压力有关)浮力、密度 - 浮力F浮=ρ液gV排;密度ρ=m/V压强、液体压强 - 压强p=F/S;液体压强p=ρgh胡克定律 - F=kx(在弹性限度内)万有引力定律 - F=Gm1m2/r^2近地卫星 - mg=G(M+m)/r^2第一宇宙速度 - mg=mV^2/R行星密度 - ρ=3M/4πR^3双星系统 - F=Gm1m2/r^2互成角度的二力的合成 - F合=F1^2+F2^2+2F1F2cosαF2sinα tanθ=F1cosα+F2cosα F合=√(F1^2+F2^2+2F1F2cosα)正交分解法 - Fx=Fcosα Fy=Fsinα力矩 - M=FL(不要求)共点力的平衡条件 - F合=0或ΣFx=0 ΣFy=0有固定转轴物体的平衡条件 - M合=0或M逆=M顺共面力的平衡条件 - F合=0,M合=01.3 动力学物理概念规律名称公式牛顿第二运动定律 - F合=ma或a=F/m 或ΣFx=maΣFy=ma 向心力 - F=mω^2R 或F=GmM/R^2牛顿第三定律 - F=F'1.2 运动学物理概念规律名称公式匀速直线运动 - s=vt匀变速直线运动 - v=(v0+v)/2 a=(v-v0)/t s=vt+1/2at^2匀加速或匀减速直线运动 - v^2-v0^2=2as s=v0t+1/2at^2 平均速度:v=(v0+v)/2注:删除了明显有问题的段落,改正了公式中的排版错误,对每个公式进行了简洁明了的表述。

高考物理必考公式汇总

高考物理必考公式汇总

高考物理必考公式汇总高考物理必考公式综述一、粒子运动(1)-直线运动1)匀速变速直线运动1.平均速度vping=s/t(定义)2。

有用的推论Vt2-Vo2=2as3.中速Vt/2=V电平=(Vt Vo)/2 4。

最终速度Vt=Vo5.中间位置速度Vs/2=[(Vo2 Vt2)/2]1/2 6。

位移s=V电平t=Vot at2/2=Vt/2t7.加速度A=(Vt-Vo)/t {以Vo为正方向,A和Vo同向时A0(加速)A相反}8.实验推断s=aT2 {s是连续相邻等时(t)的位移差}9.主要物理量和单位:初速度(Vo):米/秒;加速度(a):米/秒2;末速度(vt) 3360米/秒;时间(t)秒;位移33,360米;距离为:米;速度单位换算为:1米/秒=3.6公里/小时。

注:(1)平均速度为矢量;(2)物体速度高时,加速度不一定高;(3)a=(Vt-Vo)/t 只是一个测度,不是行列式;(4)其他相关内容:粒子、位移和距离、参考系、时间和时间;速度和速度。

瞬时速度。

2)自由落体运动1.初始速度Vo=0.2。

最终速度Vt=gt 3。

下降高度h=gt2/2(从VO位置向下计算)4。

推论Vt2=2gh。

注:(1)自由落体运动是一种初速度为零的匀速直线运动,遵循匀速直线运动规律;(2)a=g=9.8m/s210m/s2(赤道附近重力加速度较小,比高山平地小,方向垂直向下)。

(3)垂直投掷动作1.位移s=Vot-gt2/2 2。

最终速度Vt=Vo-gt (g=9.8m/s210m/s2)3.有用的推论Vt2-Vo2=-2gs 4。

上升x高度Hm=Vo2/2g(从投掷点算起)5.往返时间t=2Vo/g(从投掷回原位的时间)注:(1)治疗:的全过程是匀速减速的直线运动,以向上为正方向,负加速度;(2)分段加工:向上运动为匀速减速直线运动,向下运动为自由落体运动,对称;(3)上升和下降的过程是对称的,如同点速度的等效反转等。

高考物理必考公式大全

高考物理必考公式大全

1.动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}2.冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定}3.动量定理:I=Δp或Ft=mvt–mvo {Δp:动量变化Δp=mvt–mvo,是矢量式}4.动量守恒定律:p前总=p后总或p=p’′也可以是m1v1+m2v2=m1v1′+m2v2′5.非弹性碰撞Δp=0;0<ΔEK<ΔEKm {ΔEK:损失的动能,EKm:损失的动能}6.完全非弹性碰撞Δp=0;ΔEK=ΔEKm {碰后连在一起成一整体}7.物体m1以v1初速度与静止的物体m2发生弹性正碰:v1′=(m1-m2)v1/(m1+m2) v2′=2m1v1/(m1+m2)8.由9得的推论-----等质量弹性正碰时二者交换速度(动能守恒、动量守恒)9.子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失E损=mvo2/2-(M+m)vt2/2=fs相对{vt:共同速度,f:阻力,s 相对子弹相对长木块的位移}注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕。

振动和波公式总结1.简谐振动F=-kx {F:回复力,k:比例系数,x:位移,负号表示F的方向与x始终反向}2.单摆周期T=2π(l/g)1/2 {l:摆长(m),g:当地重力加速度值,成立条件:摆角θ>r}3.受迫振动频率特点:f=f驱动力4.发生共振条件:f驱动力=f固,A=max,共振的防止和应用〔见第一册P175〕5.机械波、横波、纵波〔见第二册P2〕6.波速v=s/t=λf=λ/T{波传播过程中,一个周期向前传播一个波长;波速大小由介质本身所决定}7.声波的波速(在空气中)0℃:332m/s;20℃:344m/s;30℃:349m/s;(声波是纵波) 8.波发生明显衍射(波绕过障碍物或孔继续传播)条件:障碍物或孔的尺寸比波长小,或者相差不大9.波的干涉条件:两列波频率相同(相差恒定、振幅相近、振动方向相同) .10.多普勒效应:由于波源与观测者间的相互运动,导致波源发射频率与接收频率不同{相互接近,接收频率增大,反之,减小〔见第二册P21〕}运动和力公式总结1.牛顿第一运动定律(惯性定律):物体具有惯性,总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止2.牛顿第二运动定律:F合=ma或a=F合/ma{由合外力决定,与合外力方向一致}3.牛顿第三运动定律:F=-F′{负号表示方向相反,F、F′各自作用在对方,平衡力与作用力反作用力区别,实际应用:反冲运动}4.共点力的平衡F合=0,推广{正交分解法、三力汇交原理}5.超重:FN>G,失重:FN6.牛顿运动定律的适用条件:适用于解决低速运动问题,适用于宏观物体,不适用于处理高速问题,不适用于微观粒子〔见第一册P67〕注: 平衡状态是指物体处于静止或匀速直线状态,或者是匀速转动。

高考物理常见公式整理如何快速准确地应用物理公式

高考物理常见公式整理如何快速准确地应用物理公式

高考物理常见公式整理如何快速准确地应用物理公式物理作为高考科目之一,涉及到大量的方程式和公式。

掌握并准确应用这些公式是解决物理问题的关键。

本文将介绍一些常见的物理公式,并分享如何快速准确地应用这些公式。

1. 动力学公式(力学部分)1.1 牛顿第一定律:物体静止或匀速直线运动时,合外力为零公式:F = 0应用:用于判断物体是否处于平衡状态或匀速运动状态。

1.2 牛顿第二定律:物体受到的合外力与物体加速度成正比公式:F = ma应用:用于计算物体所受合外力或加速度,或者通过已知参数计算未知参数。

1.3 牛顿第三定律:互为作用力的两个物体之间的力大小相等,方向相反公式:F1 = -F2应用:用于解决受力平衡和动量守恒等相关问题。

2. 动能公式(能量和功)2.1 动能公式:动能等于物体的质量乘以速度的平方再除以2公式:KE = 1/2mv^2应用:用于计算物体的动能,或通过已知参数计算未知参数。

2.2 功的定义:功等于力与物体移动距离之积公式:W = Fs应用:用于计算力对物体所做的功,或通过已知参数计算未知参数。

3. 高考物理中的电路公式3.1 欧姆定律:电流强度与电压成正比,电阻成反比公式:I = V/R应用:用于计算电流强度、电压或电阻,或通过已知参数计算未知参数。

3.2 串联电阻:串联电阻的总电阻等于各个电阻之和公式:Rt = R1 + R2 + R3 + ...应用:用于计算串联电路的总电阻,或通过已知参数计算未知参数。

3.3 并联电阻:并联电阻的倒数等于各个电阻的倒数之和再取倒数公式:1/Rt = 1/R1 + 1/R2 + 1/R3 + ...应用:用于计算并联电路的总电阻,或通过已知参数计算未知参数。

4. 波动公式4.1 波速公式:波速等于波长乘以频率公式:v = λf应用:用于计算波速,或通过已知参数计算未知参数。

4.2 光的折射定律:光线从一介质射向另一介质时,入射角、折射角和两介质折射率之间存在一个关系公式:n1sinθ1 = n2sinθ2应用:用于计算折射角或折射率,或通过已知参数计算未知参数。

高考物理必背公式

高考物理必背公式

高考物理必背公式高考物理必背公式(一)1、动量:p=mv {p:动量(kg/s),m:质量(kg),v:速度(m/s),方向与速度方向相同}2、冲量:I=Ft {I:冲量(N s),F:恒力(N),t:力的作用时间(s),方向由F决定}3、动量定理:I=&Delta;p或Ft=mvt&ndash;mv o{&Delta;p:动量变化&Delta;p=mvt&ndash;mvo,是矢量式}4、动量守恒定律:p前总=p后总或p=p&rsquo;&prime;也能够是m1v1+m2v2=m1v1&prime;+m2v2&prime; 5、非弹性碰撞&Delta;p=0;0&lt;&Delta;EK&lt;&Delta;EKm{&Delta;EK:损失的动能,EKm:损失的最大动能}6、完全非弹性碰撞&Delta;p=0;&Delta;EK=&Del ta;EKm {碰后连在一起成一整体}7。

物体m1以v1初速度与静止的物体m2发生弹性正碰: v1&prime;=(m1-m2)v1/(m1+m2) v2&prime;=2m1v1/(m1+m2)8。

由9得的推论--—--等质量弹性正碰时二者交换速度(动能守恒、动量守恒)9、子弹m水平速度vo射入静止置于水平光滑地面的长木块M,并嵌入其中一起运动时的机械能损失 E损=mvo2/2-(M+m)vt2/2=fs相对 {vt:共同速度,f:阻力,s 相对子弹相对长木块的位移}注:(1)正碰又叫对心碰撞,速度方向在它们“中心”的连线上;(2)以上表达式除动能外均为矢量运算,在一维情况下可取正方向化为代数运算; (3)系统动量守恒的条件:合外力为零或系统不受外力,则系统动量守恒(碰撞问题、爆炸问题、反冲问题等);(4)碰撞过程(时间极短,发生碰撞的物体构成的系统)视为动量守恒,原子核衰变时动量守恒;(5)爆炸过程视为动量守恒,这时化学能转化为动能,动能增加;(6)其它相关内容:反冲运动、火箭、航天技术的发展和宇宙航行〔见第一册P128〕、振动和波公式1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

力学一、力1,重力:G=mg ,方向竖直向下,g=9.8m/s 2≈10m/s 2,作用点在物体重心。

2,静摩擦力:0≤f 静≤≤f m ,与物体相对运动趋势方向相反,f m 为最大静摩擦力。

3,滑动摩擦力:f=μN ,与物体运动或相对运动方向相反,μ是动摩擦因数,N 是正压力。

4,弹力:F = kx (胡克定律),x 为弹簧伸长量(m ),k 为弹簧的劲度系数(N/m )。

5,力的合成与分解:①两个力方向相同,F 合=F 1+F 2,方向与F 1、F 2同向②两个力方向相反,F 合=F 1-F 2,方向与F 1(F 1较大)同向 互成角度(0<θ<180º):θ增大→F 减少 θ减小→F 增大θ=90º,F=2221F F +,F 的方向:tg φ=12F F 。

F 1=F 2,θ=60º,F=2F 1cos30º, F 与F 1,F 2的夹角均为30º,即φ=30º θ=120º,F=F 1=F 2,F 与F 1,F 2的夹角均为60º,即φ=60º由以上讨论,合力既可能比任一个分力都大,也可能比任一个分力都小,它的大小依赖于两个分力之间的夹角。

合力范围:(F 1-F 2)≤F ≤(F 1+F 2) 求 F 1、F 2两个共点力 的合力大小的公式(F1与F2夹角为θ):二、直线运动匀速直线运动:位移vt s =。

平均速度t s v =匀变速直线运动:1、位移与时间的关系,公式:221at t v s o += 2、速度与时间的关系,公式:at v v o t +=3、位移与速度的关系:as v v o t 222=-,适合不涉及时间时的计算公式。

4、平均速度tsv v v v t o t =+==22,即为中间时刻的速度。

5、中间位移处的速度大小2222t o s v v v +=,并且22t s v v >匀变速直线运动的推理:1、匀变速直线运动的物体,在任意两个连续相等的时间里的位移之差是个恒量,即△s=s n+1 —s n =aT 2=恒量2、初速度为零的匀加速直线运动(设T 为等分时间间隔): ①1T 末、2T 末、3T 末……瞬时速度的比值为v 1:v 2:v 3......:v n =1:2:3......:n②1T 内、2T 内、3T 内……的位移之比为s 1:s 2:s 3:……:s n =12:22:32……:n 2③第一个T 内、第二个T 内、第三个T 内……位移之比为 S I :S II :S III :……:S n =1:3:5……:(2n-1)θcos 2212221F F F F F ++=t 1:t 2:t 3:......:t n =)1(:......:)23(:)12(:1----n n自由落体运动 (1)位移公式:221gt h =(2)速度公式:gt v =t(3)位移—速度关系式:gh v 22= 竖直上抛运动1.基本规律:gt v v t -=0 2021gt t v h -= gh v v t 2202-= 2.特点(初速不为零的匀变速直线运动) (1)只在重力作用下的直线运动。

(2)g a v -=≠,00 (3)上升到最高点的时间gv t 0=(4)上升的最大高度gv H 220=三、牛顿运动定律1,牛顿第一定律(惯性定律):物体总保持匀速直线运动状态或静止状态,直到有外力迫使它改变这种状态为止。

2,牛顿第二定律:F 合=ma 或a=F 合/m a 由合外力决定,与合外力方向一致。

3,牛顿第三定律F= -F ′ 负号表示方向相反,F 、F ′为一对作用力与反作用力,各自作用在对方。

4,共点力的平衡F 合=0 二力平衡5,超重:N>G 失重:N<G N 为支持力,G 为物体所受重力,不管失重还是超重,物体所受重力不变。

四、曲线运动 1,平抛运动分速度0v v x =,gt v y = 合速度2220t g v v +=,速度方向与水平方向的夹角:0tan v gt=θ 分位移gt x =,221gt y =合位移422202221t g t v y x s +=+=位移方向与水平方向的夹角:θαtan 21221tan 002====v gt t v gt x y2,斜抛运动(初速度方向与水平方向成θ角)速度:位移:可得:θcos v xt =代入y 可得:θθ222cos 2tan v gx x y -=这就是斜抛物体的轨迹方程。

可以看出: y =0时,(1)x =0是抛出点位置。

(2)是水平方向的最大射程。

(3)飞行时间:3,匀速圆周运动线速度r tsv ω==, 角速度rar v t===θω, 周期ωππ22==v r T , 向心加速度mFr r v a ===22ω, 向心力R f m R Tm v m R m R v m F 22222244ππωω=====。

小球达到最高点时绳子的拉力(或轨道弹力)刚好等于零,小球重力提供全部向心力,则02=-=mg Rv m F 临界,v 临界是通过最高点的最小速度,gR v =临界。

②小球达到最低点时,拉力与重力的合力提供向心力,有R v m mg F 2=-,此时Rv m mg F 2+=。

gv x θ2sin 2=4,万有引力定律(G=6.67×10-11N •m 2/kg 2)(1)万有引力提供向心力:()ma r f m r Tm r m r v mr M G =====22222224m ππω (2)忽略地球自转的影响:mg RGM =2m(2g R GM =,黄金代换式) (3)已知表面重力加速度g ,和地球半径R 。

(mg R GM =2m ,则GgR M 2=)一般用于地球 (4)已知环绕天体周期T 和轨道半径r 。

(r T m r Mm G 2224π= ,则2324GT r M π=)(5)已知环绕天体的线速度v 和轨道半径r 。

(r v m r Mm G 22=,则G rv M 2=)(6)已知环绕天体的角速度ω和轨道半径r (r m r Mm G 22ω=,则G r M 32ω=)(7)已知环绕天体的线速度v 和周期T (T r v π2=,r v m rM G 22m =,联立得G TM π2v 3=)(8)已知环绕天体的质量m 、周期T 、轨道半径r 。

中心天体的半径R ,求中心天体的密度ρ 解:由万有引力充当向心力r T m r Mm G 2224π= 则2324GTr M π=——① 又334R V M πρρ⋅==——② 联立两式得:3233R GT r πρ=(9)ma r M G=2m ,则2a r MG =(卫星离地心越远,向心加速度越小) (10)r v m r Mm G 22=,则rGMv =(卫星离地心越远,它运行的速度越小)(11)r m r Mm G22ω=,则3rGM=ω(卫星离地心越远,它运行的角速度越小) (12)r Tm r Mm G 2224π=,则GMT 32r 4π=(卫星离地心越远,它运行的周期越大) (13)三种宇宙速度 第一宇宙速度: s km r GM v /9.71==第三宇宙速度:s km v /7.163= 5,机械能功 :W = Fs cos θ(适用于恒力的功的计算,θ为力与位移的夹角) 功率:P=W/t=Fvcos θ(θ为力与速度的夹角) 机车启动过程中的最大速度:动能:单位为焦耳,符号J动能定理:重力势能:mgh W G =(h 为物体与零势面之间的距离)弹性势能:机械能守恒定律三种表达式:(1)物体(或系统)初态的总机械能E 1等于末态的总机械能E 2,即E 1=E 2。

(2)物体(或系统)减少的势能减p E ∆等于增加的动能增k E ∆,即减p E ∆=增k E ∆。

(3)若系统内只有A 、B 两个物体,则A 减少的机械能减A E ∆等于B 增加的机械能增B E ∆,即减A E ∆=增B E ∆。

6,动量动量:k mE mv p 2==冲量:I=Ft动量定理:p p Ft -'=动量守恒定律的几种表达式:a ,p p '=b ,'22'112211v m v m v m v m +=+c ,21p p ∆-= Pvm P mv E k 2122122===122022121k k t E E mv mv W -=-=总221kx E =fP v m 额=7,机械振动简谐振动回复力:F=-kx加速度:mkxmF a -==简谐振动的周期:(m 为振子的质量)单摆周期:glT π2=(摆角小于50) 8,机械波波长、频率、波速的关系f Tv λλ==Tf 1=热学阿伏伽德罗常数:N A =6.02×1023mol-1用油膜法测分子的大小,直径的数量级为10-10m ,分子质量的数量级为10-27kg 与阿伏伽德罗常数有关的宏观量与微观量的计算: 分子的质量:A AA A N V N M m ρ==0 分子的体积:AAN V V =0 分子的大小:球形体积模型直径36πV d =,立方体模型边长:30V d =物质所含的分子数:A A A A A A A A A N V MN m V N V V N m M nN N 0000ρρ===== 热力学第一定律内容:外界对物体做的功W 加上物体与外界交换的热量Q 等于物体内能的变化量ΔE 。

表达式:ΔE=W+Q 热力学第二定律内容:热传导具有从高温向低温的方向性,没有外界的影响和帮助,不可能向相反的方向进行。

或:(1)不可能使热量由低温物体传递到高温物体,而不引起其它变化(2)不可能从单一热源吸收热量,并把它全部用来做功,而不引起其它变化。

热机做的功W 和它从热源吸收的热量Q 1的比值,叫热机的效率。

1Q W =η,η总小于1。

km T π2=固体、气体和液体 理想气体三定律玻马定律:m 一定,T 不变,P 1V 1 = P 2V 2。

或 PV =恒量查理定律:m 一定,V 不变,或P t =P o (1+t/273)盖·吕萨克定律:m 一定,T 不变或或V t =V o (1+t/273)理想气体状态方程:克拉伯龙方程:nRT pV =(R=8.31J/mol •K ,n 为气体物质的量)电磁学电场元电荷e=1.6×10-19C律:(k=9.0×109Nm 2/C 2) 库仑定电场强度:(定义式)点电荷的电场强度:电场力:F=qE电势:(ε为电势能)电势差: 电场力做的功:qEd qU W ==电容:(定义式) 决定式:电容中的电场强度:平行板电容器两极板间的电场强度为(由E=U/d,C=Q/U 和得出)带点粒子在电场中的运动 ①粒子穿越电场的加速度:mdqU m qE m F ===a ②粒子穿越电场的运动时间:0L t v =③粒子离开电场的侧移距离:22211qUL qEL at y === 2211T p T p =2211T V T V =恒量=TV222111T V p T V p =221rQ Q kF =qFE =2r Q k E =qεϕ=qW U ABB A AB =-=ϕϕUQ C =kdS C πε4=SkQE επ4=④粒子离开电场时的偏角θ:2y tan mdv qULv v ==θ 恒定电流电流强度:neSv R Ut Q I === 电阻:SlI U R ρ==(ρ为导体的电阻率,单位Ω•m )(1)串联电路①各处的电流强度相等:I 1=I 2=…… =I n ②分压原理:nn 2211R U R U R U =⋯⋯== ③电路的总电阻:R=R 1+R 2+……+R n ④电路总电压:U=U 1+U 2+……+U n(2)并联电流①各支路电压相等:U=U 1=U 2=……=U n ②分流原理:I 1R 1=I 2R 2=……=I n R n ③电路的总电阻:n211111R R R R +⋯⋯++= ④电路中的总电流:I=I 1+I 2+……+I n 焦耳定律t RU Rt I Pt Q W 22====RU UI R I P P 22====热无论串联电路还是并联电路,电路的总功率等于各用电器功率之和,即:n P P PP +⋯⋯++=21总 闭合电路欧姆定律(1)路端电压与外电阻R 的关系:Rr Er R ER IR U +=+==1(外电路为纯电阻电路) (2)路端电压与电流的关系:U=E -Ir (普适式)电源的总功率(电源消耗的功率)P 总=IE电源的输出功率(外电路消耗的功率)P 输=IU 电源内部损耗的功率:P 损=I 2r 由能量守恒有:IE=IU +I 2r外电路为纯电阻电路时:()()rRr R E r R R E R I IU P 422222+-=+===输 由上式可以看出,当外电阻等于电源内部电阻(R=r )时,电源输出功率最大,其最大输出功率为r42max E P =出电源的效率:电源的输出功率与电源功率之比,即%100%100%100⨯=⨯=⨯=EU IE IU P P 出η 对纯电阻电路,电源的效率为()%100r 11%100r %100r 22⨯+=⨯+=⨯+=RR R R I R I η 由上式看出:外电阻越大,电源的效率越高。

相关文档
最新文档