数学必修一第三章知识点总结

合集下载

数学必修一第三章知识点总结总结

数学必修一第三章知识点总结总结

数学必修一第三章知识点总结总结数学考试要注重计算,很多孩子成绩丢分在计算上,解题步骤没有问题,但是计算的过程中出现马虎的问题,导致丢分,影响整体成绩。

下面是整理的数学必修一第三章知识点总结,仅供参考希望能够帮助到大家。

数学必修一第三章知识点总结一次函数应用题解题技巧:例1:一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。

如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.解:由题意设所求函数为y=kx+12则13.5=3k+12解k=0.5∴y与x的函数关系式为y=0.5x+12由题意,得:23=0.5x+12=22解之,x=22∴自变量x的取值范围是0≤x≤22例2:(1)y与x成正比例函数,当y=5时,x=2.5,求这个正比例函数的解析式.(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.解:(1)设所求正比例函数的解析式为y=kX把y=5,x=2.5代入上式得,5=2.5k解得k=2∴所求正比例函数的解析式为y=2X(2)设所求一次函数的解析式为y=kx+b∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足y=kx+b,将x=-1、y=2和x=3、y=-5分别代入上式,得2=-k+b,-5=3k+b解得k=-7/4,b=1/4∴此一次函数的解析式为y=-7x/4+1/4例3:拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量t的取值范围,并且画出图象.分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.解:函数关系式:Q=20-5t,其中t的取值范围:0≤t≤4。

高一数学必修一每章知识点

高一数学必修一每章知识点

高一数学必修一每章知识点高中数学是学生在过渡到大学数学的重要阶段,必修一是高中数学的第一门课程,对学生打下数学基础非常关键。

本文将按照必修一每章的顺序,对各章的知识点进行论述,帮助学生理解和掌握这些知识。

第一章:函数及其图象函数是高中数学的重要概念,本章首先介绍了函数的定义和表示方法。

学生需要了解函数的自变量、因变量和函数值的概念,并能通过给定函数的定义域和值域,确定函数的取值范围。

接着,本章介绍了一次函数、二次函数和反比例函数的图象特征,以及如何根据图象来确定函数的性质和特点。

第二章:函数的运算与初等函数本章主要介绍了函数的基本运算,包括函数的加减、函数的乘法、函数的除法以及函数的复合等。

学生需要了解各种运算的定义和规则,并能通过这些运算来解决实际问题。

同时,本章还介绍了一些常见的初等函数,如幂函数、指数函数、对数函数、三角函数等,学生需要理解这些函数的性质和变化规律。

第三章:三角函数及其图象三角函数是高中数学中的重要概念,本章首先介绍了正弦函数、余弦函数和正切函数的定义和性质。

学生需要了解这些函数的周期、定义域、值域等特点,并能够根据给定的函数关系绘制函数的图象。

此外,本章还介绍了三角函数的性质和变换规律,学生需要理解这些知识并能够灵活运用到解决实际问题中。

第四章:三角函数的应用三角函数广泛应用于几何、物理等领域,本章主要介绍了三角函数在三角关系解法、航空导航、测量等方面的应用。

学生需要学会根据实际问题中的几何图形或物理知识,建立相应的三角函数关系,并能够运用所学知识解决相关问题。

第五章:平面解析几何初步平面解析几何是高中数学的重要内容,本章首先介绍了平面直角坐标系的建立和基本性质。

学生需要学会读取和表示二维平面上的点,并能够通过坐标计算两点间的距离和斜率。

接着,本章介绍了直线和圆的方程,学生需要理解这些方程的含义,并能够根据方程解决相关问题。

第六章:多项式函数多项式函数是高中数学的重要分支,本章首先介绍了多项式函数的定义和性质。

高一数学必修一第三章函数的应用知识点总结.docx

高一数学必修一第三章函数的应用知识点总结.docx

第三章函数的应用一、方程的根与函数的零点1、函数零点的概念:对于函数y = /(x)(xeD),把使/(x) = 0成立的实数无叫做函数y =f(x)(xeD)的零点。

2、函数零点的意义:函数y = /(x)的零点就是方程/(x) = 0实数根,亦即函数y = /(x)的图象与兀轴交点的横坐标。

即:方程/(%) = 0有实数根o函数y = /(x)的图象与兀轴有交点o函数y = /(x) 有零点.3、函数零点的求法:①(代数法)求方程f(x) = 0的实数根;© (几何法)对于不能用求根公式的方程,可以将它与函数y = /(x)的图象联系起來, 并利用函数的性质找出零点.4、基本初等函数的零点:①正比例函数y = kx(k 0)仅有一个零点。

②反比例函数y =-伙H 0)没有零点。

x③一次函数y = 伙工0)仅有一个零点。

④二次函数y = ax2 + bx^- c(a H 0).(1)A> 0 ,方程ax2+bx+c = 0(a^0)有两不等实根,二次函数的图象与兀轴有两个交点,二次函数有两个零点.(2)A=0,方程加+C =0(QH0)有两相等实根,二次函数的图象与兀轴有一个交点,二次函数有一个二重零点或二阶零点.(3)A<0,方程a^+fex+c = 0(dH0)无实根,二次函数的图象与x轴无交点,二次函数无零点.⑤指数函数y = a x(a > 0,且o h 1)没有零点。

⑥对数函数歹=log“ x(a > 0,且a工1)仅有一个零点1.⑦幕函数丁 =屮,当〃>0时,仅有一个零点0,当〃50时,没有零点。

5、非基本初等函数(不可直接求出零点的较复杂的函数),函数先把/(兀)转化成/(x) = 0,再把复杂的函数拆分成两个我们常见的函数)[,儿(基本初等函数),这另个函数图像的交点个数就是函数/ (兀)零点的个数。

6、选择题判断区间(a,b)上是否含有零点,只需满足/(a)/(b)<0。

数学必修一第三章知识点总结

数学必修一第三章知识点总结

数学必修一第三章知识点总结第三章是关于函数的知识点总结。

1. 函数的概念:函数是一个特殊的关系,将一个数集的每个元素与另一个数集的元素对应起来。

函数可以用一个公式、图像或者表格来表示。

2. 定义域和值域:函数的定义域是指能够使函数有意义的所有输入值的集合,值域是所有函数可能的输出值的集合。

3. 函数的图像:函数的图像是将函数的输入和输出对应起来的一种形象表示。

在平面直角坐标系中,函数的图像是一条曲线或者直线。

4. 函数的性质:函数可以是奇函数、偶函数或者普通函数。

奇函数满足 f(-x) = -f(x);偶函数满足 f(-x) = f(x);普通函数不满足奇偶性质。

5. 函数的性质:函数可以是单调递增函数、单调递减函数、增函数或者减函数。

单调递增函数满足 f(x1) < f(x2) 当且仅当 x1 < x2;单调递减函数满足 f(x1) > f(x2) 当且仅当 x1 < x2;增函数在定义域上满足 f(x1) < f(x2) 当且仅当 x1 < x2;减函数在定义域上满足 f(x1) > f(x2) 当且仅当 x1 < x2。

6. 反函数:函数的反函数将函数的输入和输出颠倒过来,即输入变为输出,输出变为输入。

反函数的定义域和值域与原函数相反。

7. 复合函数:复合函数是两个或多个函数的组合。

复合函数的定义域是能够使复合函数有意义的所有值的集合。

8. 基本初等函数:基本初等函数包括常函数、一次函数、幂函数、指数函数、对数函数和三角函数等。

这些函数具有特定的性质和图像特征。

9. 函数的运算:函数之间可以进行加减乘除和求导等运算。

函数的运算结果仍然是一个函数,具有相应的性质和图像特征。

以上是第三章关于函数的知识点总结。

在学习函数时,需要理解函数的概念和性质,掌握常见的函数类型和图像特征,以及函数的运算和组合等操作。

同时,还需要通过练习题和实例来巩固和应用所学知识。

人教版数学必修一第三章知识点

人教版数学必修一第三章知识点

人教版数学必修一第三章知识点
人教版数学必修一第三章的主要知识点包括:
1. 平面直角坐标系:平面直角坐标系的定义、原点、横坐标、纵坐标、坐标轴、坐标
等概念。

2. 坐标与图形:确定点的坐标、坐标轴上点的坐标、确定图形的坐标等。

3. 坐标系的转化:把一个坐标系中某个点的坐标转化为另一个坐标系中的坐标。

4. 点的轨迹:通过将点的坐标与变量结合起来,可以确定点的轨迹。

5. 镜面对称:关于一条直线的镜面对称,即对称轴。

对称图形的特点:对称轴上的对
称点、对称图形的性质等。

6. 直线的倾斜角:直线与坐标轴之间的夹角。

水平线和垂直线的特点。

7. 直线方程的一般形式:直线方程的一般形式为Ax+By+C=0, A、B和C分别为常数,A和B不能同时为零。

8. 在坐标系中解直线方程:根据直线方程的特点,可以在坐标系中解直线方程。

9. 两条直线的关系:两条直线相交时,确定交点的方法。

两条直线平行时,确定平行
关系的特点。

10. 利用直线方程解实际问题:根据实际问题,建立适当的坐标系,并利用直线方程解决问题。

这些知识点在第三章《坐标系与直线》中详细讲解和应用。

高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上数学必修一第三章《3.1函数的概念与性质》知识点梳理

高一上必修一第三章《函数》知识点梳理3.1.1函数及其表示方法学习目标:(1)在初中用变量之间的依赖关系描述函数的基础上,用集合语言和对应关系刻画函数,建立完整的函数概念,体会集合语言和对应关系在刻画函数概念中的作用;(2)了解构成函数的要素,能求简单函数的定义域、值域;(3)通过具体问题情境总结共性,抽象出函数概念,积累从具体到抽象的活动经验,发展数学抽象的核心素养。

【重点】1.了解构成函数的要素,会求一些简单函数的定义域和值域.2.在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数.3.了解简单的分段函数,并能简单应用(函数分段不超过三段).【难点】1、求函数的定义域和值域回顾初中所学的函数,在情境与问题中感受高中函数表达方式与初中的不同。

一、函数的概念我们已经学习过一些函数的知识,例如已经总结出:在一个变化过程中,数值发生变化的量称为变量;在一个变化过程中,如果有两个变量x与y,并且对于x的每一个确定的值,y都有唯一确定的值与其对应,那么就称y是x的函数.再例如,我们知道y=2x是正比例函数,y=-3x-1是一次函数,y=-2是反比例函数,y=x2+2x-3是二次函数,等等。

【情境与问题】(1)国家统计局的课题组公布,如果将2005年中国创新指数记为100,近些年来中国创新指数的情况如下表所示。

以y表示年度值,i表示中国创新指数的取值,则i是y的的函数吗?如果是,这个函数用数学符号可以怎样表示?(2)利用医疗仪器可以方便地测量出心脏在各时刻的指标值,据此可以描绘出心电图,如下图所示。

医生在看心电图时,会根据图形的整体形态来给出诊断结果(如根据两个峰值的间距来得出心率等).初中实际上是用变量的观点和解析式来描述函数的,但从情境与问题中的两个实例可知,初中的方法有一定的局限性:情境与问题中的i是y的函数,v是t的函数,但是这两个函数与初中的函数有所不同,比如都很难用一个解析式表示,而且每个变量的取值范围也有了限制,等等。

高一数学必修一各章知识点总结技巧解答

高一数学必修一各章知识点总结技巧解答

高一数学必修1各章知识点总结一、集合1.集合的中元素的三个特性:2.集合的表示方法: 列举法与描述法、图示法非负整数集(即自然数集)记作: N正整数集 N*或 N+ 整数集Z 有理数集Q 实数R二、集合间的基本关系1.“包含”关系—子集注意: 有两种可能(1)A是B的一部分, ;(2)A与B 是同一集合。

反之: 集合A不包含于集合B,或集合B不包含集合A,记作A⊆/B或B⊇/A2. “相等”关系: A=B (5≥5, 且5≤5, 则5=5)实例: 设 A={x|x2-1=0} B={-1,1} “元素相同则两集合相等”即: ①任何一个集合是它本身的子集。

A(A②真子集:如果A(B,且A( B那就说集合A是集合B的真子集, 记作A B(或B A)③如果 A⊆B, B⊆C ,那么 A⊆C④如果A⊆B 同时 B⊆A 那么A=B◆ 3.不含任何元素的集合叫做空集, 记为Φ◆规定: 空集是任何集合的子集, 空集是任何非空集合的真子集。

有n个元素的集合, 含有2n个子集, 2n-1个真子集例题:1.下列四组对象, 能构成集合的是()A某班所有高个子的学生 B著名的艺术家 C一切很大的书 D 倒数等于它自身的实数2.集合{a, b, c }的真子集共有个3.若集合M={y|y=x2-2x+1,x R},N={x|x≥0}, 则M与N的关系是 .4.设集合A= , B= , 若A B, 则的取值范围是5.50名学生做的物理、化学两种实验, 已知物理实验做得正确得有40人, 化学实验做得正确得有31人,两种实验都做错得有4人, 则这两种实验都做对的有人。

6.用描述法表示图中阴影部分的点(含边界上的点)组成的集合M.........7.已知集合A={x| x2+2x-8=0}, B={x| x2-5x+6=0}, C={x| x2-mx+m2-19=0}, 若B∩C≠Φ, A∩C=Φ, 求m的值二、函数的有关概念1. 定义域:(1)分式的分母不等于零;(2)偶次方根的被开方数不小于零;(3)对数式的真数必须大于零;(4)指数、对数式的底必须大于零且不等于1.(5)如果函数是由一些基本函数通过四则运算结合而成的.那么, 它的定义域是使各部分都有意义的x的值组成的集合.(6)指数为零底不可以等于零,(7)实际问题中的函数的定义域还要保证实际问题有意义.相同函数的判断方法: ①表达式相同(与表示自变量和函数值的字母无关);②定义域一致 (两点必须同时具备)2. 值域 : 先考虑其定义域3.函数图象常用变换方法有三种1)平移变换2)伸缩变换3)对称变换4. 映射可一对一、多对一补充: 复合函数如果y=f(u)(u∈M),u=g(x)(x∈A),则 y=f[g(x)]=F(x)(x ∈A) 称为f、g的复合函数。

数学必修一第三章知识点总结

数学必修一第三章知识点总结

数学必修一第三章知识点总结数学必修一第三章主要讲述了三角函数的概念、性质和基本函数关系。

以下是第三章的主要知识点总结:1. 弧度与角度:角度是以度为单位的角度量,弧度是以弧长与半径之比为单位的角度量。

弧度制中一周对应的弧长是2π弧度。

2. 弧度与角度之间的转换:弧度制下的角度数可以通过将角度数乘以(π/180)转换为弧度数,而角度制下的弧度数可以通过将弧度数乘以(180/π)转换为角度数。

3. 三角函数的概念:在单位圆上,以圆心O为原点,单位圆与角θ所对应的终边交于点P(x,y),则点P的坐标(x,y)就是角θ的三角函数值。

其中,正弦函数(sinθ)为纵坐标y,余弦函数(cosθ)为横坐标x,正切函数(tanθ)为纵坐标y除以横坐标x。

4. 三角函数的性质:正弦函数、余弦函数和正切函数是周期函数,周期都为360°或2π,即sin(θ+360°) = sinθ,cos(θ+360°) = cosθ,tan(θ+π) = tanθ。

正弦函数和余弦函数的取值范围为[-1, 1],正切函数的取值范围为(-∞, +∞)。

5. 三角函数的诱导公式:sin(-θ) = -sinθ,cos(-θ) = cosθ,tan(-θ) = -tanθ。

根据诱导公式,可以将θ限制在0°至90°之间,来计算其他角度的三角函数值。

6. 三角函数的基本关系:sin²θ + cos²θ = 1,1+tan²θ = sec²θ,1+cot²θ = csc²θ。

这些基本关系可以应用于简化、证明三角函数的各种性质和公式。

7. 三角函数的基本图像:在坐标系中绘制正弦函数、余弦函数和正切函数的图像时,需要注意函数的周期、对称性和渐近线等特点。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学必修一第三章知识点总结
(实用版)
编制人:__________________
审核人:__________________
审批人:__________________
编制单位:__________________
编制时间:____年____月____日
序言
下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!
并且,本店铺为大家提供各种类型的实用范文,如学习资料、英语资料、学生作文、教学资源、求职资料、创业资料、工作范文、条据文书、合同协议、其他范文等等,想了解不同范文格式和写法,敬请关注!
Download tips: This document is carefully compiled by this editor.
I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!
In addition, this shop provides various types of practical sample essays, such as learning materials, English materials, student essays, teaching resources, job search materials, entrepreneurial materials, work examples, documents, contracts, agreements, other essays, etc. Please pay attention to the different formats and writing methods of the model essay!
数学必修一第三章知识点总结
数学考试要注重计算,很多孩子成绩丢分在计算上,解题步骤没有问题,但是计算的过程中出现马虎的问题,导致丢分,影响整体成绩。

下面是本店铺整理的数学必修一第三章知识点总结,仅供参考希望能够帮助到大家。

数学必修一第三章知识点总结
一次函数应用题解题技巧:
例1:一个弹簧,不挂物体时长12cm,挂上物体后会伸长,伸长的长度与所挂物体的质量成正比例。

如果挂上3kg物体后,弹簧总长是13.5cm,求弹簧总长是y(cm)与所挂物体质量x(kg)之间的函数关系式.如果弹簧最大总长为23cm,求自变量x的取值范围.
分析:此题由物理的定性问题转化为数学的定量问题,同时也是实际问题,其核心是弹簧的总长是空载长度与负载后伸长的长度之和,而自变量的取值范围则可由最大总长→最大伸长→最大质量及实际的思路来处理.
解:由题意设所求函数为y=kx+12
则13.5=3k+12
解k=0.5
∴y与x的函数关系式为y=0.5x+12
由题意,得:23=0.5x+12=22
解之,x=22
∴自变量x的取值范围是0≤x≤22
例2:(1)y与x成正比例函数,当y=5时,x=2.5,求这个正比例函数的解析式.
(2)已知一次函数的图象经过A(-1,2)和B(3,-5)两点,求此一次函数的解析式.
解:(1)设所求正比例函数的解析式为y=kX
把y=5,x=2.5代入上式得,5=2.5k
解得k=2
∴所求正比例函数的解析式为y=2X
(2)设所求一次函数的解析式为y=kx+b
∵此图象经过A(-1,2)、B(3,-5)两点,此两点的坐标必满足y=kx+b,将x=-1、y=2和x=3、y=-5分别代入上式,得2=-k+b,-5=3k+b 解得k=-7/4,b=1/4
∴此一次函数的解析式为y=-7x/4+1/4
例3:拖拉机开始工作时,油箱中有油20升,如果每小时耗油5升,求油箱中的剩余油量Q(升)与工作时间t(时)之间的函数关系式,指出自变量t的取值范围,并且画出图象.
分析:拖拉机一小时耗油5升,t小时耗油5t升,以20升减去5t升就是余下的油量.
解:函数关系式:Q=20-5t,其中t的取值范围:0≤t≤4。

图象是以(0,20)和(4,0)为端点的一条线段(图象略)。

例4:某学校需刻录一些电脑光盘,若到电脑公司刻录,每张需8元,若学校自刻,除租用刻录机120元外,每张还需成本4元,问这些光盘是到电脑公司刻录,还是学校自己刻费用较省?
此题要考虑X的范围
解:设总费用为Y元,刻录X张
则电脑公司:Y1=8X学校:Y2=4X+120
当X=30时,Y1=Y2
当X>30时,Y1>Y2
当X
例5:已知一次函数的图象经过点P(-2,0),且与两坐标轴截得的三角形面积为3,求此一次函数的解析式.
分析:从图中可以看出,过点P作一次函数的图象,和y轴的交点可能在y轴正半轴上,也可能在y轴负半轴上,因此应分两种情况进行研究,这就是分类讨论的数学思想方法.
解:设所求一次函数解析式为
∵点P的坐标为(-2,0)
∴|OP|=2
设函数图象与y轴交于点B(0,m)
根据题意,SΔPOB=3
∴|m|=3
∴一次函数的图象与y轴交于B1(0,3)或B2(0,-3)
将P(-2,0)及B1(0,3);或P(-2,0)及B2(0,-3)的坐标代入y=kx+b中,得
-2k+b=0,b=3;或-2k+b=0,b=-3。

解得k=1.5,b=3;或k=-1.5,b=-3。

∴所求一次函数的解析式为y=1.5x+3或y=-1.5-3。

数学的学习方法
及时了解、掌握常用的数学思想和方法,学好高中数学,需要我们从数学思想与方法高度来掌握它。

中学数学学习要重点掌握的的数学思想有以上几个:集合与对应思想,分类讨论思想,数形结合思想,运动思想,转化思想,变换思想。

逐步形成“以我为主”的学习模式数学不是靠老师教会的,而是在老师的引导下,靠自己主动的思维活动去获取的。

学习数学就要积极主动地参与学习过程,养成实事求是的科学态度,独立思考、勇于探索的创新精神。

记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。

记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。

数学函数的解析式与定义域知识点
1、函数及其定义域是不可分割的整体,没有定义域的函数是不存在的,因此,要正确地写出函数的解析式,必须是在求出变量间的对应法则的同时,求出函数的定义域.求函数的定义域一般有三种类型:
(1)有时一个函数来自于一个实际问题,这时自变量x有实际意义,求定义域要结合实际意义考虑;
(2)已知一个函数的解析式求其定义域,只要使解析式有意义即可.如:
①分式的分母不得为零;
②偶次方根的被开方数不小于零;
③对数函数的真数必须大于零;
④指数函数和对数函数的底数必须大于零且不等于1;
⑤三角函数中的正切函数y=tanx(x∈R,且k∈Z),余切函数y=cotx(x∈R,x≠kπ,k∈Z)等.
应注意,一个函数的解析式由几部分组成时,定义域为各部分有意义的自变量取值的公共部分(即交集).
(3)已知一个函数的定义域,求另一个函数的定义域,主要考虑定义域的深刻含义即可.
已知f(x)的定义域是[a,b],求f[g(x)]的定义域是指满足a≤g(x)≤b的x的取值范围,而已知f[g(x)]的定义域[a,b]指的是x ∈[a,b],此时f(x)的定义域,即g(x)的值域. 2、求函数的解析式一般有四种情况
(1)根据某实际问题需建立一种函数关系时,必须引入合适的变量,根据数学的有关知识寻求函数的解析式.
(2)有时题设给出函数特征,求函数的解析式,可采用待定系数法.比如函数是一次函数,可设f(x)=ax+b(a≠0),其中a,b为待定系数,根据题设条件,列出方程组,求出a,b即可.
(3)若题设给出复合函数f[g(x)]的表达式时,可用换元法求函数f(x)的表达式,这时必须求出g(x)的值域,这相当于求函数的定义域.
(4)若已知f(x)满足某个等式,这个等式除f(x)是未知量外,还出现其他未知量(如f(-x),等),必须根据已知等式,再构造其他等式组成方程组,利用解方程组法求出f(x)的表达式.。

相关文档
最新文档