高中数学《简单随机抽样》导学案
1.2.1 简单随机抽样导学案

1.2.1简单随机抽样导学案【学习目标】1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法.【学习重点】.掌握简单随机抽样的两种方法。
【导学流程】一、数理统计中样本的抽取是否得当, 对于研究总体来说十分关键. 那么, 怎样从总体中抽取样本呢?怎样使抽取的样本能更充分地反应总体的情况呢?预习课本8—11页,回答下列思考题:思考1:常用的抽样方法有哪几种?思考2:什么是简单随机抽样?它的特点是么?思考3:实施简单随机抽样的方法有哪几种?它们的实施步骤分别是什么?三、例题自学例1.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.【解析】第一步:先确定艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中不放回地抽出10个号签,则相应编号的艺人参加演出.(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人. 第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20这20个数字,代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.例2.总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为( )A.08B.07C.02D.01【解析】选D.由题意知选定的第一个数为65(第1行的第5列和第6列),按由左到右选取两位数(大于20的跳过、重复的不选取),前5个个体编号为08,02,14,07,01.故选出来的第5个个体的编号为01.例3 下列抽样实验中,用抽签法方便的是( )A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3 000件产品中抽取10件进行质量检验【解析】选B.A选项中总体容量较大,样本容量也较大不适宜用抽签法;B选项总体容量较小,样本容量也较小可用抽签法;C选项中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D选项总体容量较大,不适宜用抽签法.四、:1、简单随机抽样,也叫纯随机抽样。
高中数学学案导学:2.1.1 简单随机抽样

§2.1随机抽样2.1.1简单随机抽样学习目标1.了解随机抽样的必要性和重要性.2.理解随机抽样的目的和基本要求.3.掌握简单随机抽样中的抽签法、随机数法的一般步骤.知识点一统计的基本概念(1)总体:一般把所考察对象的某一数值指标的全体构成的集合看成总体.(2)个体:构成总体的每一个元素作为个体.(3)样本:从总体中抽出若干个个体所组成的集合叫样本.(4)样本容量:样本中个体的数目叫样本容量.思考样本与样本容量有什么区别?答案样本与样本容量是两个不同的概念.样本是从总体中抽取的个体组成的集合,是对象;样本容量是样本中个体的数目,是一个数.知识点二简单随机抽样(1)设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.(2)简单随机抽样的四个特点①它要求被抽取样本的总体的个数有限,这样便于通过随机抽取的样本对总体进行分析.②它是从总体中逐个抽取,这样便于在抽样实践中进行操作.③它是一种不放回抽样,由于抽样实践中多采用不放回抽样,使其具有较广泛的实用性,而且由于所抽取的样本中没有被重复抽取的个体,便于进行有关的分析和计算.④它是一种等机会抽样,不仅每次从总体中抽取一个个体时,各个个体被抽到的机会相等,而且在整个抽样的过程中,各个个体被抽取的机会也相等,从而保证了这种抽样方法的公平性.知识点三抽签法和随机数法1.抽签法(抓阄法):把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.2.随机数法:随机抽样中,另一个经常被采用的方法是随机数法,即利用随机数表、随机数骰子或计算机产生的随机数进行抽样.3.利用随机数法抽取个体时的注意事项①定起点:事先应确定以表中的哪个数(哪行哪列)作为起点.②定方向:读数的方向(向左、向右、向上或向下都可以).③读数规则:读数时结合编号的特点进行读取,编号为两位数则两位两位地读取,编号为三位数则三位三位地读取,如果出现重复或大于总体中编号最大数则跳过,直到取满所需的样本个体数.思考采用抽签法抽取样本时,为什么将编号写在形状、大小相同的号签上,并且将号签放在同一个箱子里搅拌均匀?答案为了使每个号签被抽取的可能性相等,保证抽样的公平性.1.简单随机抽样也可以是有放回的抽样.(×)2.简单随机抽样中每个个体被抽到的机会相等.(√)3.采用随机数法抽取样本时,个体编号的位数必须相同.(√)题型一对简单随机抽样的理解例1(1)下列4个抽样中,简单随机抽样的个数是()①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地逐个抽出6个号签;④箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0 B.1C.2 D.3(2)下列问题中,最适合用简单随机抽样方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40,有一次报告会坐满了听众,报告会结束后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人,其中行政人员16人,教师112人,后勤人员32人,教育部门为了解在编人员对学校机构改革的意见,要从中抽取一个容量为20的样本D.某乡农田有:山地800公顷,丘陵1200公顷,平地2400公顷,洼地400公顷,现抽取农田48公顷估计全乡农田平均每公顷产量答案(1)B(2)B解析(1)根据简单随机抽样的特点逐个判断.①不是简单随机抽样.因为简单随机抽样要求被抽取的样本总体的个数是有限的.②不是简单随机抽样.虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”.③是简单随机抽样.因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样.④不是简单随机抽样,因为它是有放回抽样.综上,只有③是简单随机抽样.(2)A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较少,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量大,且各类田地的差别很大,也不宜采用简单随机抽样法.反思感悟简单随机抽样必须具备下列特点(1)被抽取样本的总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种不放回抽样;(4)简单随机抽样是一种等可能的抽样.如果四个特征有一个不满足,就不是简单随机抽样.跟踪训练1在简单随机抽样中,某一个体被抽到的可能性()A.与第几次抽样有关,第一次抽到的可能性大一些B.与第几次抽样无关,每次抽到的可能性都相等C.与第几次抽样有关,最后一次抽到的可能性要大些D.与第几次抽样无关,每次都是等可能的抽取,但各次抽取的可能性不一定相等答案 B解析在简单随机抽样中,每一个个体被抽到的可能性都相等,与第几次抽样无关,故A,C,D不正确,B正确.题型二简单随机抽样等可能性应用例2一个布袋中有10个同样质地的小球,从中不放回地依次抽取3个小球,则某一特定小球被抽到的可能性是________,第三次抽取时,剩余每个小球被抽到的可能性是________.答案31018解析因为简单随机抽样过程中每个个体被抽到的可能性均为nN,所以第一个空填310.因为本题中的抽样是不放回抽样,所以第一次抽取时,每个小球被抽到的可能性为110,第二次抽取时,剩余9个小球,每个小球被抽到的可能性为19,第三次抽取时,剩余8个小球,每个小球被抽到的可能性为18.反思感悟简单随机抽样,每次抽取时,总体中各个个体被抽到的可能性相同,在整个抽样过程中各个个体被抽到的机会也都相等.跟踪训练2 从总体容量为N 的一批零件中,抽取一个容量为30的样本,若每个零件被抽到的可能性为0.25,则N 的值为( )A .120B .200C .150D .100 答案 A解析 因为从含有N 个个体的总体中抽取一个容量为30的样本时,在每次抽取一个个体的过程中任意一个个体被抽到的可能性为1N ,在整个抽样过程中每个个体被抽到的可能性为30N,所以30N=0.25,从而有N =120. 故选A.题型三 抽签法与随机数法及应用命题角度1 抽签法例3 某卫生单位为了支援抗震救灾,要在18名志愿者中选取6人组成医疗小组去参加救治工作,请用抽签法设计抽样方案.解 方案如下:第一步,将18名志愿者编号,号码为01,02,03, (18)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放到一个不透明的盒子中,充分搅匀.第四步,从盒子中依次不放回地取出6个号签,并记录上面的编号.第五步,与所得号码对应的志愿者就是医疗小组成员.反思感悟 一个抽样试验能否用抽签法,关键看两点:一是制签是否方便;二是个体之间差异不明显.一般地,当样本容量和总体容量较小时,可用抽签法.跟踪训练3 (1)上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,则抽签法的序号是________.①将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,最后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选; ②将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.答案①解析①满足抽签法的特征,是抽签法;②不是抽签法,因为抽签法要求所有的号签编号互不相同,而②中39个白球无法相互区分.(2)在社区公益活动中,某单位共有50名志愿者参与了报名,现要从中随机抽取6人参加一项活动,请用抽签法进行抽样,并写出过程.解第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在大小、形状、质地都相同的纸条上,揉成团,制成号签.第三步,将所有号签放入一个不透明的箱子中,搅拌均匀.第四步,一次取出1个号签,连取6次(不放回抽取),并记录其编号.第五步,将对应编号的志愿者选出即可.命题角度2随机数法例4从一个含有40个个体的总体中抽取一个容量为7的样本,将个体依次随机编号为01,02,…,40,从随机数表的第6行第8列开始,依次向右,到最后一列转下一行最左一列开始,直到取足样本,则获取的第4个样本编号为________.(下面节选了随机数表第6行和第7行)第6行844217563107235506827704744359763063502583921206第7行630163785916955667199810507175128673580744395238答案06解析找到第6行第8列的数开始向右读,第一个数是63,不成立,第二个数10,成立,第三个数72,不成立,第四个数35,成立,第五个数50,不成立,这样依次接着往下读出结果,68,27,70,47,44,35,97,63,06,合适的数是27,35,06,其中35前面已经出现,应舍掉,故第四个数是06.引申探究本例中,利用随机数法抽取样本,若从随机数表的第6行第13列开始,求获取的前4个样本的编号.解从第6行第13列开始,获取的前4个样本的编号为23,06,04,30.反思感悟随机数法抽样的3个步骤(1)编号:这里的所谓编号,实际上是新编数字号码.(2)确定读数方向:为了保证选取数字的随机性,应在面对随机数表之前就指出开始数字的纵横位置,然后确定读数方向.(3)获取样本:读数在总体编号内的取出,而读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.跟踪训练4总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.08B.07C.02D.01答案 D解析从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次为02,14,07,01,故第5个数为01.故选D.随机数法的应用典例1现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验,如何用随机数法设计抽样方案?解第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数9.第三步,从数9开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.(答案不唯一)典例2假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验,利用随机数表抽取样本时,应如何操作?解第一步,将800袋牛奶编号为000,001, (799)第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7).第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.[素养评析](1)抽签法和随机数法对个体的编号是不同的,抽签法可以利用个体已有的编号.随机数法对个体的编号要看总体的个数,总体数为100,通常为00,01,…,99.总体数大于100小于1 000,从000开始编起,然后是001,002,….(2)随机数法是抽取样本的一种重要方法,抽取样本就是收集数据,是整理数据,提取信息的基础,是数据分析的重要步骤,所以,本题充分体现数据分析的核心素养.1.下面抽样方法是简单随机抽样的是()A.从平面直角坐标系中抽取5个点作为样本B.可口可乐公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查C.某连队从200名战士中,挑选出50名最优秀的战士去参加抢险救灾活动D.从10个手机中逐个不放回地随机抽取2个进行质量检验(假设10个手机已编好号,对编号随机抽取)答案 D解析A中,平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,故错误;B中,一次性抽取不符合简单随机抽样逐个抽取的特点,故错误;C中,50名战士是最优秀的,不符合简单随机抽样的等可能性,故错误.2.抽签法确保样本代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B解析若样本具有很好的代表性,则每一个个体被抽取的机会相等,故需要对号签搅拌均匀.3.使用简单随机抽样从1000件产品中抽出50件进行某项检查,合适的抽样方法是() A.抽签法B.随机数法C.随机抽样法D.以上都不对答案 B解析由于总体相对较大,样本容量较小,故采用随机数法较为合适.4.已知下列抽取样本的方式:①从无限多个个体中抽取100个个体作为样本;②盒子里共有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出1个零件进行质量检验后再把它放回盒子里;③从20件玩具中一次性抽取3件进行质量检验;④某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛.其中,不是简单随机抽样的是________(填序号).答案①②③④解析①不是简单随机抽样,因为被抽取的总体的个数是无限的,而不是有限的;②不是简单随机抽样,因为它是放回抽样;③不是简单随机抽样,因为这是“一次性”抽取,而不是“逐个”抽取;④不是简单随机抽样,因为指定个子最高的5名同学是56名同学中特指的,不存在随机性,不是等可能抽样.5.某地有2000人参加自学考试,为了了解他们的成绩,从中抽取一个样本,若每个考生被抽到的概率都是0.04,则这个样本的容量是________.答案80解析设样本容量为n,根据简单随机抽样,得n2000=0.04,解得n=80.1.简单随机抽样是一种简单、基本、不放回的抽样方法,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量大时,费时、费力,并且标号的签不易搅拌均匀,这样会导致抽样不公平;随机数法的优点也是简单易行,缺点是当总体容量大时,编号不方便.两种方法只适合总体容量较少的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为nN,但要将每个个体入样的可能性与第n次抽取时每个个体入样的可能性区分开,避免在解题中出现错误.。
高中数学《简单随机抽样》导学案

2.1.1简单随机抽样一、简单随机抽样的定义设一个总体有N个个体,从中□01逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会□02都相等,就把这种抽样方法叫做简单随机抽样.二、简单随机抽样的分类及类型1.判一判(正确的打“√”,错误的打“×”)(1)简单随机抽样就是随便抽取样本.()(2)使用抽签法抽签时,后抽签的人占优势.()(3)利用随机数表抽样时,开始位置和读数方向可以任意选择.()答案(1)×(2)×(3)√2.做一做(1)从50份高三学生期中考试试卷中随机抽出15份进行教研分析,则下列说法正确的是()A.15名学生是样本B.50名学生是总体C.样本容量是15 D.样本容量是50答案C解析样本是抽取的15份试卷,总体是50份试卷,总体容量是50,样本容量是15.(2)下列调查:①每隔5年进行一次人口普查;②报社等进行舆论调查;③灯泡使用寿命的调查;④对入学报名者的学历检查;⑤从20台电视机中抽出3台进行质量检查,其中属于抽样调查的是()A.①②③B.②③⑤C.②③④D.①③⑤答案B解析①④属于普查,不属于抽样调查.(3)(教材改编P57T2)下列抽样试验中,适合用抽签法的有()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验答案B解析A,D中总体的个数较大,不适于用抽签法;C中甲、乙两厂生产的两箱产品性质可能差别较大,因此未达到搅拌均匀的条件,也不适于用抽签法;B中个体数和样本容量均较小,且同厂生产的两箱产品,性质差别不大,可以看做是搅拌均匀了.故选B.探究1简单随机抽样的判断例1下列5个抽样中,简单随机抽样的个数是()①从无数个个体中抽取50个个体作为样本;②仓库中有1万支奥运火炬,从中一次性抽取100支火炬进行质量检查;③某连队从200名党员官兵中,挑选出50名最优秀的官兵赶赴青海参加抗震救灾工作;④一彩民选号,从装有36个大小、形状都相同的号签的盒子中无放回地抽出6个号签;⑤箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出1个零件进行质量检验后,再把它放回箱子里.A.0 B.1 C.2 D.3[答案]B[解析]根据简单随机抽样的特点逐个判断.①不是简单随机抽样,因为简单随机抽样要求被抽取的样本总体的个数是有限的;②不是简单随机抽样,虽然“一次性抽取”和“逐个抽取”不影响个体被抽到的可能性,但简单随机抽样要求的是“逐个抽取”;③不是简单随机抽样,因为50名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单随机抽样中“等可能抽样”的要求;④是简单随机抽样,因为总体中的个体数是有限的,并且是从总体中逐个进行抽取的,是不放回、等可能的抽样;⑤不是简单随机抽样,因为它是有放回抽样.综上,只有④是简单随机抽样.拓展提升简单随机抽样必须具备的特点(1)被抽取样本的总体中的个体数N是有限的.(2)抽取的样本是从总体中逐个抽取的.(3)简单随机抽样是一种不放回抽样.(4)简单随机抽样是一种等可能的抽样.如果四个特征有一个不满足,就不是简单随机抽样.【跟踪训练1】判断下面的抽样方法是否为简单随机抽样,并说明理由.(1)某班45名同学,指定个子最矮的5名同学参加学校组织的某项活动;(2)从20个零件中一次性抽出3个进行质量检查.解(1)不是简单随机抽样.因为指定个子最矮的5名同学,是在45名同学中特指的,不存在随机性,不是等可能抽样.(2)不是简单随机抽样.因为一次性抽取3个不是逐个抽取,不符合简单随机抽样的特征.探究2用抽签法抽取样本例2(1)上海某中学从40名学生中选1人作为上海男篮啦啦队的成员,采用下面两种选法,则抽签法的序号是________.①将这40名学生从1~40进行编号,相应地制作1~40的40个号签,把这40个号签放在一个暗箱中搅匀,然后随机地从中抽取1个号签,与这个号签编号一致的学生幸运入选;②将39个白球与1个红球(球除颜色外,其他完全相同)混合放在一个暗箱中搅匀,让40名学生逐一从中摸取一球,摸到红球的学生成为啦啦队成员.(2)在社区公益活动中,某单位共有50名志愿者参与了报名,现要从中随机抽出6人参加一项活动,请用抽签法进行抽样,并写出过程.[答案](1)①(2)见解析[解析](1)①满足抽签法的特征,是抽签法;②不是抽签法,因为抽签法要求所有的号签编号互不相同,而②中39个白球无法相互区分.(2)第一步,将50名志愿者编号,号码为1,2,3, (50)第二步,将号码分别写在大小、形状、质地都相同的纸条上,揉成团,制成号签;第三步,将所有号签放入一个不透明的箱子中,搅拌均匀;第四步,一次取出1个号签,连取6次(不放回抽取),并记录其编号;第五步,将对应编号的志愿者选出即可.拓展提升抽签法的五个步骤【跟踪训练2】从20架钢琴中抽取5架进行质量检查,请用抽签法确定这5架钢琴.解第一步,将20架钢琴编号,号码是01,02, (20)第二步,将号码分别写在相同的纸条上,揉成团,制成号签.第三步,将得到的号签放入一个不透明的袋子中,并充分搅匀.第四步,从袋子中逐个不放回地抽取5个号签,并记录上面的编号.第五步,所得号码对应的5架钢琴就是要进行质量检查的对象.探究3用随机数表法抽取样本例3(1)要考察某种品牌的850颗种子的发芽率,从中抽取50颗种子进行实验,利用随机数表法抽取种子,先将850颗种子按001,002,…,850进行编号,如果从随机数表第3行第6列的数开始向右读,请依次写出最先检验的4颗种子的编号________.(下面抽取了随机数表第1行至第8行)(2)现有一批零件,其编号为600,601,602,…,999.利用原有的编号从中抽取一个容量为10的样本进行质量检查,若用随机数表法,怎样设计方案?[答案](1)227,665,650,267(2)见解析[解析](1)从随机数表第3行第6列的数2开始向右读,第一个小于850的数字是227,第二个数字是665,第三个数字是650,第四个数字是267,符合题意.(2)第一步,在随机数表中任选一数字作为开始数字,任选一方向作为读数方向.比如:选第7行第6个数“7”,向右读;第二步,从“7”开始向右每次读取三位,凡在600~999中的数保留,否则跳过去不读,依次得753,724,688,770,721,763,676,630,785,916;第三步,以上号码对应的10个零件就是要抽取的对象.(答案不唯一)拓展提升利用随机数表法抽样时应注意的问题(1)编号要求位数相同,若不相同需先调整到一致后再进行抽样,如当总体中有100个个体时,为了操作简便可以选择从00开始编号,那么所有个体的号码都用两位数字表示即可,从00~99号.如果选择从001开始编号那么所有个体的号码都必须用三位数字表示,即从001~100.很明显每次读两个数字要比读三个数字节省时间.(2)第一个数字的抽取是随机的.(3)当随机数选定,开始读数时,读数的方向可左、可右、可上、可下,但应是事先定好的.(4)读数不在总体编号内的和已取出的不算,依次下去,直至得到容量为n的样本.【跟踪训练3】总体由编号为01,02,…,19,20的20个个体组成.利用下面的随机数表选取5个个体,选取方法:从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字,则选出来的第5个个体的编号为()A.08 B.07 C.02 D.01答案D解析从随机数表第1行的第5列和第6列数字开始由左到右一次选取两个数字开始向右读,第一个数为65,不符合条件,第二个数为72,不符合条件,第三个数为08,符合条件,以下符合条件的数字依次为02,14,07,01,故第5个数为01.故选D.1.抽签法的优缺点与操作步骤(1)优点:简单易行.当总体的个数不多时,使总体处于“搅拌均匀”的状态比较容易,这时,每个个体都有均等的机会被抽中,从而能够保证样本的代表性.(2)缺点:仅适用于个体数较少的总体.当总体容量非常大时,费时费力又不方便,况且,如果号签搅拌的不均匀,可能导致抽样不公平.(3)用抽签法从容量为N的总体中抽取一个容量为n的样本的步骤:①编号:给总体中的所有个体编号(号码可以从1到N);②制作号签:将1~N这N个号码写在形状、大小相同的号签上(号签可以用小球、卡片、纸条等制作);③均匀搅拌:将号签放在一个容器里,搅拌均匀;④抽取号码:每次从容器中不放回地抽取一个号签,连续抽取n次;⑤构成样本:从总体中将与抽到的号签上的号码一致的个体抽取,就构成了一个容量为n的样本.2.随机数法的优缺点及操作步骤(1)优点:简单易行.它很好地解决了当总体中的个体数较多时抽签法制签难的问题.(2)缺点:当总体中的个体数很多,需要的样本容量也较大时,用随机数法抽取样本仍不方便.(3)随机数法抽取样本的步骤:①编号:对总体的个体进行编号(每个号码位数一致);②选定初始值:在随机数表中任选一个数作为开始;③选号:从选定的数开始按一定的方向读下去,得到的号码若不在编号中,则跳过,若在编号中,则取出,如果得到的号码前面已经取出,也跳过,如此继续下去,直到取满为止;④确定样本:根据选定的号码抽取样本.3.抽签法与随机数法的区别抽签法适用于总体中个体数较少,样本容量也较小的抽样,随机数法适用于总体中个体数较多,但样本容量较小的抽样.1.某学校为了解高一800名新入学同学的数学学习水平,从中随机抽取100名同学的中考数学成绩进行分析,在这个问题中,下列说法正确的是() A.800名同学是总体B.100名同学是样本C.每名同学是个体D.样本容量是100答案D解析据题意,总体是指800名新入学同学的中考数学成绩,样本是指抽取的100名同学的中考数学成绩,个体是指每名同学的中考数学成绩,样本容量是100.故只有D正确.2.下列抽样方法是简单随机抽样的是()A.从100个学生家长中一次性随机抽取10人做家访B.从38本教辅参考资料中有放回地随机抽取3本作为教学参考C.从自然数集中一次性抽取20个进行奇偶性分析D.某参会人员从最后一排20个座位中随机选择一个坐下答案D解析A不是简单随机抽样,因为是“一次性”抽取;B不是简单随机抽样,因为是“有放回”抽取;C不是简单随机抽样,因为是“一次性”抽取,且“总体容量无限”.D是简单随机抽样.3.从52名学生中选取5名学生参加“希望杯”全国数学邀请赛,若采用简单随机抽样抽取,则每人入选的可能性()A.都相等,且为152B.都相等,且为110C.都相等,且为552D.都不相等答案C解析对于简单随机抽样,在抽样过程中每一个个体被抽取的机会都相等(随机抽样的等可能性).若样本容量为n,总体的个体数为N,则用简单随机抽样时,每一个个体被抽到的可能性都是nN,体现了这种抽样方法的客观性和公平性.因此每人入选的可能性都相等,且为552.4.从某批零件中抽取50个,然后再从50个中抽出40个进行合格检查,发现合格品有36个,则该产品的合格率约为()A.36% B.72% C.90% D.25%答案C解析3640×100%=90%.5.为了了解参加某次数学知识竞赛的80名学生的成绩,决定从中抽取20名学生的试卷进行分析,写出抽样过程.(注:用随机数表法)解抽样过程如下:第一步,先将80名学生编号,可以编号为00,01,02, (79)第二步,在随机数表(见教材第103页)中任选一个数,例如选出第2行第9列的数6.第三步,从选定的数6开始向右读,每次读取两位,凡不在00~79中的数跳过去不读,前面已经读过的数也跳过去不读,按照这种方法可取出62,42,14,57,20,…,直到样本的20个号码全部取出.第四步,以上20个号码所对应的20名学生的试卷就组成了一个容量为20的样本.A级:基础巩固练一、选择题1.为了分析高三年级的8个班400名学生第一次高考模拟考试的数学成绩,决定在8个班中每班随机抽取12份试卷进行分析,这个问题中样本容量是() A.8 B.400C.96 D.96名学生的成绩答案C解析在本题所叙述的问题中,400名学生第一次高考模拟考试的数学成绩是总体,8×12=96(名)学生的数学成绩是样本,400是总体容量,96是样本容量.2.在“世界读书日”前夕,为了了解某地5000名居民某天的阅读时间,从中抽取了200名居民的阅读时间进行统计分析,则在这个问题中,5000名居民的阅读时间的全体是()A.总体B.个体C.样本容量D.从总体中抽取的一个样本答案A解析由题目条件可知,5000名居民的阅读时间的全体是总体,其中1名居民的阅读时间是个体,从5000名居民某天的阅读时间中抽取的200名居民的阅读时间是从总体中抽取的一个样本,样本容量是200.故选A.3.福利彩票“双色球”中红色球由编号为01,02,…,33的33个球组成,某彩民利用下面的随机数表选取6组数作为6个红色球的编号,选取方法是从随机数表(如下)第1行的第5列数字开始由左向右依次选取两个数字,则选出来的第6个红色球的编号为()49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 17 34 91 6457 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 76A.23 B.06 C.04 D.17答案C解析根据随机数表法的定义,从第1行的第5列数字开始由左向右选取两个数字43开始,凡不在01~33内的跳过,得到17,23,20,24,06,04,则第6个红色球的编号为04.4.下列抽样方法是简单随机抽样的是()A.某工厂从老年、中年、青年职工中按2∶5∶3的比例选取职工代表B.用抽签的方法产生随机数表C.福利彩票用摇奖机摇奖D.规定凡买到明信片最后四位号码是“6637”的人获三等奖答案C解析简单随机抽样要求总体中的个体数有限,从总体中逐个进行不放回抽样,每个个体有相同的可能性被抽到,故选C.5.从一群游戏的小孩中随机抽出k人,一人分一个苹果,让他们返回继续游戏.过了一会儿,再从中任取m人,发现其中有n个小孩曾分过苹果,估计参加游戏的小孩的人数为()A.knm B.k+m-nC.kmn D.不能估计答案C解析设参加游戏的小孩有x人,则kx =nm,x=kmn.二、填空题6.一个布袋中有6个同样质地的小球,从中不放回地抽取3个小球,则某一特定小球被抽到的可能性是________;第三次抽取时,剩余小球中的某一特定小球被抽到的可能性是________.答案1214解析因为简单随机抽样时每个个体被抽到的可能性为36=12,所以某一特定小球被抽到的可能性是12.因为此抽样是不放回抽样,所以第一次抽样时,每个小球被抽到的可能性均为16;第二次抽取时,剩余5个小球中每个小球被抽到的可能性均为15;第三次抽取时,剩余4个小球中每个小球被抽到的可能性均为14.7.从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为25%,则N=________.答案120解析依题意得30N×100%=25%,∴N=120.8.为了了解参加运动会的2000名运动员的年龄情况,从中抽取20名运动员的年龄进行统计分析.就这个问题,下列说法中正确的有________.①2000名运动员是总体;②每个运动员是个体;③所抽取的20名运动员是一个样本;④样本容量为20;⑤这个抽样方法可采用随机数法抽样;⑥每个运动员被抽到的机会相等.答案④⑤⑥解析①2000名运动员不是总体,2000名运动员的年龄才是总体;②每个运动员的年龄是个体;③20名运动员的年龄是一个样本.故①②③均错误,正确说法是④⑤⑥.三、解答题9.某电视台举行颁奖典礼,邀请20名港台、内地艺人演出,其中从30名内地艺人中随机选出10人,从18名香港艺人中随机挑选6人,从10名台湾艺人中随机挑选4人.试用抽签法确定选中的艺人,并确定他们的表演顺序.解第一步:先确定内地艺人:(1)将30名内地艺人从01到30编号,然后用相同的纸条做成30个号签,在每个号签上写上这些编号,然后放入一个不透明小筒中摇匀,从中抽出10个号签,则相应编号的内地艺人参加演出;(2)运用相同的办法分别从10名台湾艺人中抽取4人,从18名香港艺人中抽取6人.第二步:确定演出顺序:确定了演出人员后,再用相同的纸条做成20个号签,上面写上1到20,这20个数字代表演出的顺序,让每个演员抽一张,每人抽到的号签上的数字就是这位演员的演出顺序,再汇总即可.B级:能力提升练10.为了适应新高考改革,尽快推行不分文理科教学,对比目前文理科学生考试情况进行分析,决定从80名文科同学中抽取10人,从300名理科同学中抽取50人进行分析.由于本题涉及文科生和理科生的混合抽取,你能选择合适的方法设计抽样方案吗?试一试.解文科生抽样用抽签法,理科生抽样用随机数表法,抽样过程如下:(1)先抽取10名文科同学:①将80名文科同学依次编号为1,2,3, (80)②将号码分别写在形状、大小均相同的纸片上,制成号签;③把80个号签放入一个不透明的容器中,搅拌均匀,每次从中不放回地抽取一个号签,连续抽取10次;④与号签上号码相对应的10名同学的考试情况就构成一个容量为10的样本.(2)再抽取50名理科同学:①将300名理科同学依次编号为001,002, (300)②从随机数表中任选一数字作为开始数字,任选一方向作为读数方向,比如从教材附表的第4行第1列的数字1开始向右读(如图所示).每次读取三位,凡不在001~300范围内以及重复的数都跳过去,得到号码125,210,142,188,264,…;③这50个号码所对应的同学的考试情况就构成一个容量为50的样本.。
2.1.1简单随机抽样导学案

2.1.1简单随机抽样【学习目标】1、正确理解简单随机抽样的概念,掌握抽签法、随机数表法的一般步骤;2、学会用简单随机抽样的方法从总体中抽取样本;3、能够根据样本的具体情况选择适当的方法进行抽样.【课前预习】回顾:什么是总体、个体、样本、样本容量?总体:在进行统计分析时,研究对象的全部;个体:组成总体的每个研究对象;样本:从总体中按一定的规则抽出的个体的全部;样本容量:样本中所含个体的个数,用 n 表示。
例如:为了了解全校600名学生的身高情况,从中抽取50名学生进行测量。
其中,是总体;是个体;是样本;是样本容量。
1. 一般地,设总体中有N个个体,从中________ _______抽取n个个体作为样本(n≤N),如果每次抽取时总体中的各个个体_________________ _就把这种抽样方法叫做简单随机抽样.2、简单随机抽样的特点:(1)被抽取样本的总体个数N是________ ;(2)简单随机样本数n________ 样本总体的个数N;(3)从总体中逐个进行抽取,使抽样便于在实践中操作;(4)它是________ 抽取,这使其具有广泛应用性;(5)每一次抽样时,每个个体等可能的被抽到,保证了抽样方法的公平性.思考:利用简单随机抽样,从一个含有N个个体的总体中逐个不放回地抽取n个个体作为样本(n≤N),每个个体入样的可能性是多少?3. 最常用的简单随机抽样有两种____________________和_____________________.4、实施抽样的方法:(1)抽签法:抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力又不方便,若标号的纸片或小球搅拌得不均匀还可能导致抽样的不公平.抽签法的一般步骤:①将总体中的N个个体编号;②把这N个号码写在形状、大小相同的号签上;③将号签放在同一箱中,并搅拌均匀;④从箱每次抽取一个号签,连续抽取n次;⑤将总体中与抽到的号签的编号一致的n个个体取出.(2)随机数表法:要理解好随机数表,即表中每个位置上等可能出现0,1,2,…,9这十个数字的数表.随机数表中各个位置上出现各个数字的等可能性,决定了利用随机数表进行抽样时抽取到总体中各个个体序号的等可能性.随机数表法的步骤:①将总体的个体编号(每个号码的位数一致);②在随机数表中任选一个数字作为开始;③从选定的数开始按一定的方向读下去,若得到的数码在编号中,则取出;若得到的号码不在编号中或前面已经取出,则跳过,如此继续下去,直到取满为止.【预习自测】判断:(正确的打“√”,错误的打“×”)(1)抽签法和随机数法都是不放回抽样.( )(2)抽签法抽签时,先抽签的人占便宜.( )(3)利用随机数表抽样时,开始位置和读数方向可以任意选择.( )(4)利用随机数法在对总体中个体编号时,允许出现不同数位的号码.( )【课内探究】例1 下列抽取样本的方法是简单随机抽样吗?为什么?(1)从无限多个个体中抽取50个个体作为样本.(2)箱子里共有100个零件,今从中选取10个零件进行检验,在抽样操作时,从中任意地拿出一个零件进行质量检验后再把它放回箱子里.(3)从50个个体中一次性抽取5个个体作为样本.(4)一彩民选号,从装有36个大小、形状都相同的号签的箱子中逐个不放回地抽取6个号签.总结:简单随机抽样具备的四个特点:例2 学校举办元旦晚会,需从每班选10名男生,8名女生参加合唱节目.某班有男生32人,女生28人,试用抽签法确定该班参加合唱的同学.例3.假设要抽查某种品牌的850颗种子的发芽率,抽取60颗进行实验.利用随机数表抽取种子时,先将850颗种子按001,002,…,850进行编号,如果从随机数表第8行第2列的数3开始向右读,请你依次写出最先检测的4颗种子的编号.(下面摘取了随机数表第7行至第9行)84 42 17 53 31 57 24 55 06 88 77 04 74 47 6721 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 7512 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 3815 51 00 13 42 99 66 02 79 54【当堂检测】1.抽签法中确保样本代表性的关键是( )A.制签B.搅拌均匀C.逐一抽取D.抽取不放回2.简单随机抽样的结果( )A.完全由抽样方式所决定B.完全由随机性来决定C.完全由人为因素所决定D.完全由计算方法所决定3.为了了解某县学生高考数学成绩的情况,从中抽取50本密封试卷,每本30份试卷,这个问题中的样本容量是( )A.30B.50C.80D.15004.下列抽样试验中,用抽签法方便的是( )A.从某工厂生产的3000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验5.从一个总数为N的总体中抽取一个容量为20的样本,若每个个体被抽到的可能性为0.1,N= .6.从30个灯泡中抽取10个进行质量检测,说明利用随机数法抽取这个样本的步骤。
人教版数学必修三2.1.1《简单随机抽样》(导学案)

《2.1.1简单随机抽样》导学案学生:________ 班级:____年___班学习目标:1.知识与技能:能从现实生活或其他学科中提出具有一定价值的统计问题;结合具体实际问题情境,理解随机抽样的必要性和重要性,参与解决统计问题的过程中,理解简单随机抽样;会用简单随机抽样从总体中抽取样本;2.过程与方法通过案例进行,根据实际问题的需求合理选择不同方法,通过探索、研究、归纳、总结形成本章较为科学的知识网,注意统计结果的随机性,是可能犯错的,进行辩证唯物主义思想教育,数学应用意识教育和数学审美教育、提高学习数学的积极性.3.情感与价值观现代社会,了解数学应用的广泛性;增强社会实践能力;培养解决问题的能力,结合教学内容培养学习数学的兴趣以及“用数学”的意识,激励勇于创新;学习重点、难点重点:统计学知识的渗透与应用,简单随机抽样的定义、抽样方法;难点:简单随机抽样的定义和特点.学习过程:一、引入问题1.总体是指统计中所考察对象某一_________的全体,个体是指组成总体的每一个 ;样本是指从总体中抽出的部分个体所组成的 ;样本容量:样本中个体的_____。
问题2.(1)什么是统计学?(2)什么是随机抽样?问题3.将7个个质地均匀的小球放入盒子中,不放回地抽取三次,抽取每一个小球的可能性都相同吗?二:探究新知1.概念引入(1)简单随机抽样的概念:一般地,从元素个数为的总体中地抽取容量为_____的样本,如果每一次抽取时总体中的各个个体有的可能性被抽到,这种抽样方法叫做简单随机抽样.(2)思考:下列抽取样本的方式是否属于简单随机抽样?说明理由.1)从无限多个个体中抽取100个个体作为样本;2)盒子中共有80个零件,从中选出5个零件进行质量检验,在进行操作时,从中任意抽出一个零件进行质量检验后把它放回盒子里;3)某班45名同学,指定个子最高的5人参加某活动;4)从20个零件中一次性抽出3个进行质量检测.(3)由上总结:简单随机抽样必须具备下列特点:1)它要求总体中的个体数必须_______;2)它是从总体中_______进行抽取;3)它是一种________抽样;4)总体中每一个体被抽取的机会_______。
高中数学《简单随机抽样》导学案

1.2.1简单随机抽样[航向标·学习目标]1.理解并掌握简单随机抽样的概念、特点和步骤.2.掌握简单随机抽样的两种方法:抽签法和随机数法.3.针对实际问题中的总体进行合理的简单随机抽样.[读教材·自主学习]1.为了使样本具有好的代表性,设计抽样方法时最重要的是使每个个体有□01相等的机会被抽中.2.设一个总体含有N个个体,从中逐个□02不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的每个个体被抽到的□03可能性都相等,就把这种抽样方法叫作简单随机抽样.简单随机抽样方法有□04抽签法和□05随机数法.3.随机数表是由0到9这10个数字组成的数表,并且表中的每个位置出现各个数字的可能性□06相等.[看名师·疑难剖析]1.简单随机抽样具备下列特点(1)简单随机抽样要求被抽取的样本的总体个数N是有限的.(2)简单随机抽样抽取的样本容量n小于等于样本总体的个数N.(3)简单随机抽样是从总体中逐个抽取的是一种不放回的抽样,也就是每次从总体中抽取元素后不再将这个元素放回总体.(4)简单随机抽样的每个个体入样的可能性均为n N.(5)当总体中的个体无差异且个体数目较少时,采用简单随机抽样抽取样本.2.抽签法和随机数法的操作要点抽签法的操作要点是:编号、写签、搅匀、抽取.随机数法的操作要点是:编号、选起始数、读数、获取样本.3.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平;随机数法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合个体无差异且个体数目较少的总体.4.简单随机抽样每个个体入样的可能性都相等.均为nN,但是这里一定要将每个个体入样的可能性、第n次每个个体入样的可能性、特定的个体在第n次被抽到的可能性这三种说法区分开,避免在解题中出现错误.考点一简单随机抽样的概念例1现在有一种够级游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人,并坐成一圈.够级开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定抓牌先后,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?[分析]本题主要考查简单随机抽样的概念,根据简单随机抽样的特点来判断.[解]简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张抓牌,但是各张在谁手里已被确定,只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌被抽取的可能性不相同,所以不是简单随机抽样.类题通法判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.[变式训练1]下列抽样的方式属于简单随机抽样的有__________.①从无限多个个体中抽取50个个体作为样本;②从1000个个体中一次性抽取50个个体作为样本;③将1000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本;④箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子;⑤福利彩票用摇奖机摇奖.答案③⑤解析简单随机抽样是从有限多个个体中抽取,所以①不属于;简单随机抽样是逐个抽取,不能是一次性抽取,所以②不属于;很明显③属于简单随机抽样;④中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以④不属于;很明显⑤属于简单随机抽样.考点二抽签法的应用例2现要在20名学生中抽取5名进行问卷调查,试写出抽取样本的过程.[分析]由题目可以获取以下主要信息:①有学生20名;②从中抽取的学生数为5名.解答本题可先根据题目特点选择合适的抽样方法,然后按所选抽样方法的步骤进行抽样.[解](1)先将20名学生进行编号,编号为1,2, (20)(2)把号码写在形状、大小均相同的号签上;(3)将号签放在某个箱子中充分搅拌,使之均匀,然后依次从箱子中抽取5个号签.于是和这5个号签上的号码对应的5名学生就构成了一个样本.类题通法利用抽签法抽取样本时编号问题可视情况而定,若已有编号如考号、学号、标签号码等,可不必重新编号,另外号签要求是大小形状完全相同而且一定要搅拌均匀,从中逐一不放回抽取.[变式训练2]某班有学生60人,为了了解学生各方面的情况,需要从中抽取一个容量为10的样本,用抽签法确定要抽取的学生.解(1)将这60名学生按学号编号,分别为01,02, (60)(2)将这60个号码分别写在相同的60张纸片上.(3)将这60张纸片放在一个盒子里搅拌均匀.抽出一张纸片,记下上面的号码,然后再搅拌均匀,继续抽取第2张纸片,记下号码.重复这个过程直到取出10个号码时终止.于是,和这10个号码对应的10个学生就构成了一个样本.考点三简单随机抽样的公平性例3用随机数法从100名学生(男生25人)中抽选20人进行评教,某男学生被抽到的可能性是()A.0.01 B.0.04 C.0.2 D.0.25[解析]明确是简单随机抽样且每个个体被抽到的可能性是相等的,问题的突破口就找到了.因为样本容量为20,总体容量为100,所以总体中每一个个体被抽到的可能性为20100=0.2.[答案] C类题通法本题涉及简单随机抽样的等可能性,但题目中多了一个干扰数据,是本题的一个易错点,只要弄清楚简单随机抽样任意一个个体被抽到的可能性相等,就不会出错了.[变式训练3]从总数为N的一批零件中抽取一个容量为30的样本,若每个零件被抽到的可能性为0.25,则N的值为()A.120 B.200 C.150 D.100答案 A解析根据简单随机抽样每个个体被抽取的可能性等于nN进行计算.因为从含有N个个体的总体中抽取一个容量为30的样本时,每次抽取一个个体时任一个体被抽到的可能性为1N ;在整个抽样过程中各个个体被抽取的可能性为30N,所以30N=0.25,从而有N=120.[例](12分)某企业要调查消费者对某产品的需求量,要从95户居民家庭中抽选10户居民,请用随机数法抽选样本.附部分随机数表:(一)精妙思路点拨(二)分层规范细解(三)来自一线的报告通过阅卷后分析,对解答本题的失分警示和解题启示总结如下:(注:此处的①②③见分层规范细解过程)(四)类题练笔掌握某商场新进70件商品,要从中选出10件商品进行质量检测,请用随机数法给出一个抽样方案.(随机数表见课本第9页)解第一步:将70件商品进行编号,编号为00,01,02,…,68,69;第二步:由于总体的编号是两位数,所以每次要从随机数表中选取两列组成两位数,从随机数表中的任意一个位置,选取任意一个方向进行读数.比如在表1-2中第3列和第4列的第6行开始选数,由上至下分别为35,11,48,77,79,64,58,89,31,55,00,93,80,46,66,…,其中77,79,89,93,80超出了69,不能选取,故选取的10个数字是35,11,48,64,58,31,55,00,46,66.第三步:根据以上10个数字抽取相应编号的商品即得抽样的样本.(五)解题设问(1)本题要求方法明确吗?________,用________法.(2)使用此种方法的关键是什么?________与________.答案(1)明确随机数(2)编号随机取数1.在简单随机抽样中,某一个个体被抽中的可能性()A.与第几次抽样有关,第一次抽中的可能性要大些B.与第几次抽样无关,每次抽中的可能性都相等C.与第几次抽样有关,最后一次抽中的可能性要大些D.每个个体被抽中的可能性无法确定答案 B解析在简单随机抽样中,每一个个体被抽中的可能性都相等,与第几次抽样无关.2.关于简单随机抽样的特点,有以下几种说法,其中不正确的是() A.要求总体中的个数有限B.从总体中逐个抽取C.它是一种不放回抽样D.每个个体被抽到的机会不一样,与先后顺序有关答案 D解析简单随机抽样,除具有A,B,C三个特点外,还具有抽样等可能性,每个个体被抽到的机会相等,与先后顺序无关.故选D.3.下列抽取样本的方式属于简单随机抽样的是()①从无限多个个体中抽取100个个体作为样本;②盒子里有80个零件,从中选出5个零件进行质量检验,在抽样操作时,从中任意拿出一个零件进行质量检验后再把它放回盒子里;③从8台电脑中不放回地随机抽取2台进行质量检验(假设8台电脑已经编好号,对编号随机抽取).A.①B.②C.③D.以上都不对答案 C解析简单随机抽样的四个特点:总体个数有限;逐个抽取;不放回抽样;每个个体被抽到的机会均等,与先后顺序无关.具有这四个特点的抽样是简单随机抽样.故选C.4.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是________.答案1 10解析每个个体被抽到的可能性都相等,都等于nN=20200=110.5.某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件在同一条件下测量,如何采用简单随机抽样的方法抽取样本?解解法一:抽签法:(1)将100件轴编号为1,2, (100)(2)做好大小、形状相同的号签,分别写上这100个号码.(3)将这些号签放在一个不透明的容器内,搅拌均匀.(4)逐个抽取10个号签.(5)然后测量这10个号签对应的轴的直径的样本.解法二:随机数法:(随机数表见课本附录2)(1)将100件轴编号为00,01, (99)(2)在随机数表中选定一个起始位置,如从第21行第1个数9开始.(3)规定读数的方向,如向右读.(4)依次选取10个数为91,49,45,23,68,47,92,76,86,46,则与这10个号签相应的个体即为所要抽取的样本.一、选择题1.下列问题中,最适合用简单随机方法抽样的是()A.某电影院有32排座位,每排有40个座位,座位号是1~40.有一次报告会坐满了听众,报告会结束以后为听取意见,要留下32名听众进行座谈B.从10台冰箱中抽出3台进行质量检查C.某学校有在编人员160人.其中行政人员16人,教师112人,后勤人员32人.教育部门为了解学校机构改革意见,要从中抽取一个容量为20的样本D.某乡农田有山地8000亩,丘陵12000亩,平地24000亩,洼地4000亩,现抽取农田480亩估计全乡农田平均产量答案 B解析根据简单随机抽样的特点进行判断.A的总体容量较大,用简单随机抽样法比较麻烦;B的总体容量较小,用简单随机抽样法比较方便;C由于学校各类人员对这一问题的看法可能差异很大,不宜采用简单随机抽样法;D总体容量较大,且各类田地的产量差别很大,也不宜采用简单随机抽样法.2.抽签法中,确保样本具有代表性的关键是()A.制签B.搅拌均匀C.逐一抽取D.抽取不放回答案 B解析逐一抽取、抽取不放回是简单随机抽样的特点,但不是确保样本具有代表性的关键,有放回抽取(个体被重复取出可不算再放回)也不影响样本的代表性,制签也一样.3.下列抽样试验中,用抽签法方便的是()A.从某厂生产的3000件产品中抽取600件进行质量检验B.从某厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D .从某厂生产的3000件产品中抽取10件进行质量检验答案 B解析 A 总体容量较大,样本容量也较大,不适宜用抽签法;B 总体容量较小,样本容量也较小,可用抽签法;C 中甲、乙两厂生产的两箱产品有明显区别,不能用抽签法;D 总体容量较大,不适宜用抽签法.故选B.4.某总体容量为M ,其中带有标记的有N 个,现用简单随机抽样方法从中抽取一个容量为m 的样本,则抽取的m 个个体中带有标记的个数估计为( )A .N ·m MB .m ·M nC .N ·M mD .N答案 A解析 设m 个个体中带有标记的个数为n ,根据简单随机抽样的特点知N M =n m ,解得n =N ·m M .5.用随机数法进行抽样有以下几个步骤:①将总体中的个体编号;②获取样本号码;③选定开始的数字;④选定读数的方向.这些步骤的先后顺序应为( )A .①②③④B .①③④②C .③②①④D .④③①②答案 B解析 本题主要考查随机数法的使用,首先要对总体中的数据进行编号,然后选定开始的数字和开始的方向开始读数进而获得样本号码.6.为了考查5000发炮弹的杀伤半径,现从中抽取10发进行考查,则每发炮弹被抽到的可能性为( )A.15000B.150C.1500D.110答案 C解析 从个体数为N =5000的总体中抽取一个容量为n =10的样本,每个个体被抽到的可能性都是n N =105000=1500.二、填空题7.某次考试有70000名学生参加,为了了解这70000名考生的数学成绩,从中抽取1000名考生的数学成绩进行统计分析,在这个问题中,有以下四种说法:(1)1000名考生是总体的一个样本;(2)1000名考生数学成绩的平均数是总体平均数;(3)70000名考生的数学成绩是总体;(4)样本容量是1000.其中正确的说法________.答案(3)(4)解析在统计学中,通常把被研究的对象的全体叫作总体.把组成总体的每个单位叫作个体.从总体中抽取n个个体,且这n个个体的某一指标为观测值,我们称这n个个体的该指标的观测值为样本.N称作这个样本的容量.所以,70000名考生的数学成绩是总体;1000名考生的数学成绩是样本;1000是样本容量;1000名考生数学成绩的平均数是样本平均数.因此,(1)(2)错误;(3)(4)正确.8.采用简单随机抽样,从6个标有序号A,B,C,D,E,F的球中抽取1个球,则每个球被抽到的可能性是________.答案1 6解析简单随机抽样中,每个个体被抽到的可能性是一样的.9.关于简单随机抽样,有下列说法:①它要求被抽取样本的总体的个数有限;②它是从总体中逐个地进行抽取;③它是一种不放回抽样;④它是一种等可能性抽样,每次从总体中抽取一个个体时,不仅各个个体被抽取的可能性相等,而且在整个抽样过程中,各个个体被抽取的可能性也相等,从而保证了这种抽样方法的公平性其中正确的有________(请把你认为正确的所有序号都写上).答案①②③④解析由简单随机抽样的特征可知.三、解答题10.下面的抽样方法是简单随机抽样吗,为什么?(1)某班45名同学,指定个子最高的5名同学参加学校组织的某项活动;(2)从20个零件中一次性抽出3个进行质量检验;(3)一儿童从玩具箱中的20件玩具中随意拿出一件来玩,玩后放回再拿出一件,连续玩了5件.解(1)不是简单随机抽样.因为这不是等可能抽样.(2)不是简单随机抽样.因为这是“一次性”抽取,而不是“逐个”抽取.(3)不是简单随机抽样.因为这是有放回抽样.11.从60件产品中抽取5件进行检查,请用抽签法抽取产品,并写出抽样过程.解抽签法步骤:第一步,将60件产品编号,号码是01,02, (60)第二步,将号码分别写在同样大小的纸条上,揉成团,制成号签.第三步,将号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取5个号签,并记录上面的编号.第五步,所得号码对应的产品就是要抽取的对象.12.现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?(随机数表见课本附录2)解第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数4.第三步,从数4开始,向右读,每次读取三位,凡不在010~600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到471,072,503,170,133,511.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.13.某中学高一年级有400人,高二年级有320人,高三年级有280人,以每人被抽取的概率为0.2,向该中学抽取一个容量为n的样本,求n的值.解∵n400+320+280=0.2,∴n=200.。
高二数学《简单随机抽样》导学案

解第一步,将800袋牛奶编号为000,001,…,799.
第二步,在随机数表中任选一个数作为起始数(例如选出第8行第7列的数7为起始数).
第三步,从选定的数7开始依次向右读(读数的方向也可以是向左、向上、向下等),将编号范围内的数取出,编号范围外的数去掉,直到取满60个号码为止,就得到一个容量为60的样本.
(3)抽取的样本不放回,样本中无重复个体;
(4)每个个体被抽到的机会都相等,抽样具有公平性.
例1人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?为什么?
解不是简单随机抽样.因为简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.
教学思路
(二次备课)
二、合作探究 归纳展示
任务1随机抽样
思考1为了了解高一学生身高的情况,我们找到了某地区高一八千名学生的体检表,从中随机抽取了150张,表中有体重、身高、血压、肺活量等15个数据,那么我们收集的个体数据是什么?
答因为我们了解的是高一学生身高的情况,所以需要收集的个体数据是表中学生的身高的数据.
四、作业布置
1、基础知识:
1.为了了解某市高三毕业生升学考试中数学成绩的情况,从参加考试的学生中随机地抽查了1 000名学生的数学成绩进行统计分析,在这个问题中,下列说法正确的是()
A.总体指的是该市参加升学考试的全体学生
B.个体指的是1 000名学生中的每一名学生
6.2.1 简单随机抽样 导学案(含答案)(2024)高一上学期北师大版必修 第一册

§2抽样的基本方法2.1简单随机抽样【学习目标】1.通过实例,了解简单随机抽样的含义及其解决问题的过程.2.掌握两种随机抽样方法:抽签法和随机数法.◆知识点一简单随机抽样1.简单随机抽样一般地,从N(N为正整数)个不同个体构成的总体中,逐个抽取n(1≤n<N)个个体组成样本,并且每次抽取时总体内的每个个体被抽到的可能性,这样的抽样方法通常叫作简单随机抽样.2.最常用的简单随机抽样方法有两种:抽签法和随机数法.【诊断分析】简单随机抽样的特点是什么?◆知识点二抽签法1.抽签法的定义先把总体中的N(N为正整数)个个体编号,并把编号依次分别写在形状、大小相同的签上(签可以是纸条、卡片或小球等),再将这些号签放在同一个不透明的箱子里搅拌均匀.每次随机地从中抽取,然后将箱中余下的号签搅拌均匀,再进行下一次抽取.如此下去,直至抽到预先设定的.2.抽签法的具体步骤(1)给总体中的每个个体编号;(2)抽签.【诊断分析】抽签法的优缺点分别是什么?◆知识点三随机数法1.随机数法的定义先把总体中的N个个体依次编码为0,1,2,…,N-1,然后利用工具(转盘或摸球、随机数表、科学计算器或计算机)产生0,1,2,…,N-1中的随机数,产生的随机数是几,就选第几号个体,直至选到预先设定的样本容量.2.利用随机数表进行抽样的具体步骤(1)给总体中的每个个体;(2)在随机数表中随机抽取某行某列作为抽样的起点,并规定读取方法;(3)依次从随机数表中抽取样本号码,凡是抽到编号的号码,就是样本的号码,并相同的号码,直至抽满为止.【诊断分析】利用随机数表进行抽样时易忽略什么问题?◆探究点一简单随机抽样的理解例1 (1)(多选题)下列抽取样本的方式中, 不是简单随机抽样的是()A.从无限多个个体中抽取100个个体作为样本B.盒子里共有80个零件,从中逐个不放回地选出5个零件进行质量检验C.从20件玩具中一次性抽取3件进行质量检验D.某班有56名同学,指定个子最高的5名同学参加学校组织的篮球赛(2)给出下面抽样方法:①从平面直角坐标系中抽取5个点作为样本;②某公司从仓库中的1000箱可乐中一次性抽取20箱进行质量检查;③从10部手机中逐个不放回地随机抽取2部进行质量检验(假设10部手机已编好号,对编号随机抽取).其中是简单随机抽样的是(填序号).[素养小结]简单随机抽样必须具备的特征:(1)总体中的个体数N是有限的;(2)抽取的样本是从总体中逐个抽取的;(3)简单随机抽样是一种不放回的抽样;(4)简单随机抽样是一种等可能的抽样.如果以上四个特征有一个不满足,那么就不是简单随机抽样.◆探究点二抽签法例2某电视台举办跨年晚会,邀请了10名相声演员、18名小品演员和30名歌手演出,演出开始之前需要从30名歌手中随机选出10人,从18名小品演员中随机选出6人,从10名相声演员中随机选出4人参与某项活动.试用抽签法确定选中的艺人.[素养小结]抽签法的五个步骤◆探究点三随机数法例3 [2023·江西鹰潭贵溪一中高一月考] 某口罩生产商为了检验产品质量,从总体编号为001,002,003,…,499,500的500盒口罩中,利用随机数表(以下摘取了随机数表中第12行至第13行)选取10盒口罩进行抽检,选取方法是从随机数表的第12行第5列的数字开始由左向右读取,则选出的第4盒口罩的编号为.第12行:16 00 11 66 14 90 84 45 11 65 7388 05 90 52 27 41 14 86 22 98第13行:12 22 08 07 52 74 95 80 35 69 6832 50 61 28 47 39 75 34 58 62变式[2023·广西大学附属中学高一月考] 总体由编号为01,02,…,19,20的20个个体组成,利用下面的随机数表选取5个个体,选取方法是从给出的随机数表的第1行第5列的数字开始由左到右选取,每次选取两个数字,则选出来的第5个个体的编号为()7816657208026314070243699728019832049234493582003623486969387481A.08B.04C.02D.01[素养小结](1)应用随机数表抽取样本时首先要选定开始读取的数字;(2)读数的方向可以向右,也可以向左、向上、向下等,如题中有规定,则按照题中要求读数;(3)选数时,不在编号范围内或已经产生的号码应跳过.拓展某部门要检验某公司生产的500克袋装牛奶的质量是否达标,需从800袋这样的牛奶中抽取50袋进行检测,现利用随机数表抽取样本,写出抽取过程.§2抽样的基本方法2.1简单随机抽样【课前预习】知识点一1.不放回地相等诊断分析解:(1)简单随机抽样是一种不放回的抽样;(2)简单随机抽样中,每个个体被抽到的可能性相等.知识点二1.一个样本容量诊断分析解:优点:简单易行,适合总体中个体个数不多的情况.缺点:当总体容量非常大时,对个体编号工作量大,搅拌均匀较难,影响样本的代表性.知识点三2.(1)编号(3)范围内剔除诊断分析解:一般有两个:一是选取的号码不在编号范围内;二是出现相同的号码.【课中探究】探究点一例1(1)ACD(2)③[解析] (1)A中,该抽样方式不是简单随机抽样,原因是简单随机抽样中总体中个体的个数是有限的,而该选项中总体中个体的个数是无限的;B中,该抽样方式是简单随机抽样;C中,该抽样方式不是简单随机抽样,原因是简单随机抽样是逐个抽取,而该选项中是一次性抽取;D中,该抽样方式不是简单随机抽样,原因是个子最高的5名同学是56名同学中特定的,不存在随机性,不是等可能抽样.故选ACD.(2)①中平面直角坐标系中有无数个点,这与要求总体中的个体数有限不相符,不是简单随机抽样;②中一次性抽取不符合简单随机抽样逐个抽取的特点,不是简单随机抽样;③符合简单随机抽样定义.故答案为③.探究点二例2解:将30名歌手从1到30编号,然后在形状、大小相同的纸条上写上这些编号,制成号签,再将号签放入同一个不透明的盒子中搅拌均匀,从中依次抽出10个号签,则相应编号的歌手参加活动.运用相同的办法从18名小品演员中选出6人参加活动,从10名相声演员中选出4人参加活动.探究点三例3222[解析] 从随机数表的第12行第5列的数字开始由左向右读取,剔除不在范围内和重复的编号,依次可以得到116,445,148,222,080,356,…,则选出的第4盒口罩的编号为222.变式D[解析] 从给出的随机数表的第1行第5列的数字开始由左到右依次选取两个数字,剔除不在范围内和重复的编号,依次可得08,02,14,07,01,所以选出的第5个个体的编号是01,故选D.拓展解:第一步,将800袋袋装牛奶编号,可以编为000,001,…,799;第二步,从随机数表中任意一个位置(例如随机数表中第1行第8列)开始,由左向右依次选取三位数,得到208,026,314,070,243,…,将其中大于799的号码和重复的号码舍弃,直到选出50个符合条件的号码为止;第三步,将得到的50个号码对应的50袋袋装牛奶选出进行质量检测.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学(高二上)导学案
本节课是人教版《高中数学》必修三第二章“统计”中的“随机抽样”的第一课时:简单随机抽样.其主要内容是介绍简单随机抽样的概念以及如何实施简单随机抽样.数理统计学包括两类问题,一类是如何从总体中抽取样本,另一类是如何根据对样本的整理、计算和分析,对总体的情况作出一种推断.可见,抽样方法是数理统计学中的重要内容.简单随机抽样作为一种简单的抽样方法,又在其中处于一种非常重要的地位.因此它对于学习后面的其它较复杂的抽样方法奠定了基础,同时,对于加深对概率相关计算公式的理解作了很好的铺垫。