中考数学等腰三角形培优辅导训练试题

合集下载

中考数学培优:等腰三角形存在性问题

中考数学培优:等腰三角形存在性问题

中考数学培优:等腰三角形存在性问题【例题讲解】例题1.如图,直线l 1、12相交于点A ,点B 是直线外一点,在直线l 1、12上找一点C ,使△ABC 为一个等腰三角形.满足条件的点C 有个.【提示】①以B 为圆心,线段BA 长为半径作圆,与l 1、12交点即为满足条件点C ;②以A 为圆心,线段BA 长为半径作圆,与l 1、12交点即为满足条件点C ;③作线段AB 的垂直平分线,与l 1、12交点即为满足条件点C.(此方法简称为“两圆一线”)【巩固训练】1、一次函数y =43x +4分别交x 轴、y 轴于A 、B 两点,在坐标轴上取一点C ,使△ABC 为等腰三角形,则这样的点C 最多有个。

2、已知△ABC 的三条边长分别为3,4,6,在△ABC 所在平面内画一条直线,将△ABC 分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画()A.6条B.7条C.8条D.9条例题2.一次函数y =43x +4分别交x 轴、y 轴于A 、B 两点,在y 轴上取一点C ,使得AC =BC ,求出C 点坐标?【代数法、几何法均可解】解:如图所示,直线AB 的解析式为y =43x +4,当y =0时,x =-3,则A (-3.0);当x =0时,y =4,则B (0,4)。

设C 点坐标为(x .0),在Rt △AOB 中,由勾股定理得5==,在Rt △BOC 中,由勾股定理得BC =。

①当以AB 为底时,AC =BC ,则3+x 整理得6x =7,解得x =76,则(76,0);②当以BC 为底时,可得AC =AB ,则35x --=,解得x =2或-8,则C (2,0)或(-8,0);③当以AC 为底时,可得AB =BC ,整理得x 2=9,解得x =±3,则C (3,0)或(-3,0)(舍去)。

综上所述,满足条件的点C 的坐标是(76,0)或(2,0)或(3,0)或(-8,0)例题3.如图,直线x =-4与x 轴交于点E ,一开口向上的抛物线过原点交线段OE 于点A ,交直线x =-4于点B ,过B 且平行于x 轴的直线与抛物线交于点C ,直线OC 交直线AB 于D ,且AD :BD =1:3.(1)求点A 的坐标;(2)若△OBC 是等腰三角形,求此抛物线的函数关系式.解:(1)如图过点D 作DF ⊥x 轴于点F .由题意可知OF =AF 则2AF +AE =4①∵DF ∥BE ,∴△ADF ∽△ABE ,∴12AF AD AE AB ==,即AE =2AF ②①与②联立解得AE =2,AF =1.∴点A 的坐标为(-2,0);(2)∵抛物线过原点(0,0),∴可设此抛物线的解析式为y =ax 2+bx∵抛物线过原点(0,0)和A 点(-2,0),∴对称轴为直线x =202-+=-1∵B 、C 两点关于直线x =-1对称B 点横坐标为-4,∴C 点横坐标为2,∴BC =2-(-2)=6∵抛物线开口向上,∴∠OAB >90°,OB >AB =OC .∴当△OBC 是等腰三角形时分两种情况讨论:①当OB =BC 时设B (-4,y 1),则16+y 12=36解得y 1=±(负值舍去).将A (-2,0),B (-4,)代入y =ax 2+bx得420164a b a b -=⎧⎪⎨-=⎪⎩解得5452a b ⎧=⎪⎪⎨⎪=⎪⎩∴此抛物线的解析式为yx 2x ②当OC =BC 时设C (2,y 2),则4+y 22=36解得y 2=±负值舍去)将A (-2,0),C(2,代入y =ax 2+bx ,得42042a b a b -=⎧⎪⎨+=⎪⎩,解得2a b ⎧=⎪⎨⎪=⎩∴此抛物线的解析式为y =22x 2x 例题4.如图甲,在△ABC 中,∠ACB =90°,AC =4cm,BC =3cm.如果点P 由点B 出发沿BA 方向向点A 匀速运动,同时点Q 由点A 出发沿AC 方向向点C 匀速运动,它们的速度均为1cm /s .连接PQ ,设运动时间为t (s )(0<t <4),解答下列问题:(1)设△APQ 的面积为S ,请写出S 关于t 的函数表达式?(2)如图乙,连接PC ,将△POC 沿QC 翻折,得到四边形PQP 'C ,当四边形PQP 'C 为菱形时,求t 的值;(3)当t 为何值时,△APQ 是等腰三角形?解:(1)如图1,过点P 作PH ⊥AC 于H ,∵∠C =90°,∴AC ⊥BC ,∴PH ∥BC ,∴△APH ∽△ABC ,∴PH AP BC AB =,∵AC =4cm ,BC =3cm ,∴AB =5cm ∴535PH t -=,∴PH =3-35t ,∴△AQP 的面积为:S =12×AQ ×PH =12×t ×(3-35t )=23518()1025t --+∴当t 为52秒时,S 最大值为185cm 2.(2)如图2,连接PP ',PP '交QC 于E ,当四边形PQP 'C 为菱开时,PE 垂直平分QC ,即PE ⊥AC ,QE =EC ,∴△APE ∽△ABC ,∴AE AP AC AB =,∴AE =(5)44455AP AC t t AB ⋅-⨯==-+∴QE =AE -AQ =45t -+4-t =95t -+4,QE =12QC =12(4-t )=12-t +2∴95t -+4=12-t +2,∴解得:t =2013,∵0<2013<4.∴当四边形PQP 'C 为菱形时,t 值是2013秒;(3)由(1)知,PD =335t -+,与(2)同理得:QD =AD -AQ =945t -+∴PQ ==在△APQ 中,①当AQ =AP ,即=5-t 时,解得:t 1=52,②当PQ =AQ ,t 时,解得:t 2=2513,t 3=5.③当PQ =AP-t 时,解得:t 4=0,t 5=4013∵0<t<4,∴t 3=5,t 4=0不合题意,舍去,∴当t 为52s 或2513s 或4013s 时,△APQ 是等腰三角形.例题5.已知,如图,在Rt △ABC 中,AC =6,AB =8,D 为边AB 上一点,连接CD ,过点D 作DE ⊥DC 交BC 与E ,把△BDE 沿DE 翻折得△DE B 1,连接B 1C(1)证明:∠ADC =∠B 1DC ;(2)当B 1E /∥AC 时,求折痕DE 的长;(3)当△B 1CD 为等腰三角形时,求AD 的长.解:(1)证明由折叠的性质得:∠BDE =∠B 1DE ,∵DE ⊥DC ,∴∠ADC =180°-90°-∠BDE =90°-∠BDE ,∠B 1DC =90°-∠B 1DE ,∴∠ADC =∠B 1DC(2)解延长B 1E 交AB 于F .∵B 1E ∥AC ,∠A =90°,∴B 1F ⊥AB ,∴∠EB 1D +∠BDB 1=90°.∵∠B =∠EB 1D ,∴∠B +∠BDB 1=90°,∴∠BGD =90°,在△BDC 和△B 1FD 中,111B EB D BGD B FD BD DB ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△BDG ≌△B 1FD .∴DF =DG ,在△ADC 和△GDC 中,90ADC CDG A DGC DC DC ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ,∴△ADC ≌△GDC ,∴DG =AD .∴DF =AD =DG ,设DF =AD =DG =x ,∴BF =8-2x ,∵EF ∥AC ,∴△BFE ∽△BAC ,∴EF BF AC AB =,∴EF =1232x -,∵△EFD ∽△ACD ,∴DF EF AC AD=,∴12326x x x -=,解得:x =3,∴BF =3,EF =32,∴DE.(3)解设AD =x ,则CD,BD =8-x ,∵△B 1CD 是等腰三角形,①当B 1D =B 1C 时则∠B 1DC =∠B 1CD ,∴DB 1=BD =8-x ,如图2过B 1作B 1F ⊥CD ,则DF =CF =12CD=2,∵∠ADC =∠B 1DC ,∠B 1FD =∠A =90°,∴△CDA ∽△B 1DC ,∴1B D DF CD AD =,2x =,∴3x 2-16x +36=0,此方程无实数根.∴B 1D ≠BC .②B 1D =CD 时,∴B 1D =CD =BD =8-x .∴(8-x )2=x 2+6,∴x =74,∴AD =74.③当CD =BC 时如图2过C 作CH ⊥DB ,则DH =B 1H =12DB 1=12BD =12(8-x )在△ACD 和△CHD 中,90ADC CDH A CHD CD CD ∠=∠⎧⎪∠=∠=⎨⎪=⎩o ∴△ACD ≌△CHD ,∴AD =DH =x∴x =12(8-x ),∴x =83,∴AD =83,综上所述:当△B 1CD 是等腰三角形时AD 的长为74或83.【巩固训练】1.如图,在Rt△ABC中,∠C=90°,以△ABC的一边为边画等腰三角形,使得它的第三个顶点在△ABC的其他边上,则可以画出不同的等腰三角形的个数最多为()A.4B.5C.6D.72.如图,在矩形ABCD中,AB=4,BC=6,若点P在AD边上,连接BP、PC,使得△BPC是一个等腰三角形.(1)用尺规作图画出符合要求的点P.(保留作图痕迹,不要求写做法)(2)求出PA的长.3.如图,在边长为4的正方形ABCD中,请画出以A为一个顶点,另外两个顶点在正方形ABCD的边上,且含边长为3的所有大小不同的等腰三角形.(要求:只要画出示意图,并在所画等腰三角形长为3的边上标注数字3)4.如图,一长度为10的线段AC的两个端点A、C分别在y轴和x轴的正半轴上滑动,以A为直角顶点,AC为直角边在第一象限内作等腰直角△ABC,连接BO.(1)求OB的最大值;(2)在AC滑动过程中,△OBC能否恰好为等腰三角形?若能,求出此时点A的坐标;若不能,请说明理由.5、如图,抛物线y=-x2+bx+c与x轴交于A(-1,0),B(5,0)两点,直线y=-2x+3与y轴交于点C,与x轴交于点D,点P是x轴上方的抛物线上一动点,过点P作PF⊥x.轴于点F,交直线CD于点E,设点P的横坐标为m.(1)求抛物线的解析式;(2)若△PCE为等腰三角形,求m的值.6.如图,在平面直角坐标系中,点A的坐标为(12,-8),点B、C在x轴上,tan∠ABC=43,AB=AC,AH⊥BC 于H,D为AC的中点,BD交AH于点M.(1)求过B、C、D三点的抛物线的解析式,并求出抛物线顶点E的坐标;(2)过点E且平行于AB的直线l交y轴于点G,若将(2)中的抛物线沿直线1平移,平移后的抛物线交y轴于点F,顶点为E'(点E'在y轴右侧).是否存在这样的抛物线,使△EFG为等腰三角形?若存在,请求出此时顶点E'的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中点B坐标为(6,0),点A在第一象限,△AOB为等边三角形,OH⊥AB于点H,动点P、Q分别从B、O两点同时出发,分别沿BO、OA方向匀速移动,它们的速度都是1cm/s,当点P到达点O时,P、Q两点停止运动,设点P的运动时间为t(s),PQ交OH于点M,设四边形AQPB的面积为y.(1)求y与t之间的函数关系式;(2)设PQ的长为x(cm)试确定y与x之间的函数关系式;(3)当t为何值时,△OPM为等腰三角形;(4)线段OM有最大值吗?如果有,请求出来;如果没有,请说明理由.8.已知:如图,在矩形ABCD中,AB=5,AD=20.E为矩形外一点,且△EBA∽△ABD.3(1)求AE和BE的长;(2)将△ABE绕点B顺时针旋转一个角a(0°<α<180°),记旋转中的△ABE为△A'BE',在旋转过程中,设A'E'所在的直线与直线AD交于点P,与直线BD交于点Q.是否存在这样的P、Q两点,使△DPQ为等腰三角形?若存在,求出此时DQ的长;若不存在,请说明理由.9.如图(1),∠AOB=45°,点P、Q分别是边OA,OB上的两点,且OP=2cm.将∠O沿PQ折叠,点O落在平面内点C处。

等腰三角形培优提高练习题1

等腰三角形培优提高练习题1

一. 选择题(共6小题)1.已知, 等腰三角形的一条边长等于6, 另一条边长等于3, 则此等腰三角形的周长是()A. 9B. 12C. 15D. 12或152.如图所示, 在△ABC中, AB=AC, ∠A=36°, BD.CE分别为∠ABC与∠ACB的角平分线且相交于点F, 则图中的等腰三角形有()A. 6个B. 7个C. 8个D. 9个(第2题)(第3题)(第4题)3. 如图, 直线a、b相交于点O, ∠1=50°, 点A在直线a上, 直线b上存在点B, 使以点O、A.B为顶点的三角形是等腰三角形, 这样的B点有()A. 1个B. 2个C. 3个D. 4个4.如图, △ABC的面积为8cm2, AP垂直∠B的平分线BP于P, 则△PBC的面积为()A. 3cm2 B. 4cm2 C. 5cm2 D. 6cm25.在等腰△ABC中, AB=AC, 中线BD将这个三角形的周长分为15和12两个部分, 则这个等腰三角形的底边长为()A. 7B. 11C. 7或11D. 7或106.如图:D, E分别是△ABC的边BC、AC上的点, 若AB=AC, AD=AE, 则()A. 当∠B为定值时, ∠CDE为定值B. 当∠α为定值时, ∠CDE为定值C.当∠β为定值时, ∠CDE为定值D.当∠γ为定值时, ∠CDE为定值二. 填空题(共8小题)7. 已知等腰三角形一腰上的中线将三角形周长分成2: 1两部分, 已知三角形底边长为5cm,则腰长为cm.8.如图, 在△ABC中, EG∥BC, BF平分∠ABC, CF平分∠ACB, AB=10, AC=12, △AEG的周长为.(第8题)(第9题)(第10题)9. 如图, 已知△ABC中, AB=AC, D是BC上一点, 且AD=DB, DC=CA, 则∠BAC=°.10. 如图, △ABC中, AP垂直∠ABC的平分线BP于点P. 若△ABC的面积为32cm2, BP=6cm, 且△APB的面积是△APC的面积的3倍. 则AP=cm.11. 等腰三角形一腰上的高与另一腰的夹角为48°, 则该等腰三角形的底角的度数为.12.如图是由9个等边三角形拼成的六边形, 若已知中间的小等边三角形的边长是2, 则六边形的周长是.(第12题)(第14题)(第14题)13. 如图, ∠AOB=60°, C是BO延长线上的一点, OC=10cm, 动点P从点C出发沿CB以2cm/s 的速度移动, 动点Q从点O发沿OA以1cm/s的速度移动, 如果点P、Q同时出发, 用t(s)表示移动的时间, 当t=时, △POQ是等腰三角形.14.如图: 已知在Rt△ABC中, ∠C=90°, ∠A=30°, 在直线AC上找点P, 使△ABP是等腰三角形, 则∠APB的度数为.三. 解答题(共15小题)15.如图, 已知AB=AC=AD, 且AD∥BC, 求证:∠C=2∠D.16. 如图, 在△ABC中, ∠BAC=90°, AD⊥BC于点D, BE平分∠ABC交AD于点F, 交AC于点E. 求证: △AEF为等腰三角形.17. 如图, 已知点A.C分别在∠GBE的边BG、BE上, 且AB=AC, AD∥BE, ∠GBE的平分线与AD交于点D, 连接CD.(1)求证: ①AB=AD;②CD平分∠ACE.(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.18. 如图(1), 等边△ABC中, D是AB边上的动点, 以CD为一边, 向上作等边△EDC, 连接AE.(1)△DBC和△EAC会全等吗?请说说你的理由;(2)试说明AE∥BC的理由;(3)如图(2), 将(1)动点D运动到边BA的延长线上, 所作仍为等边三角形, 请问是否仍有AE∥BC?证明你的猜想.19. 如图, AD平分∠BAC, AD⊥BD, 垂足为点D, DE∥AC.求证:△BDE是等腰三角形.20. 如图, 在△ABC中, AD平分∠BAC, BD⊥AD, 垂足为D, 过D作DE∥AC, 交AB于E.求证:△BDE是等腰三角形.21. 如图, 已知△ABC中, AB=AC, BD.CE是高, BD与CE相交于点O(1)求证: OB=OC;(2)若∠ABC=50°, 求∠BOC的度数.22. 如图, 已知在△ABC中, ∠ACB=90°, 在AB上截取AE=AC, BD=BC. 求证: ∠DCE=45°.23. 如图, 在△ABC中, AB=AC, ∠BAC=80°, O为△ABC内一点, 且∠OBC=10°, ∠OCA=20°,求∠BAO的度数.24. 如图, △ABC是边长为l的等边三角形, △BDC是顶角∠BDC=120°的等腰三角形, 以D为顶点作一个60°角, 角的两边分别交AB于M, 交AC于N, 连接MN, 形成一个三角形, 求证:△AMN的周长等于2.25. 如图, 在△ABC中, AB=AC, 点D.E、F分别在AB.BC.AC边上, 且BE=CF, BD=CE.(1)求证: △DEF是等腰三角形;(2)当∠A=40°时, 求∠DEF的度数.26. 如图:(1)P是等腰三角形ABC底边BC上的一个动点, 过点P作BC的垂线, 交AB于点Q, 交CA 的延长线于点R. 请观察AR与AQ, 它们有何关系?并证明你的猜想.(2)如果点P沿着底边BC所在的直线, 按由C向B的方向运动到CB的延长线上时, (1)中所得的结论还成立吗?请你在图(2)中完成图形, 并给予证明.27. (1)如图1, Rt△ABC中, ∠ACB=90°, 点D.E在边AB上, 且AD=AC, BE=BC, 求∠DCE的度数;(2)如图2, 在△ABC中, ∠ACB=40°, 点 D.E在直线AB上, 且AD=AC, BE=BC, 则∠DCE=;(3)在△ABC中, ∠ACB=n°(0<n<180°), 点D、E在直线AB上, 且AD=AC, BE=BC, 求∠DCE的度数(直接写出答案, 用含n的式子表示).28. 如图, 在△ABC中, AB=AC, ∠BAC=100°, 点D在BC边上, △ABD.△AFD关于直线AD对称, ∠FAC的角平分线交BC边于点G, 连接FG.(1)求∠DFG的度数.(2)设∠BAD=θ, 当θ为何值时, △DFG为等腰三角形?。

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版 八年级数学 13.3 等腰三角形 培优训练(含答案)

人教版八年级数学13.3 等腰三角形培优训练一、选择题(本大题共10道小题)1. 如图,已知P A=PB,在证明∠A=∠B时,需要添加辅助线,下面有甲、乙两种辅助线的作法:甲:作底边AB的中线PC;乙:作PC平分∠APB交AB于点C.则()A.甲、乙两种作法都正确B.甲的作法正确,乙的作法不正确C.甲的作法不正确,乙的作法正确D.甲、乙两种作法都不正确2. 已知实数x、y满足|x-4|+y-8=0,则以x、y的值为两边长的等腰三角形的周长是()A. 20或16B. 20C. 16D. 以上答案均不对3. 如图,△ABC中,AB=AC,AD是∠BAC的平分线,已知AB=5,AD=3,则BC的长为()A. 5B. 6C. 8D. 104. 如图,∠AOB=50°,OM平分∠AOB,MA⊥OA于点A,MB⊥OB于点B,则∠MAB等于()A.50°B.40°C.25°5. 如图,下列条件不能推出△ABC是等腰三角形的是()A.∠B=∠C B.AD⊥BC,∠BAD=∠CADC.AD⊥BC,BD=CD D.AD⊥BC,∠BAD=∠ACD6. 如图所示,△ABC是等边三角形,D为AB的中点,DE⊥AC,垂足为E. 若AE=1,则△ABC的边长为()A. 2B. 4C. 6D. 87. 如图,在五边形ABCDE中,AB=AC=AD=AE,且AB∥ED,∠EAB=120°,则∠BCD的度数为()A.150°B.160°C.130°D.60°8. 如图,在△ABC中,∠BAC=72°,∠C=36°,∠BAC的平分线AD交BC于点D,则图中有等腰三角形()A.0个B.1个C.2个D.3个9. 如图所示的正方形网格中,网格线的交点称为格点. 已知A,B是两格点,如果C也是图中的格点,且使得△ABC为等腰三角形.....,那么符合题意的点C的个数是()A. 6B. 7C. 8D. 910. “三等分角”大约是在公元前五世纪由古希腊人提出来的,借助如图所示的“三等分角仪”能三等分任一角.这个三等分角仪由两根有槽的棒OA,OB组成,两根棒在点O相连并可绕点O转动,点C固定,OC=CD=DE,点D,E可在槽中滑动.若∠BDE=75°,则∠CDE的度数是()A.60°B.65°C.75°D.80°二、填空题(本大题共6道小题)11. 如图,在等边三角形ABC中,点D在边AB上,点E在边AC上,将△ADE 折叠,使点A落在BC边上的点F处,则∠BDF+∠CEF=________°.12. 如图,在△ABC中,AB=AC,D是AC上一点,且BC=BD.若∠CBD=46°,则∠A=________°.13. 在△ABC中,若∠A=100°,∠B=40°,AC=5,则AB=________.14. 如图,BO平分∠CBA,CO平分∠ACB,MN过点O且MN∥BC,设AB=12,AC=18,则△AMN的周长为________.15. 如图,在△ABC中,若AB=AC=8,∠A=30°,则S△ABC=________.16. 一个等腰三角形的一边长是2,一个外角是120°,则它的周长是________.三、解答题(本大题共4道小题)17. 如图,在△ABC中,AB=AC,D为BC的中点,DE⊥AB于点E,DF⊥AC 于点F.求证:DE=DF.18. 如图,在等边三角形ABC中,D为AC上一点,E为AB延长线上一点,DE ⊥AC交BC于点F,且DF=EF.(1)求证:CD=BE;(2)若AB=12,求BF的长.19. 如图,将一张长方形的纸条ABCD沿EF折叠,若折叠后∠AGC′=48°,AD交EC′于点G.(1)求∠CEF的度数;(2)求证:△EFG是等腰三角形.20. 如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DE∥AB,过点E作EF⊥DE,交BC的延长线于点F.求证:DF=2DC.人教版八年级数学13.3 等腰三角形培优训练-答案一、选择题(本大题共10道小题)1. 【答案】A2. 【答案】B【解析】∵|x -4|+y -8=0,∴x -4=0,y -8=0,解得x =4,y =8.分两种情况讨论:①当4为腰时,根据三角形三边关系知4+4=8,∴这样的等腰三角形不存在;②当8为腰时,则有4+8>8,这样能够组成等腰三角形,∴此三角形的周长是8+8+4=20.3. 【答案】C 【解析】∵AB =AC ,AD 平分∠BAC ,∴根据等腰三角形三线合一性质可知AD ⊥BC ,BD =CD ,在Rt △ABD 中,AB =5,AD =3,由勾股定理得BD =4,∴BC =2BD =8.4. 【答案】C[解析] ∵OM 平分∠AOB ,MA ⊥OA 于点A ,MB ⊥OB 于点B ,∴∠AOM =∠BOM =25°,MA =MB.∴∠OMA =∠OMB =65°.∴∠AMB =130°.∴∠MAB =12×(180°-130°)=25°.故选C.5. 【答案】D[解析] 选项A 由等角对等边可得△ABC 是等腰三角形;选项B 由所给条件可得△ADB ≌△ADC ,由全等三角形的性质可得AB =AC ;选项C 由垂直平分线的性质可得AB =AC ;选项D 不可以得到AB =AC. 6. 【答案】B7. 【答案】A[解析] ∵AB ∥ED ,∴∠E =180°-∠EAB =180°-120°=60°. 又∵AD =AE ,∴△ADE 是等边三角形.∴∠EAD =60°.∴∠BAD =∠EAB -∠EAD =120°-60°=60°.∵AB =AC =AD ,∴∠B =∠ACB ,∠ACD =∠ADC.在四边形ABCD 中,∠BCD =∠B +∠ADC =12(360°-∠BAD)=12×(360°-60°)=150°. 故选A.8. 【答案】D[解析] ∵∠BAC =72°,∠C =36°,∴∠ABC =72°.∴∠BAC =∠ABC. ∴CA =CB.∴△ABC 是等腰三角形.∵∠BAC 的平分线AD 交BC 于点D ,∴∠DAB=∠CAD=36°.∴∠CAD=∠C.∴CD=AD,∴△ACD是等腰三角形.∵∠ADB=∠CAD+∠C=72°,∴∠ADB=∠B.∴AD=AB.∴△ADB是等腰三角形.9. 【答案】C10. 【答案】D[解析] ∵OC=CD=DE,∴∠O=∠ODC,∠DCE=∠DEC.∴∠DCE=∠O+∠ODC=2∠ODC.∵∠O+∠OED=3∠ODC=∠BDE=75°,∴∠ODC=25°.∵∠CDE+∠ODC=180°-∠BDE=105°,∴∠CDE=105°-∠ODC=80°.二、填空题(本大题共6道小题)11. 【答案】120[解析] 由于△ABC是等边三角形,所以∠A=60°.所以∠ADE+∠AED=120°.因为将△ADE折叠,使点A落在BC边上的点F处,所以∠ADE=∠EDF,∠AED=∠DEF.所以∠ADF+∠AEF=2(∠ADE+∠AED)=240°.所以∠BDF+∠CEF=360°-(∠ADF+∠AEF)=120°.12. 【答案】46[解析] ∵BC=BD,∠CBD=46°,∴∠C=∠BDC=12(180°-46°)=67°.∵AB=AC,∴∠ABC=∠C=67°.∴∠A=46°.13. 【答案】514. 【答案】30[解析] ∵MN∥BC,∴∠MOB=∠OBC. ∵∠OBM=∠OBC,∴∠MOB=∠OBM.∴MO=MB.同理NO=NC.∴△AMN的周长=AM+MO+AN+NO=AM+MB+AN+NC=AB+AC=30.15. 【答案】16[解析] 如图,过点C作CD⊥AB,垂足为D,则△ADC是含30°角的直角三角形,那么DC=12AC=4,∴S△ABC=12AB·DC=12×8×4=16.16. 【答案】6[解析] 已知三角形的一外角为120°,则相邻内角度数为60°,那么含有60°角的等腰三角形是等边三角形.已知等边三角形的一边长为2,则其周长为6.三、解答题(本大题共4道小题)17. 【答案】证明:连接AD.∵AB=AC,D为BC的中点,∴AD平分∠BAC.又∵DE⊥AB,DF⊥AC,∴DE=DF.18. 【答案】解:(1)证明:如图,过点D作DM∥AB,交CF于点M,则∠MDF=∠E.∵△ABC是等边三角形,∴∠CAB=∠CBA=∠C=60°.∵DM∥AB,∴∠CDM=∠CAB=60°,∠CMD=∠CBA=60°.∴△CDM是等边三角形.∴CM=CD=DM.在△DMF 和△EBF 中,⎩⎨⎧∠MDF =∠E ,DF =EF ,∠DFM =∠EFB ,∴△DMF ≌△EBF(ASA).∴DM =BE. ∴CD =BE.(2)∵ED ⊥AC ,∠CAB =∠CBA =60°, ∴∠E =∠FDM =30°. ∴∠BFE =∠DFM =30°. ∴BE =BF ,DM =MF.∵△DMF ≌△EBF ,∴MF =BF. ∴CM =MF =BF.又∵BC =AB =12,∴BF =13BC =4.19. 【答案】解:(1)∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠BEG =∠AGC′=48°. 由折叠的性质得∠CEF =∠C′EF , ∴∠CEF =12(180°-48°)=66°. (2)证明:∵四边形ABCD 是长方形, ∴AD ∥BC.∴∠GFE =∠CEF. 由折叠的性质得∠CEF =∠C′EF , ∴∠GFE =∠C′EF.∴GE =GF ,即△EFG 是等腰三角形.20. 【答案】证明:∵△ABC 是等边三角形, ∴∠A =∠B =∠ACB =60°. ∵DE ∥AB ,∴∠EDC =∠B =60°,∠DEC =∠A =60°. ∵EF ⊥DE ,∴∠DEF =90°. ∴∠F =90°-∠EDC =30°.∵∠ACB=∠EDC=∠DEC=60°,∴△EDC是等边三角形.∴DE=DC. ∵∠DEF=90°,∠F=30°,∴DF=2DE=2DC.。

初二数学等腰等边三角形培优题1(完整资料).doc

初二数学等腰等边三角形培优题1(完整资料).doc

此文档下载后即可编辑等腰等边三角形培优题11.如图,将△ABC 绕直角顶点C 顺时针旋转90°,得到△DEC ,连接AD ,若∠BBB =25∘,则∠BBB =______.2.如图,P ,Q 是△ABC 的边BC 上的两点,且BP =PQ =QC =AP =AQ ,则∠ABC =_____.3.如图,在△BBBBBB 中,BB BB =BBBB ,CD 是∠BBBBBB 的平分线,BB BB //BBBB ,交AC 于点E .若∠BBBB =35∘,则∠BBB=.4.如图,等边△BBBBBB 中,AD 是中线,BBBB ⊥BBBB 于点E ,BBBB =3,则点D 到AB 的距离为:______.5.已知:在△ABC 中,AH ⊥BC ,垂足为点H ,若AB +BH =CH ,∠ABH =70∘,则∠BAC =______ ∘.6.如图,在△ABC 中,BI ,CI 分别平分∠ABC,∠ACB,过I 点作DE∥BC,交AB 于D ,交AC 于E ,给出下列结论:①△DBI 是等腰三角形;②△ACI 是(第1题) (第2题) (第3题)(第4题) (第6题) (第7题)等腰三角形;③AI 平分∠BAC;④△ADE 周长等于AB +AC .其中正确的是( )A . ①②③B . ②③④C . ①③④D . ①②④7.如图,已知AB =A 1B ,A 1B 1=A 1A 2,A 2B 2=A 2A 3,A 3B 3=A 3A 4,….若∠A=70°,则∠B n -1A n A n -1的度数为( )A . 702n ⎛⎫︒ ⎪⎝⎭B . 1702n +⎛⎫︒ ⎪⎝⎭C . 1702n -⎛⎫︒ ⎪⎝⎭D . 2702n +⎛⎫︒ ⎪⎝⎭8.如图,在等边△ABC 中,AD 是BC 边上的高,∠BDE=∠CDF=30°, 在下列结论中:①△ABD≌△ACD;②2DE=2DF=AD;③△ADE≌△ADF;④4BE=4CF=AB.正确的有 (填序号) 9.如图所示,在Rt △ABC 中,∠A=30°,∠B=90°,AB=12,D 是斜边AC 的中点,P 是AB 上一动点,则PC+PD 的最小值为 .10.如图,已知△BBBBBB 是等边三角形,D 为BC 延长线上一点,CE 平分∠BBBBBB ,BBBB =BBBB ,BBBB =7, 则 AE 的长度是 . 11.如图,△ABC 中,BD 平分∠ABC ,BC 的垂直平分线交BC 于点E ,交BD于点F ,连接CF .若∠A =60°,∠ABD =24°,则∠ACF 的度数为 .12.如图,已知点C 是线段AB 的中点,点D 是线段BC 上的定点(不同于端点B 、C ),过点D 作直线l 垂直线段AB ,若点P 是直线l 上的任意一点,连接PA 、PB ,则能使△PAB 成为等腰三角形的点P 一共有_______ 个.(填写确切的数字)(第11题) (第9题) (第10题)(第8题)(第12题) (第13题)13.如图,AB=2,BC=5,AB⊥BC于点B,l⊥BC于点C,点P自点B开始沿射线BC移动,过点P作PQ⊥PA交直线l于点Q,当BP= 时,PA=PQ. 14.已知△ABC是等边三角形,E是AC边上一点,F是BC边延长线上一点,且CF=AE,连接BE,EF.(1)如图1,若E是AC边的中点,猜想BE与EF的数量关系为___________________.(2)如图2,若E是线段AC上的任意一点,其它条件不变,上述线段BE、EF 的数量关系是否发生变化,写出你的猜想并加以证明.(3)如图3,若E是线段AC延长线上的任意一点,其它条件不变,上述线段BE、EF的数量关系是否发生变化,写出你的猜想并加以证明。

2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)

2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)

2021年九年级数学中考复习分类专题:等腰三角形的判定与性质培优练(一)一.选择题1.如图,在等腰三角形ABC中,顶角∠A=36°.若BD平分∠ABC,则图中等腰三角形有()A.1个B.2个C.3个D.4个2.如图,在△ABC中,AB=7,AC=5,BC=6,∠ABC和∠ACB的平分线相交于点D,过点D作BC的平行线交AB于点E,交AC于点F.则△AEF的周长为()A.9 B.11 C.12 D.133.如图,D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=5,BC =3,则BD的长为()A.1 B.1.5 C.2 D.2.54.如图,△ABC中,∠ABC和∠ACB的平分线交于点F,过点F作DE∥BC交AB于点D,交AC于点E,那么下列结论:①△BDF和△CEF都是等腰三角形;②∠DFB=∠EFC;③△ADE的周长等于AB与AC的和;④BF=CF.其中正确的是()A.①②③B.①②③④C.①③D.①5.在下列命题中,假命题是()A.一个等腰三角形必能分成两个全等的直角三角形B.一个直角三角形必能分成两个等腰三角形C.两个等腰三角形必能拼成一个直角三角形D.两个全等的直角三角形必能拼成一个等腰三角形6.在△ABC中,AB=AC,∠B=60°,点D、E在BC边上,且AD和AE把∠BAC三等分,则图中的等腰三角形的个数是()A.2 B.4 C.6 D.87.如图,已知点O是△ABC的∠ABC和∠ACB平分线的交点,过O作EF平行于BC交AB于E,交AC于F,AB=12,AC=18,则△AEF的周长是()A.15 B.18 C.24 D.308.如图,等腰三角形ABC中,∠BAC=90°,在底边BC上截取BD=AB,过D作DE ⊥BC交AC于E,连接AD,则图中等腰三角形的个数是()A.1 B.2 C.3 D.49.如图,已知D为△ABC内一点,CD平分∠ACB,BD⊥CD,∠A=∠ABD,若AC=9,BC=5,则CD的长为()A.B.4 C.D.510.如图,在△ABC中,ED∥BC,∠ABC和∠ACB的平分线分别交ED于点G、F,若FG=2,ED=6,则EB+DC的值为()A.6 B.7 C.8 D.9二.填空题11.如图,在矩形ABCD中,AB=4,AD=3,在矩形内部有一点P,同时满足PC=BC,∠APB=90°,延长CP交AD于点E,则CE=.12.在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC,分别交AB、AC于点E、F.若AB=5,AC=4,那么△AEF的周长为.13.如图,在△ABC中,AB=AC=8,点D是BC边上一点,且DF∥AB,DE∥AC,则四边形DEAF的周长为.14.如图,在△ABC中,∠ABC与∠ACB的平分线相交于点O,过点O作MN∥BC,分别交AB、AC于点M、N.若△ABC的周长为15,BC=6,则△AMN的周长为.15.如图,在△ABC中,∠ABC和∠ACB的平分线相交于点O,过点O作EF∥BC交AB于E,交AC于F,过点O作OD⊥AC于D,下列四个结论:①EF=BE+CF;②∠BOC=90°+∠A;③点O到△ABC各边的距离相等;④设OD=m,AE+AF=n,则S△AEF=mn.其中正确的结论是.(填序号)三.解答题16.如图,△ABC中,∠A=36°,∠C=72°,∠DBC=36°.(1)求∠ABD的度数.(2)求证:BC=AD.17.如图,在△ABC中,已知∠ABC和△ABC的外角∠ACG的平分线交于点F,过点F 作FD∥BC,FD分别交AB、AC于点D、E.(1)求证:DE=BD﹣CE.(2)若∠ACB=60°,试判断△ECF的形状,并说明理由.18.已知△ABC的两个外角∠CBD和∠BCE的平分线的交于点O.(1)如图1,若BO∥AE,试说明△ABC的等腰三角形;(2)如图2,若∠A=90°,求∠O的度数;(3)如图3,试探索∠O与∠A之间存在的数量关系(直接写出结论,不说明理由).19.已知BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)如图1,求证:BE=DE.(2)如图2,在过点D作DF∥AB,连接EF,过点E作EG⊥BC,若EG=3,BF=5,在不添加任何辅助线的情况下,请直接写出面积等于的所有三角形.20.如图1和2,△ABC中,BE平分∠ABC交AC边于点E,(1)过点E作DE∥BC交AB于点D,求证:△BDE为等腰三角形;(2)若AB=AC,AF⊥BD,∠ACD=∠ABC,判断BF、CD、DF的数量关系,并说明理由.21.(1)如图1,已知:在△ABC中,AB=AC=10,BD平分∠ABC,CD平分∠ACB,过点D作EF∥BC,分别交AB、AC于E、F两点,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是,△AEF的周长是(2)如图2,若将(1)中“△ABC中,AB=AC=10”改为“若△ABC为不等边三角形,AB=8,AC=10”其余条件不变,则图中共有个等腰三角形;EF与BE、CF之间的数量关系是什么?证明你的结论,并求出△AEF的周长(3)已知:如图3,D在△ABC外,AB>AC,且BD平分∠ABC,CD平分△ABC的外角∠ACG,过点D作DE∥BC,分别交AB、AC于E、F两点,则EF与BE、CF之间又有何数量关系呢?直接写出结论不证明.参考答案一.选择题1.解:由图可知,∵AB=BC,∴△ABC为等腰三角形,∵∠A=36°,BD平分∠ABC,∴∠ABD=∠DBC=∠A=36°∴△ABD为等腰三角形,∵∠BDC=∠A+∠ABD=72°=∠C∴△BCD均为等腰三角形,∴题中三角形共有三个.故选:C.2.解:∵BD是∠ABC的平分线,∴∠EBD=∠DBC,∵过点D作BC的平行线交AB于点E,∴∠EDB=∠EBD,∴BE=ED,∴∠EDB=∠EBD,同理可得DF=FC,∴△AEF的周长即为AB+AC=7+5=12.故选:C.3.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=5,BC=3,∴CE=3,∴AE=AC﹣EC=5﹣3=2,∴BE=2,∴BD=1.故选:A.4.解:①∵DE∥BC,∴∠DFB=∠FBC,∠EFC=∠FCB,∵BF是∠ABC的平分线,CF是∠ACB的平分线,∴∠FBC=∠DFB,∠FCE=∠FCB,∵∠DBF=∠DFB,∠EFC=∠ECF,∴△DFB,△FEC都是等腰三角形.∴①正确②∵△ABC不是等腰三角形,∴②∠DFB=∠EFC,是错误的;③∵△DFB,△FEC都是等腰三角形.∴DF=DB,FE=EC,即有DE=DF+FE=DB+EC,∴△ADE的周长AD+AE+DE=AD+AE+DB+EC=AB+AC.∴③正确,共2个正确的.④∵△ABC不是等腰三角形,∴∠ABC≠∠ACB,∴∠FBC≠∠FCB,∴BF=CF是错误的,故选:C.5.解:A、一个等腰三角形底边上的高把等腰三角形分成两个全等的直角三角形,所以A 选项正确;B、一个直角三角形斜边上中线把直角三角形分成两个等腰三角形;所以B选项正确;C、任意两个等腰三角形不一定能拼成一个直角三角形,所以C选项错误;D、两个全等的等腰直角三角形一定能拼成一个等腰三角形,所以D选项正确.故选:C.6.解:∵AB=AC,∠B=60°,∴△ABC是等边三角形,∴∠BAC=60°,∵AD和AE把∠BAC三等分,∴∠BAD=∠DAE=∠EAC=20°,∴∠ADE=∠BAD+∠B=60°+20°=80°,∠AED=∠EAC+∠C=60°+20°=80°,∴∠ADE=∠AED,∴AD=AE,∴△ADE是等腰三角形,∴一共有2个等腰三角形.故选:A.7.解:∵EF∥BC∴∠OCB=∠OCF,∠OBC=∠OBE又BO、CO分别是∠BAC和∠ACB的角平分线∴∠OCF=∠FCO,∠OBC=∠OBE∴OF=CF,OE=BE∴△AEF的周长=AF+OF+OE+AE,=AF+CF+BE+AE=AB+AC=12+18=30.故选:D.8.解:∵三角形ABC是等腰三角形,且∠BAC=90°,∴∠B=∠C=45°,∵DE⊥BC,∴∠EDB=∠EDC=90°∴∠DEC=∠C=45°,∴△EDC是等腰三角形,∵BD=AB,∴△ABD是等腰三角形,∴∠BAD=∠BDA,而∠EAD=90°﹣∠BAD,∠EDA=90°﹣∠BDA,∴∠EAD=∠EDA,∴△EAD是等腰三角形,因此图中等腰三角形共4个.故选:D.9.解:延长BD与AC交于点E,∵∠A=∠ABD,∴BE=AE,∵BD⊥CD,∴BE⊥CD,∵CD平分∠ACB,∴∠BCD=∠ECD,∴∠EBC=∠BEC,∴△BEC为等腰三角形,∴BC=CE,∵BE⊥CD,∴2BD=BE,∵AC=9,BC=5,∴CE=5,∴AE=AC﹣EC=9﹣5=4,∴BE=4,∴BD=2.∴CD===,故选:C.10.解:∵ED∥BC,∴∠EGB=∠GBC,∠DFC=∠FCB,∵∠GBC=∠GBE,∠FCB=∠FCD,∴∠EGB=∠EBG,∠DCF=∠DFC,∴BE=EG,CD=DF,∵FG=2,ED=6,∴EB+CD=EG+DF=EF+FG+FG+DG=ED+FG=8,故选:C.二.填空题(共5小题)11.解:如图,延长AP交CD于F,∵∠APB=90°,∴∠FPB=90°,∴∠CPF+∠CPB=90°,∵四边形ABCD是矩形,∴∠DAB=∠ABC=90°,BC=AD=3,∴∠EAP+∠BAP=∠ABP+∠BAP=90°,∴∠EAP=∠ABP,∵PC=BC=3,∴∠CPB=∠CBP,∴∠CPF=∠ABP=∠EAP,∵∠APE=∠CPF,∴∠EAP=∠APE,∴AE=PE,∴DE=3﹣PE,∵CD2+DE2=CE2,CD=AB=4,CE=3+PE,∴42+(3﹣PE)2=(3+PE)2,解得:PE=,∴CE=3+=,故答案为:.12.解:由∠ABC与∠ACB的平分线相交于点O,得∠EBO=∠OBC,∠FCO=∠OCB.由EF∥BC,得∠EOB=∠BOC,∠FOC=∠OCB,∠EOB=∠EBO,∠FOC=∠FCO,∴EO=BE,OF=FC.C△AEF=AE+EF+AF=AE+BE+AF+CF=AB+AC=9.故答案为:9.13.解:∵AB=AC,∴∠B=∠C,∵DE∥AB,∴∠B=∠CDF,∴∠CDF=∠C,∴DF=CF∴CE=DE,同理可得BE=DE,∴四边形DEAF的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC,∵AB=AC=8,∴四边形DEAF的周长=8+8=16.故答案为:16.14.解:如图,∵OB、OC分别是∠ABC与∠ACB的平分线,∴∠1=∠5,∠3=∠6,又∵MN∥BC,∴∠2=∠5,∠6=∠4,∴BM=MO,NO=CN,∴△AMN的周长=AM+AN+MN=MA+AN+MO+ON=AB+AC,又∵AB+AC+BC=15,BC=6,∴AB+AC=9,∴△AMN的周长=9,故答案为9.15.解:∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠ABC,∠OCB=∠ACB,∠A+∠ABC+∠ACB=180°,∴∠OBC+∠OCB=90°﹣∠A,∴∠BOC=180°﹣(∠OBC+∠OCB)=90°+∠A;故②正确;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴∠OBC=∠OBE,∠OCB=∠OCF,∵EF∥BC,∴∠OBC=∠EOB,∠OCB=∠FOC,∴∠EOB=∠OBE,∠FOC=∠OCF,∴BE=OE,CF=OF,∴EF=OE+OF=BE+CF,故①正确;过点O作OM⊥AB于M,作ON⊥BC于N,连接OA,∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴ON=OD=OM=m,∴S△AEF=S△AOE+S△AOF=AE•OM+AF•OD=OD•(AE+AF)=mn;故④错误;∵在△ABC中,∠ABC和∠ACB的平分线相交于点O,∴点O到△ABC各边的距离相等,故③正确.故答案是:①②③三.解答题(共6小题)16.(1)解:在△ABC中,∠ABC=180°﹣∠A﹣∠C=72°,∴∠ABD=∠ABC﹣∠DBC=36°;(2)证明:在△BCD中,∠BDC=180°﹣∠DBC﹣∠C=72°,∴BD=BC,又∠ABD=∠A,∴BD=AD,∴BC=BD=AD.17.解:(1)∵∠ABC的平分线和外角∠ACF的平分线交于点F,∴∠DBF=∠CBF,∠ECF=∠GCF;∵FD∥BC,∴∠DFB=∠CBF,∠EFC=∠GCF,∴∠DBF=∠DFB,∠ECF=∠EFC,∴BD=FD,EC=EF;∴DE=BD﹣CE;(2)△ECF是等边三角形,∵∠ACB=60°,∴∠ACG=120°,∵CF平分∠ACG,∴∠ECF=60°,∵EF=CF,∴△ECF是等边三角形.18.解:(1)如图1中,∵OB∥AE,∴∠DBO=∠A,∠CBO=∠ACB,∵OB平分∠CBD,∴∠A=∠ACB,∴BA=BC,∴△ABC是等腰三角形.(2)如图2中,∵∠CBD、∠BCE的平分线相交于点O,∴∠1=(∠A+∠ACB),∠2=(∠A+∠ABC),∴∠1+∠2=(∠A+∠ACB+∠ABC+∠A),∵∠A+∠ACB+∠ABC=180°,∴∠1+∠2=90°+∠A,在△OBC中,∠BOC=180°﹣(∠1+∠2)=180°﹣(90°+∠A)=90°﹣∠A,∵∠A=90°,∴∠BOC=90°﹣×90°=90°﹣45°=45°.(3)由(2)可知:∠BOC=90°﹣∠A.19.(1)证明:∵DE∥BC,∴∠EDB=∠DBC,∵BD是△ABC的角平分线,∴∠EBD=∠DBC,∴∠EBD=∠EDB,(2)∵ED∥BF,DF∥BE,∴四边形EBFD是平行四边形,∵EG⊥BC,且EG=3,∴S=BF•EG=3×5=15,▱EBFD∴S△EFD=S△BEF=S△BED=S△BFD=.20.(1)证明:∵BE平分∠ABC,∴∠ABE=∠EBC,∵DE∥BC,∴∠DEB=∠EBC=∠ABE,∴BD=ED,∴△DBE为等腰三角形;(2)解:在图2中,延长CD到M,使得CM=BD,连接AM,过点A作AN⊥CM 于点N,∵BE平分∠ABC,∠ACD=∠ABC,∴∠ACM=∠ABD.在△ABD和△ACM中,,∴△ABD≌△ACM(SAS),∴AD=AM,∠ADB=∠AMC,∴∠AMD=∠ADM,∴∠ADF=ADN.∵AN⊥DM,∴DN=MN.在△ADF和△ADN中,,∴△ADF≌△ADN(AAS),∴DF=DN=MN.∴BF=BC﹣DF=CM﹣MN=CN=CD+DN=CD+DF.即BF=CD+DF.21.解:(1)BE+CF=EF.理由如下:∵AB=AC,∴∠ABC=∠ACB,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∴∠DBC=∠DCB,∴DB=DC∵EF∥BC,∴∠AEF=∠ABC,∠AFE=∠ACB,∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,AE=AF,∴等腰三角形有△ABC,△AEF,△DEB,△DFC,△BDC共5个,∴BE+CF=DE+DF=EF,即BE+CF=EF,△AEF的周长=AE+EF+AF=AE+BE+AF+FC=AB+AC=20.故答案为:5;BE+CF=EF;20;(2)BE+CF=EF,∵BD平分∠ABC,CD平分∠ACB,∴∠EBD=∠CBD,∠FCD=∠BCD,∵EF∥BC,∴∠EDB=∠CBD,∠FDC=∠BCD,∴∠EBD=∠EDB,∠FDC=∠BCD,∴BE=DE,CF=DF,∴等腰三角形有△BDE,△CFD,∴BE+CF=DE+DF=EF,即BE+CF=EF.可得△AEF的周长为18.(3)BE﹣CF=EF,由(1)知BE=ED,∵EF∥BC,∴∠EDC=∠DCG=∠ACD,∴CF=DF,又∵ED﹣DF=EF,∴BE﹣CF=EF.。

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案)

中考数学总复习《等腰三角形》专项提升练习题(附答案) 学校:___________班级:___________姓名:___________考号:___________一、选择题1.若一个等腰三角形的两边长分别是2和5,则它的周长为( )A.12B.9C.12或9D.9或72.若等腰三角形的顶角为40°,则它的底角度数为( )A.40°B.50°C.60°D.70°3.如图,在等腰三角形ABC中,AB=AC,BD平分∠ABC,∠A=36°,则∠1的度数为( )A.36°B.60°C.72°D.108°4.如图,在△ABC中,D为BC的中点,AD⊥BC,E为AD上一点,∠ABC=60°,∠ECD=40°,则∠ABE=( )A.10°B.15°C.20°D.25°5.如图,在△ABC中,AB=AC,点D、E在BC上,连接AD、AE,如果只添加一个条件使∠DAB=∠EAC,则添加的条件不能为( )A.BD=CEB.AD=AEC.DA=DED.BE=CD6.等腰三角形补充下列条件后,仍不一定成为等边三角形的是( )A.有一个内角是60°B.有一个外角是120°C.有两个角相等D.腰与底边相等7.等边△ABC的两条角平分线BD和CE相交所夹锐角的度数为( )A.60°B.90°C.120°D.150°8.如图,等边△OAB的边长为2,则点B的坐标为( )A.(1,1)B.(3,1)C.(3,3)D.(1,3)9.如图,△ABC中∠A=30°,E是AC边上的点,先将△ABE沿着BE翻折,翻折后△ABE的AB边交AC于点D,又将△BCD沿着BD翻折,C点恰好落在BE上,此时∠CDB=82°,则原三角形的∠B为( )A.75°B.76°C.77°D.78°10.如图,在△ABC中,AB=AC,D、E是△ABC内的两点,AD平分∠BAC,∠EBC=∠E=60°,若BE=6 cm,DE=2 cm,则BC的长为( )A.4 cmB.6 cmC.8 cmD.12 cm二、填空题11.等腰三角形的一个内角为100°,则顶角的度数是________.12.如图,已知△ABC的角平分线CD交AB于D,DE∥BC交AC于E,若DE=3,AE=4,则AC=.13.如图,l∥m,等边△ABC的顶点B在直线m上,∠1=20°,则∠2的度数为.14.如图所示,△ABC为等边三角形,AD⊥BC,AE=AD,则∠ADE=________.15.已知一张三角形纸片ABC(如图甲),其中AB=AC.将纸片沿过点B的直线折叠,使点C落到AB边上的E点处,折痕为BD(如图乙).再将纸片沿过点E的直线折叠,点A恰好与点D重合,折痕为EF(如图丙).原三角形纸片ABC中,∠ABC的大小为.16.《蝶几图》是明朝人戈汕所作的一部组合家具的设计图(蜨,同“蝶”),如图为某蝶几设计图,其中△ABD和△CBD为“大三斜”组件(大三斜组件为两个全等的等腰直角三角形),已知某人位于点P处,点P与点A关于直线DQ对称,连接CP、DP.若∠ADQ=25°,则∠DCP的度数为.三、解答题17.如图,在△ABC中,AC=DC=DB,∠ACD=100°,求∠B的度数.18.如图,△ABC中,AC=BC,点D在BC上,作∠ADF=∠B,DF交外角∠ACE的平分线CF于点F.(1)求证:CF∥AB;(2)若∠CAD=20°,求∠CFD的度数.19.如图,等边△ABC中,AD是∠BAC的角平分线,E为AD上一点,以BE为一边且在BE下方作等边△BEF,连接CF.(1)求证:AE=CF;(2)求∠ACF的度数.20.如图,△ABC是等边三角形,D、E、F分别是AB、BC、AC上一点,且∠DEF=60°.(1)若∠1=50°,求∠2;(2)连接DF,若DF∥BC,求证:∠1=∠3.21.如图,在△ABC中,AB=BC,CD⊥AB于点D,CD=BD,BE平分∠ABC,点H是BC 边的中点,连接DH,交BE于点G,连接CG.(1)求证:△ADC≌△FDB;(2)求证:CE=12BF;(3)判断△ECG的形状,并证明你的结论;22.如图,已知在等边三角形ABC中,点D、E分别在直线AB、直线AC上,且AE=BD.(1)当点D、E分别在边AC、边AB上时,如图1所示,EB与CD相交于点G,求∠CGE 的度数;(2)当点D、E分别在边CA、边AB的延长线上时,如图2所示,∠CGE的度数是否变化?如不变,请说明理由.如变化,请求出∠CGE的度数.答案1.A2.D3.C4.C.5.C6.C7.A8.D9.D10.C.11.答案为:100°.12.答案为:7.13.答案为:40°.14.答案为:75°15.答案为:72°.16.答案为:20°.17.解:∵AC=DC=DB,∠ACD=100°∴∠CAD=(180°﹣100°)÷2=40°∵∠CDB是△ACD的外角∴∠CDB=∠A+∠ACD=100°=40°+100°=140°∵DC=DB∴∠B=(180°﹣140°)÷2=20°.18.(1)证明:∵AC=BC∴∠B=∠BAC∵∠ACE=∠B+∠BAC∴∠BAC=12∠ACE∵CF平分∠ACE∴∠ACF=∠ECF=12∠ACE∴∠BAC =∠ACF∴CF ∥AB ;(2)解:∵∠BAC =∠ACF ,∠B =∠BAC ,∠ADF =∠B ∴∠ACF =∠ADF∵∠ADF+∠CAD+∠AGD =180°,∠ACF+∠F+∠CGF =180° 又∵∠AGD =∠CGF∴∠F =∠CAD =20°.19.证明:(1)∵△ABC 是等边三角形∴AB =BC ,∠ABE +∠EBC =60°.∵△BEF 是等边三角形∴EB =BF ,∠CBF +∠EBC =60°.∴∠ABE =∠CBF.在△ABE 和△CBF 中⎩⎨⎧AB =BC ,∠ABE =∠CBF EB =BF ,∴△ABE ≌△CBF(SAS).∴AE =CF.(2)∵等边△ABC 中,AD 是∠BAC 的角平分线∴∠BAE =30°,∠ACB =60°.∵△ABE ≌△CBF∴∠BCF =∠BAE =30°.∴∠ACF =∠BCF +∠ACB =30°+60°=90°.20.解:(1)∵△ABC 是等边三角形∴∠B =∠A =∠C =60°∵∠B +∠1+∠DEB =180°∠DEB +∠DEF +∠2=180°∵∠DEF =60°∴∠1+∠DEB =∠2+∠DEB∴∠2=∠1=50°;(2)连接DF∵DF∥BC∴∠FDE=∠DEB∵∠B+∠1+∠DEB=180°,∠FDE+∠3+∠DEF=180°∵∠B=60°,∠DEF=60°∴∠1=∠3.21.证明:(1)∵AB=BC,BE平分∠ABC∴BE⊥AC,CE=AE∵CD⊥AB∴∠ACD=∠DBF在△ADC和△FDB中∴△ADC≌△FDB(ASA);(2)∵△ADC≌△FDB∴AC=BF又∵CE=AE∴CE=12BF;(3)△ECG为等腰直角三角形.∵点H是BC边的中点∴GH垂直平分BC∴GC=GB∵∠DBF=∠GBC=∠GCB=∠ECF,得∠ECG=45°又∵BE⊥AC∴△ECG为等腰直角三角形.22.(1)证明:∵△ABC为等边三角形∴AB=BC,∠A=∠ABC=60°在△ABE和△BCD中AE=BD,∠A=∠DBC,AB=BC∴△ABE≌△BCD∴∠ABE=∠BCD∵∠ABE+∠CBG=60°∴∠BDG+∠CBG=60°∵∠CGE=∠BCG+∠CBG∴∠CGE=60°;(2)证明:∵△ABC为等边三角形∴AB=BC,∠CAB=∠ABC=60°∴∠EAB=∠CBD=120°在△ABE和△BCD中AB=BC,∠EAB=∠CBD,AE=BD∴△ABE≌△BCD(SAS)∴∠D=∠E∵∠ABE=∠DBG,∠CAB=∠E+ABE=60°∴∠CGE=∠D+∠DBG=60°.。

初中数学培优-八年级数学等腰三角形巩固练习含答案

初中数学培优-八年级数学等腰三角形巩固练习含答案

等腰三角形 (巩固练习)姓名 班级第一部分1、在等腰三角形中,已知有两边长为2和6,则此等腰三角形的周长是 .2、一个等腰三角形的周长为14 cm,,且一边长为4 cm,,则它的腰长为 .3、如图,已知AC 平分∠BAD,CD ⊥AD 于D,CB ⊥AB 于B.请找出图中的等腰三角形,并说明理由.4、如图3,在△ABC 中,CD 与BE 分别是AB,AC 边上的高,且CD=BE.试判断△ABC 的形状,并说明理由.5、如图4,AD 是等腰三角形ABC 的顶角的平分线,点E,F 分别在AB,AC 上,且它们关于AF 对称,则BE=CF.请说明理由.6、如图5, BD 是等腰三角形ABC 的顶角平分线,点E,F 分别在AB,AC 上,请分别作出E,F 关于直线BD 的对称点.图2图4 DFCBA图5图3第二部分1.如图1,点D 是△ABC 的边BC 上一点,且AB=AC,BD=AD,则图中有 个等腰三角形.2.如图1,等腰三角形ABD 的顶角是 ,底边是 .3. 在△MNP 中, 若MN=NP,则此等腰三角形的两个底角是: .4.等腰三角形有两边长分别为1cm,2cm,则它的腰长是 . .5.如果等腰三角形的两边长分别为4和7,则三角形的周长为 .6.下列说法:①等腰三角形是轴对称图形;②等腰三角形的对称轴是顶角的平分线;③等腰三角形的对称轴是顶角平分线所在的直线;④等腰三角形的对称轴有三条. 其中正确的说法有 .(填序号)7. 等腰三角形的底边长是8, 则它的腰的取值范围是 .解析:根据”三角形两边之和大于第三边”, 若设腰长为x, 则2x>8, ∴x>4.8. 已知:线段m 、n.用尺规作出一个等腰三角形,使它的底等于m, 腰等于n (保留作图痕迹,不写作法、不证明)9.如图7, ∠A=∠D,∠1=∠2,E 是AD 的中点.则△EBC 是等腰三角形吗?请说明理由.图7nm 图1参考答案第一部分5、如图4,AD是等腰三角形ABC的顶角的平分线,点E,F分别在AB,AC上,且它们关于AF 对称,则BE=CF.请说明理由.【解】∵AD是等腰三角形ABC的顶角的平分线,∴直线AD是等腰三角形ABC的对称轴.∵B,C 和E,F 是两对对称点,当将图形沿AD 对折时,点B 与点C 重合,点E 与点F 重合, ∴线段BE 与线段CF 重合, ∴BE=CF.6、如图5, BD 是等腰三角形ABC 的顶角平分线,点E,F 分别在AB,AC 上,请分别作出E,F 关于直线BD 的对称点.【解】∵BD 是等腰三角形ABC 的顶角平分线, ∴直线BD 是等腰三角形ABC 的对称轴.∴当把图形沿直线BD 对折时, AD 与DC, BA 与BC 重合, ∴E 的对称点E 1在BC 上, 且BE 1=BE, F 的对称点F 1在AD 上, 且DF 1=DF.如图, 点E 1, F 1分别是E, F 关于直线BD 的对称点.第二部分1.如图1,点D 是△ABC 的边BC 上一点,且AB=AC,BD=AD,则图中有 个等腰三角形.答案:22.如图1,等腰三角形ABD 的顶角是 ,底边是 .答案:∠ABD AB3. 在△MNP 中, 若MN=NP,则此等腰三角形的两个底角是: .答案:∠NMP ∠NPM4.等腰三角形有两边长分别为1cm,2cm,则它的腰长是 . .答案:2cm解析:若AB 为底,则由AB 的长是BC 的2倍可知,两腰之和等于底边,此时三角形不存在;故AB 为腰. ∵AB+BC+AC=40, ∴5BC=40,则BC=8,AB=2BC=16.答案:B5.如果等腰三角形的两边长分别为4和7,则三角形的周长为 .解析:当腰长为7时三角形才存在, 则周长为7+7+4=18. 答案:186.下列说法:①等腰三角形是轴对称图形;②等腰三角形的对称轴是顶角的平分线;③等腰DFF 1E 1CB A图1DFCA图5三角形的对称轴是顶角平分线所在的直线;④等腰三角形的对称轴有三条. 其中正确的说法有 .(填序号)解析:轴对称图形的对称轴是一条直线,故②错误. 一般的等腰三角形的对称轴只有一条,故④错误.答案:①③7. 等腰三角形的底边长是8, 则它的腰的取值范围是.解析:根据”三角形两边之和大于第三边”, 若设腰长为x, 则2x>8, ∴x>4.答案:x>4.8. 已知:线段m、n.用尺规作出一个等腰三角形,使它的底等于m, 腰等于n (保留作图痕迹,不写作法、不证明)解:△ABC就是所求的等腰腰三角形.9.如图7, ∠A=∠D,∠1=∠2,E是AD的中点.则△EBC是等腰三角形吗?请说明理由.分析:根据已知条件,可得△ABE≌△CDE(ASA),则EB=EC.解:∵E是AD的中点, ∴AE=DE.∵∠A=∠D,∠1=∠2, ∴△ABE≌△CDE(ASA). ∴EB=EC, ∴△EBC是等腰三角形图7nmCBA。

等腰三角形大题培优专练

等腰三角形大题培优专练

2023-2024学年八年级数学上学期复习备考高分秘籍【人教版】专题2.6等腰三角形大题培优专练(压轴篇)班级:_____________ 姓名:_____________ 得分:_____________一、解答题1.(2021秋·黑龙江佳木斯·八年级统考期中)在△ABC中,AB=AC,CD⊥AB,垂足为D,点P在直线BC上,PE⊥AB,PF⊥AC,垂足分别为E,F.(1)如图①,当P是BC中点时,易证:PE+PF=CD(不需证明);(2)当P为线段BC上任意一点时,如图②,(1)中结论是否还成立?若成立,说明理由;若不成立,写出新的结论并证明;(3)当点P在线段BC延长线上时,如图③,直接写出PE,PF,CD之间的数量关系.2.(2023秋·云南昆明·八年级昆明市第一中学西山学校校考阶段练习)如图,在△ABC中,DH⊥BC于H,DF⊥AB于F,DE⊥AC交AC的延长线于E,且BH=CH,BF=CE.(1)求证:AD平分∠BAC;(2)若∠BAC=80°,求∠DCB的度数.3.(2023秋·全国·八年级专题练习)如图,△ABC中,AB=AC,D是AB上一个动点,DF⊥BC于点F,交CA延长线于点E,(1)试判断AD、AE的大小关系,并说明理由;(2)当点D在BA的延长线上时,其他条件不变,(1)中的结论是否还成立?请说明理由.4.(2022秋·安徽阜阳·八年级阜阳实验中学校考期中)已知四边形ABCD中,BC=CD,连接BD.过点C作BD的垂线交AB于点E,连接DE.(1)如图1,若DE∥BC,求证:BD与CE互相垂直平分.(2)如图2,连接AC,设BD,AC交于点F,DE垂直平分线段AC.①求∠CED的大小;②若AF=AE,求证:BE=CF.5.(2022秋·福建厦门·八年级统考期末)如图,在平面直角坐标系中,A,B两点的坐标分别是点A(0,a),点B(b,0),且a,b满足:a2―12a+36+|b―6|=0.(1)求∠ABO的度数;(2)若点M为AB的中点,等腰直角△ODC的腰CD经过点M,∠OCD=90°,连接AD.求证:AD⊥OD.6.(2022春·福建龙岩·八年级校考期中)如图,在四边形ABCD中,AD∥BC.(1)若∠B=∠C,求证AB=DC;(2)若E是CD的中点,AB⊥AE,且AB=4,AE=5,求四边形ABCD的面积.7.(2022秋·安徽合肥·八年级统考期末)由角平分线不仅可以得到角相等,也可以用来构造全等三角形,其构造思路如下:在图1中,点P是∠ABC的平分线OC上一点,点M在OA上,我们可以在OB上截取ON=______;连接PN,根据三角形全等判定方法______;构造出全等三角形△OMP≌△ONP.(1)请补全上面的构造思路;(2)参考上面的思路,解答问题:如图2,在△ABC中,AC>BC,直线MN垂直平分BC,与∠BAC的平分线AE交于D点,连接CD、BD,则∠ABD 与∠ACD有何数量关系,说明理由.8.(2022秋·山西吕梁·八年级统考期末)综合与实践数学活动课上,老师组织同学们展开了如下探究:如图1,△ABC中,∠BAC=90°,AB=AC.点D是BC边上一点,连接AD,以AD为直角边作△ADE,其中∠DAE=90°,AD=AE.知识初探兴趣小组提出的问题是:“线段BE和CD有怎样的数量关系和位置关系”,请你直接写出答案________.类比再探睿智小组在兴趣小组的基础上,继续探究:如图2,若点D是BC延长线上一点,AE交BD于点F,其它条件不变,线段BE和CD有怎样的数量关系和位置关系?并说明理由.特例探究启航小组根据平时的学习经验,“当图形的位置特殊时会产生特殊的数量关系”,在图2的基础上让图形特殊化,如图3,若DB平分∠ADE,其它条件不变,他们发现BE=CF.请你写出证明过程.归纳总结此综合与实践从“知识初探”“类比再探”到“特例探究”的过程中,主要体现的数学思想是________(填正确选项代码)A.数形结合B.从一般到特殊C.归纳9.(2023秋·河南信阳·八年级校联考阶段练习)如图,在△ABC中,AD是∠BAC的平分线,DH⊥AC于点H,DM=DN.(1)在线段AB上找一点P,使AP=AN,连接DP.求证:DP=DM;11.(2020秋·福建厦门·八年级校考期中)概念学习:若经过一个三角形某一顶点的一条直线可把它分成两个小等腰三角形,那么我们称这个三角形为过该顶点的生成三角形.(1)如图,在△ABC中,三角形?请你说明理由.(2)若△ABC是过顶点(1)如图1,求证:∠CED=∠CDE;(2)如图2,若∠B+∠CAE=120°,∠ACD=2∠BAC,求∠BAD的度数;(3)如图3,在(2)的条件下,作直线CE交AB的延长线于点F,过点A作射线AB交CE于点G,且∠G=∠D,若CG=5,AG=7,求AF:CF的值.13.(2022秋·福建泉州·八年级校考期中)如图,已知以△ABC的边AB、AC分别向外作等腰Rt△ABD与等腰Rt△ACE,其中∠BAD=∠CAE=90°,连接BE、CD,BE和CD相交于点O.(1)求证:BE=DC;(2)求∠BOC的大小;(3)连接DE,取DE的中点F,再连接AF,猜想AF与BC的位置关系和数量关系,并证明.14.(2022秋·福建莆田·八年级校考期中)在△ABC中,∠ACB=2∠B.(1)如图①,当∠C=90°,AD为∠BAC的平分线时,在AB上截取AE=AC,连接DE,猜想线段AB,AC,CD 之间有怎样的数量关系?并证明.(2)如图②,当∠C≠90°,AD为△ABC的角平分线时,线段AB,AC,CD之间又有怎样的数量关系?不需要说明理由,请直接写出你的猜想.(3)如图③,当∠ACB≠90°,AD为△ABC的外角平分线时,线段AB,AC,CD之间又有怎样的数量关系?请写出你的猜想,并对你的猜想进行说明.15.(2023秋·全国·八年级专题练习)△ABC中,AB=AC,点D是边AB上一点,∠BCD=∠A.(1)如图1,试说明CD=CB的理由;(2)如图2,过点B作BE⊥AC,垂足为点E,BE与CD相交于点F.①试说明∠BCD=2∠CBE的理由;②如果△BDF是等腰三角形,求∠A的度数.16.(2022秋·安徽合肥·八年级统考期末)如图,在△ABC中,AB=AC(1)图1过点E作DE∥BC交AB于点D,求证:△BDE(2)图2,若AB=AC,AF⊥BD,∠ACD=1∠ABC,判断218.(2023秋·福建福州·八年级校考期中)如图1,在点,连接AD,将△ABD沿AB翻折得到△ABE,过点(1)求证:①∠GEC=∠EAB;②EA=EG;(2)连接DG.①如图2,当DG⊥AC时,试判断BD与CD的数量关系,并说明理由;②若AB=5,△EDG的面积为4,请直接写出△CDG的面积.19.(2023秋·吉林松原·八年级校联考阶段练习)如图所示,(1)模型的发现:如图①,在△ABC中,∠BAC=90°,AB=AC,直线l经过点A,且B,C两点在直线l的同侧,BD⊥直线l,CE⊥直线l,垂足分别为点D,E.请直接写出DE,BD和CE的数量关系.(2)模型的迁移1:位置的改变如图②,在(1)的条件下,若B,C两点在直线l的异侧,请说明DE,BD和CE的关系,并证明.(3)模型的迁移2:角度的改变如图③,在(1)的条件下,若三个直角都变为了相等的钝角,即∠BAC=∠1=∠2=α,其中90°<α<180°,(1)的结论还成立吗?若成立,请你给出证明;若不成立,请说明DE,BD和CE的关系,并证明.20.(2023秋·全国·八年级专题练习)在△ABC中,∠BAC=90°,AB=AC,BP平分∠ABC,交AC于点P,点M为BC边上一点,线段AM,BP交于点E.(1)如图1,若AM⊥BC,求证:AE=AP;(2)如图2,若AM⊥BP,连接PM,求证:AP=PM.21.(2023秋·湖北武汉·九年级校考阶段练习)已知在正方形的网格中,点A、B、C、P都在格点上,仅用无刻度直尺完成下列作图.(1)作图:画出△ABC关于直线AP成轴对称的△ADC;(2)作图:在AD上找一点E,使得PE⊥AD,则PE的长为__________;(3)作图:若PE交CD于点F,在线段BC上找一点G使得∠GAF=∠BAC.22.(2023秋·全国·八年级专题练习)已知:△ABC是等腰三角形,CA=CB,0°<∠ACB≤90°.点M在边AC 上,点N在边BC上(点M、点N不与所在线段端点重合),BN=AM,连接AN,BM,射线AG∥BC,延长BM 交射线AG于点D,点E在直线AN上,且AE=DE.(1)如图,当∠ACB=90°时;①求证:△BCM≌△ACN;24.(2023秋·福建福州·八年级校考阶段练习)如图,△ABC为等腰直角三角形,∠BAC=90°(1)如图1,P为△ABC外一点,AQ⊥AP交PC延长线于点(2)如图2,∠BPC=90°,求∠APB的度数.25.(2023秋·江苏南通·八年级校考阶段练习)在△ABC中,B、C重合),以AD为一边在AD的右侧作△ADE,使AD=(1)如图1,当点D在线段CB上,且∠BAC=90°时,那么∠DCE=______度;(2)设∠BAC=α,∠DCE=β.①如图2,当点D在线段CB上,∠BAC≠90°时,请你探究α与β之间的数量关系,并证明你的结论;②如图3,当点D在线段CB的延长线上,∠BAC≠90°时,请将图3补充完整,并直接写出此时α与β之间的数量关系.26.(2023秋·全国·八年级专题练习)在△ABC中,AB=AC,点D在射线BA上,点E在AC的延长线上,且BD=CE.连接DE,DE与BC边所在的直线交于点F.(1)当点D在线段BA上时,如图所示,求证:DF=EF.(2)过点D作DH⊥BC交直线BC于点H.若BC=4,CF=1,求BH的长是多少?27.(2022秋·上海静安·八年级上海市市北初级中学校考期中)如图,已知在△ABC中,∠A=120°,∠B<∠C.过三角形顶点的一条直线将△ABC分割为两个等腰三角形.求∠B的度数.28.(2023秋·上海杨浦·八年级统考期末)已知,如图:△ABC中,BD=DC=AC,AE是△ADC的中线:求证:AB=2AE.29.(2022秋·浙江台州·八年级校联考期中)在等腰直角三角形ABC中,∠BAC=90°,AB=AC.(1)如图1,点D是AC上的一点(点D不与A、C重合),B、F、D、E四点共线,,AF⊥AE,求∠AEB的度数.(2)如图2,在第(1)题的条件下,若BD平分∠ABC,探究CE与BD的数量关系,并证明结论.(3)如图3,F是等腰直角三角形ABC外一点,∠ABC=∠AFB=45°,BF(1)求证:ΔDPQ为等腰直角三角形;(2)求证:S四边形APDQ=1SΔABC2(3)如果点P运动到AB的延长线上,。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中考数学等腰三角形培优辅导训练试题
D A
F
2
1
E
D
C
A B
等腰三角形培优专练
一、选择题
1、下列命题正确的是[ ]
A.等腰三角形只有一条对称轴
B.直线不是轴对称图形
C.直角三角形都不是轴对称图形
D.任何角都是轴对称图形 2、等腰三角形一腰上的高与底所夹的角等于[]
A.顶角
B.顶角的21
C.顶角的2倍 D 底角的2
1
3、如图, 在△ABC 中, AB =AC, CD ⊥AB 于D, 则下列判断正确的是[]
A.∠A =∠B
B.∠A =∠ACD
C.∠A =∠DCB
D.∠A =2∠BCD 4、如图已知: AB =AC =BD, 那么∠1与∠2之间的关系满足[]
A.∠1=2∠2
B.2∠1+∠2=180°
C.∠1+3∠2=180°
D.3∠1-∠2=180°
第3题第4题
5、下列三角形:①有两个角等于60°;②有一个角等于60°的等腰三角形;?③三个外角(每个顶点处各取一个外角)都相等的三角形;
④一腰上的中线也是这条腰上的高的等腰三角形.其中是等边三角形的有() A .①②③ B .①②④ C .①③ D .①②③④
6、如图,D 、E 、F 分别是等边△ABC 各边上的点,且AD=BE=CF ,则△DEF?的
形状是()
A .等边三角形
B .腰和底边不相等的等腰三角形
C .直角三角形
D .不等边三角形
第6题第8题
7、Rt △ABC 中,CD 是斜边AB 上的高,∠B=30°,AD=2cm ,则AB 的长度是() A .2cm B .4cm C .8cm D .16cm
8、如图,E 是等边△A BC 中AC 边上的点,∠1=∠2,BE=CD ,则对△ADE 的形状最准备的判断是()
A .等腰三角形
B .等边三角形
C .不等边三角形
D .不能确定形状 9、正△ABC 的两条角平分线BD 和C
E 交于点I ,则∠BIC 等于()
A .60°
B .90°
C .120°
D .150°
10、如图,△ABC 中,AB =AC ,∠A =36°,BD 、CE 分别为∠ABC 与∠ACB 的角平分线,且相交于点F ,则图中的等腰三角形有() A. 6个 B. 7个 C. 8个 D. 9个
A
36°
E D
F
B C
C
A
1
D
B
2
3
第10题第12题
11、等腰三角形底边长为5cm,一腰上的中线把其周长分为两部分的差为
3cm,则腰长为()
A. 2cm
B. 8cm
C. 2cm或8cm
D. 以上都不对
二、填空题
12、如图,ABC
是等边三角形,BC
BD
90
CBD=
=
∠,
,则1
∠的
度数是________。

13、在等腰△ABC中, AB=AC, AD⊥BC于D, 且AB+AC+
BC=50cm, 而AB+BD+AD=40cm, 则AD=___________cm.
14、如图, ∠P=25°, 又PA=AB=BC=CD, 则∠DCM=____
15、如图已知∠ACB=90°, BD=BC, AE=AC, 则∠DCE=__________度.
第14题第15题第16题
16、△ABC中,AB=BC,M、N为BC边上两点,且∠BAM=∠CAN,MN=AN,∠MAC=
17、如图,已知△ABC中,AB=AC,AD=AE,∠BAE=30°,则∠DEC等于
18、如图,等腰三角形ABC中,AB=BC,∠A=20°.D是AB边上的点,且AD=BC,
连结CD,则∠BDC=________.
第17题第18题第19题
19、如图,△ABC是等腰直角三角形,∠BAC=90°,点D是△ABC 内一点,且∠
DAC=∠DCA=15°,则BD与BA的大小关系是
三、解答题
20、已知:如图,BE和CF是△ABC的高线,BE=CF,H是CF、BE的交点.求证:HB=HC
21、如图,△ABC中,D在BC延长线上,且AC=CD,CE是△ACD
的中线,CF平分∠ACB,交AB于F,求证:(1)CE⊥CF;(2)CF∥AD.
22、如图:Rt△ABC中,∠C=90°,∠A=22.5°,DC=BC, DE⊥AB.求证:AE=BE.。

相关文档
最新文档