生物化学笔记(整理版)

合集下载

生物化学笔记(整理版)1

生物化学笔记(整理版)1

《生物化学》绪论生物化学可以认为是生命的化学,是研究微生物、植物、动物及人体等的化学组成和生命过程中的化学变化的一门科学。

生命是发展的,生命起源,生物进化,人类起源等,说明生命是在发展,因而人类对生命化学的认识也在发展之中。

20世纪中叶直到80年代,生物化学领域中主要的事件:(一)生物化学研究方法的改进a. 分配色谱法的创立——快捷、经济的分析技术由Martin.Synge创立。

b. Tisellius用电泳方法分离血清中化学构造相似的蛋白质成分。

吸附层析法分离蛋白质及其他物质。

c. Svedberg第一台超离心机,测定了高度复杂的蛋白质。

d. 荧光分析法,同位素示踪,电子显微镜的应用,生物化学的分离、纯化、鉴定的方法向微量、快速、精确、简便、自动化的方向发展。

(二)物理学家、化学家、遗传学家参加到生命化学领域中来1. Kendrew——物理学家,测定了肌红蛋白的结构。

2. Perutz——对血红蛋白结构进行了X-射线衍射分析。

3. Pauling——化学家,氢键在蛋白质结构中以及大分子间相互作用的重要性,认为某些protein具有类似的螺旋结构,镰刀形红细胞贫血症。

(1.2.3.都是诺贝尔获奖者)4.Sanger―― 生物化学家 1955年确定了牛胰岛素的结构,获1958年Nobel prize化学奖。

1980年设计出一种测定DNA内核苷酸排列顺序的方法,获1980年诺贝尔化学奖。

5.Berg―― 研究DNA重组技术,育成含有哺乳动物激素基因的菌株。

6.Mc clintock―― 遗传学家发现可移动的遗传成分,获1958年诺贝尔生理奖。

7.Krebs―― 生物化学家 1937年发现三羧酸循环,对细胞代谢及分生物的研究作出重要贡献,获1953年诺贝尔生理学或医学奖。

8.Lipmann―― 发现了辅酶A。

9. Ochoa——发现了细菌内的多核苷酸磷酸化酶10.Korberg——生物化学家,发现DNA分子在细菌内及试管内的复制方式。

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理

完整版)生物化学知识点重点整理生物分子本章节将介绍生物分子的基本概念和特征,包括蛋白质、核酸、多糖和脂质的结构和功能。

本章节将讨论酶在生化反应中的作用机制和催化过程。

包括酶的分类、酶动力学和酶抑制剂等内容。

本章节将介绍生物体内的代谢途径,包括糖代谢、脂肪代谢和蛋白质代谢等重要过程。

本章节将探讨生物能量转化的过程,包括光合作用和呼吸作用等机制,以及相关的能量产生和消耗。

本章节将介绍生物体内遗传信息的传递过程,包括DNA复制、RNA转录和蛋白质翻译等重要步骤。

DNA复制DNA复制是遗传信息传递的第一步。

在细胞分裂过程中,DNA分子能够准确地复制自身,并将遗传信息传递给下一代细胞。

复制过程中,双链DNA分离,每条链作为模板合成新的互补链,形成两个完全一样的DNA分子。

RNA转录RNA转录是将DNA中的遗传信息转录成RNA的过程。

在细胞核中,RNA聚合酶将DNA作为模板合成RNA分子。

转录的产物是一条与DNA互补的RNA链,它可以是信使RNA(mRNA)、转移RNA(tRNA)或核糖体RNA(rRNA),这些RNA分子携带着遗传信息参与到蛋白质的合成过程中。

蛋白质翻译蛋白质翻译是将RNA中的遗传信息翻译成氨基酸序列,从而合成蛋白质的过程。

蛋白质翻译发生在细胞质的核糖体上,通过配对规则,每个三个核苷酸对应一个特定的氨基酸,从而组成特定的蛋白质。

翻译过程可分为启动、延伸和终止三个阶段。

以上是生物体内遗传信息的传递过程的重要步骤。

深入了解这些过程有助于理解生物体内的遗传机制和生命周期的维持。

本章节将讨论基因调控的机制和影响因素,包括转录因子、表观遗传学和信号转导等内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

本章节将探讨生物化学与人体健康的关系,包括营养物质、药物代谢和疾病发生机制等相关内容。

生物化学学习笔记(整理总结)

生物化学学习笔记(整理总结)

第1章蛋白质的结构与功能1.等电点:氨基酸分子所带正、负电荷相等,呈电中性时,溶液的pH值称为该氨基酸的等电点(isoelectric point, pI)当蛋白质溶液处于某一pH时,蛋白质解离成正、负离子的趋势相等,即成为兼性离子,净电荷为零,此时溶液的pH称为蛋白质的等电点。

结构域:分子量大的蛋白质三级结构常由几个在功能上相对独立的,结构较为紧凑的区域组成,称为结构域(domain)。

亚基:有些蛋白质分子含有二条或多条多肽链,每一条多肽链都有完整的三级结构,称为蛋白质的亚基(subunit)。

别构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。

蛋白质变性:在某些物理和化学因素作用下,其特定的空间构象被破坏,也即有序的空间结构变成无序的空间结构,从而导致其理化性质改变和生物活性的丧失。

2.蛋白质的组成单位、连接方式及氨基酸的分类,酸碱性氨基酸的名称。

组成单位:氨基酸. 连接方式:肽键氨基酸可根据侧链结构和理化性质进行分类:非极性脂肪族氨基酸、极性中性氨基酸、芳香族氨基酸、酸性氨基酸、碱性氨基酸、非极性侧链氨基酸、极性中性/非电离氨基酸、酸性氨基酸、碱性氨基酸酸性氨基酸:天冬氨酸,谷氨酸碱性氨基酸:精氨酸,组氨酸3.蛋白质一-四级结构的概念的稳定的化学键。

一级结构:蛋白质的一级结构指在蛋白质分子从N-端至C-端的氨基酸排列顺序。

主要的化学键:肽键,有些蛋白质还包括二硫键。

二级结构:蛋白质分子中多肽主链的局部空间结构,即该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。

主要的化学键:氢键三级结构:整条肽链中全部氨基酸残基的相对空间位置。

即肽链中所有原子在三维空间的排布位置。

主要的化学键:疏水键、离子键、氢键和范德华力等。

四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构。

主要的化学键:氢键和离子键。

4.蛋白质的构象与功能的关系。

一、蛋白质一级结构是高级结构与功能的基础二、蛋白质的功能依赖特定空间结构5.蛋白质变形的概念的本质。

[笔记]生物化学重点总结

[笔记]生物化学重点总结

第一章蛋白质的结构与功能1.20种基本氨基酸中,除甘氨酸外,其余都是L-α-氨基酸.2.支链氨基酸(人体不能合成:从食物中摄取):缬氨酸亮氨酸异亮氨酸3.两个特殊的氨基酸:脯氨酸:唯一一个亚氨基酸甘氨酸:分子量最小,α-C原子不是手性C原子,无旋光性.4.色氨酸:分子量最大5.酸性氨基酸:天冬氨酸和谷氨酸碱性氨基酸:赖氨酸、精氨酸和组氨酸6.侧链基团含有苯环:苯丙氨酸、酪氨酸和色氨酸7.含有—OH的氨基酸:丝氨酸、苏氨酸和酪氨酸8.含有—S的氨基酸:蛋氨酸和半胱氨酸9.在近紫外区(220—300mm)有吸收光能力的氨基酸:酪氨酸、苯丙氨酸、色氨酸10.肽键是由一个氨基酸的α—羧基与另一个氨基酸的α—氨基脱水缩合形成的酰胺键11.肽键平面:肽键的特点是N原子上的孤对电子与碳基具有明显的共轭作用。

使肽键中的C-N键具有部分双键性质,不能自由旋转,因此。

将C、H、O、N原子与两个相邻的α-C 原子固定在同一平面上,这一平面称为肽键平面12.合成蛋白质的20种氨基酸的结构上的共同特点:氨基都接在与羧基相邻的α—原子上13.是天然氨基酸组成的是:羟脯氨酸、羟赖氨酸,但两者都不是编码氨基酸14.蛋白质二级结构的主要形式:①α—螺旋②β—折叠片层③β—转角④无规卷曲。

α—螺旋特点:以肽键平面为单位,α—C为转轴,形成右手螺旋,每3.6个氨基酸残基螺旋上升一圈,螺径为0.54nm,维持α-螺旋的主要作用力是氢键15.举例说明蛋白质结构与功能的关系①蛋白质的一级结构决定它的高级结构②以血红蛋白为例说明蛋白质结构与功能的关系:镰状红细胞性贫血患者血红蛋白中有一个氨基酸残基发生了改变。

可见一个氨基酸的变异(一级结构的改变),能引起空间结构改变,进而影响血红蛋白的正常功能。

但一级结构的改变并不一定引起功能的改变。

③以蛋白质的别构效应和变性作用为例说明蛋白质结构与功能的关系:a.别构效应,某物质与蛋白质结合,引起蛋白质构象改变,导致功能改变。

生物化学笔记(完整版)

生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry) 是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2.物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收→中间代谢→排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3.细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4.生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5.遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid) 是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20 种,除脯氨酸为α-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L-α-氨基酸。

2.分类:根据氨基酸的R 基团的极性大小可将氨基酸分为四类:①非极性中性氨基酸(8 种);②极性中性氨基酸(7 种);③酸性氨基酸(Glu 和Asp) ;④碱性氨基酸(Lys 、Arg 和His)。

二、肽键与肽链:肽键(peptide bond) 是指由一分子氨基酸的α-羧基与另一分子氨基酸的α-氨基经脱水而形成的共价键(-CO -NH-) 。

(完整版)生物化学笔记(完整版)

(完整版)生物化学笔记(完整版)

第一章绪论一、生物化学的的概念:生物化学(biochemistry)是利用化学的原理与方法去探讨生命的一门科学,它是介于化学、生物学及物理学之间的一门边缘学科。

二、生物化学的发展:1.叙述生物化学阶段:是生物化学发展的萌芽阶段,其主要的工作是分析和研究生物体的组成成分以及生物体的分泌物和排泄物。

2.动态生物化学阶段:是生物化学蓬勃发展的时期。

就在这一时期,人们基本上弄清了生物体内各种主要化学物质的代谢途径。

3.分子生物学阶段:这一阶段的主要研究工作就是探讨各种生物大分子的结构与其功能之间的关系。

三、生物化学研究的主要方面:1.生物体的物质组成:高等生物体主要由蛋白质、核酸、糖类、脂类以及水、无机盐等组成,此外还含有一些低分子物质。

2 •物质代谢:物质代谢的基本过程主要包括三大步骤:消化、吸收T中间代谢T排泄。

其中,中间代谢过程是在细胞内进行的,最为复杂的化学变化过程,它包括合成代谢,分解代谢,物质互变,代谢调控,能量代谢几方面的内容。

3 •细胞信号转导:细胞内存在多条信号转导途径,而这些途径之间通过一定的方式方式相互交织在一起,从而构成了非常复杂的信号转导网络,调控细胞的代谢、生理活动及生长分化。

4 •生物分子的结构与功能:通过对生物大分子结构的理解,揭示结构与功能之间的关系。

5 •遗传与繁殖:对生物体遗传与繁殖的分子机制的研究,也是现代生物化学与分子生物学研究的一个重要内容。

第二章蛋白质的结构与功能一、氨基酸:1.结构特点:氨基酸(amino acid)是蛋白质分子的基本组成单位。

构成天然蛋白质分子的氨基酸约有20种,除脯氨酸为a-亚氨基酸、甘氨酸不含手性碳原子外,其余氨基酸均为L- a-氨基酸。

2 •分类:根据氨基酸的R基团的极性大小可将氨基酸分为四类:① 非极性中性氨基酸(8种):②极性中性氨基酸(7种):③酸性氨基酸(Glu和Asp):④ 碱性氨基酸(Lys、Arg和His)。

二、肽键与肽链:肽键(peptide bond)是指由一分子氨基酸的a-羧基与另一分子氨基酸的a-氨基经脱水而形成的共价键(-C0 -NH-)。

生物化学知识点总整理

生物化学知识点总整理

生物化学知识点总整理生物化学是研究生物体化学组成和生命过程中化学变化规律的一门科学。

它是生命科学领域的重要基础学科,对于理解生命现象、疾病发生机制以及药物研发等方面都具有重要意义。

以下是对生物化学一些重要知识点的总整理。

一、生物大分子1、蛋白质蛋白质的组成:蛋白质由氨基酸通过肽键连接而成。

氨基酸有 20 种,分为必需氨基酸和非必需氨基酸。

蛋白质的结构:包括一级结构(氨基酸的线性排列顺序)、二级结构(如α螺旋、β折叠等)、三级结构(整条肽链的三维空间构象)和四级结构(多个亚基的组合)。

蛋白质的性质:具有两性解离、胶体性质、变性和复性等。

蛋白质的功能:催化、运输、调节、免疫防御、结构支持等。

2、核酸核酸的分类:包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA 的结构:双螺旋结构,由两条反向平行的多核苷酸链围绕同一中心轴构成。

RNA 的种类:信使 RNA(mRNA)、转运 RNA(tRNA)和核糖体 RNA(rRNA)。

核酸的功能:DNA 是遗传信息的携带者,RNA 参与遗传信息的表达和调控。

3、糖类单糖:如葡萄糖、果糖、半乳糖等,是最简单的糖类。

寡糖:由 2 10 个单糖分子组成,如蔗糖、麦芽糖等。

多糖:包括淀粉、糖原、纤维素等,具有储存能量和构成结构的作用。

4、脂质脂肪:由甘油和脂肪酸组成,是生物体储存能量的重要形式。

磷脂:构成生物膜的重要成分。

固醇:如胆固醇,参与细胞膜的组成和激素的合成。

二、酶1、酶的概念:酶是具有催化作用的生物大分子,大多数是蛋白质。

2、酶的特性:高效性、专一性、可调节性和不稳定性。

3、酶的作用机制:通过降低反应的活化能来加速反应的进行。

4、影响酶活性的因素:温度、pH、底物浓度、酶浓度、抑制剂和激活剂等。

三、生物氧化1、生物氧化的概念:物质在生物体内进行的氧化分解过程,最终生成二氧化碳和水,并释放能量。

2、呼吸链:由一系列电子传递体组成,包括 NADH 呼吸链和FADH2 呼吸链。

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理

(完整版)生物化学知识点重点整理1.生物化学的概述生物化学是研究生物体内化学组成、结构、功能和变化的学科,是生物学和化学的交叉学科。

它研究的内容包括生物大分子(蛋白质、核酸、多糖和脂质)、酶、代谢、信号传导等生物体内的化学过程和物质的转化。

生物化学的研究对于理解生命的机理和病理过程具有重要意义。

2.蛋白质结构与功能蛋白质是生物体中最重要的生化分子之一,它们具有结构多样性和功能多样性。

蛋白质的结构包括四级结构:一级结构是氨基酸的线性序列;二级结构是氨基酸间的氢键形成的α螺旋和β折叠;三级结构是螺旋和折叠的空间结构;四级结构是多个多肽链的组合形成的复合体。

蛋白质的功能包括催化酶活性、调节信号传导、结构支架等。

3.核酸结构与功能核酸是生物体中的遗传物质,包括脱氧核糖核酸(DNA)和核糖核酸(RNA)。

DNA是双螺旋结构,由磷酸二酯键连接的脱氧核苷酸组成。

RNA是单链结构,由磷酸二酯键连接的核苷酸组成。

核酸的功能包括存储遗传信息、传递遗传信息和调控基因表达。

4.代谢与能量转化代谢是生物体内的化学反应过程,包括合成反应和分解反应。

合成反应是通过合成物质来维持生物体的正常生理功能;分解反应是通过分解物质来提供能量。

能量转化是代谢过程中最重要的一环,包括能量的捕获、传递和释放。

生物体通过代谢和能量转化来获取能量、转化能量和维持生命活动。

5.酶的催化机制酶是生物体内催化反应的生物分子,能够加速化学反应的速率,降低反应的活化能。

酶的催化机制包括底物识别、底物结合、酶底物复合物的形成、催化反应和生成产物。

酶的催化过程中涉及到酶活性位点的氨基酸残基和底物之间的相互作用。

6.信号传导与细胞通讯细胞内和细胞间的信号传导是维持生物体内稳态和调节机体功能的重要手段。

信号传导包括外部信号的接受、内部信号的传递和效应的产生。

细胞间的信号传导有兴奋性传导和化学信号传导两种方式。

7.糖的分类与代谢糖是生物体内最重要的能量源,也是合成生物大分子的前体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.掌握蛋白质的概念、重要性和分子组成。

2.掌握α-氨基酸的结构通式和20种氨基酸的名称、符号、结构、分类;掌握氨基酸的重要性质;熟悉肽和活性肽的概念。

3.掌握蛋白质的一、二、三、四级结构的特点及其重要化学键。

4.了解蛋白质结构与功能间的关系。

5.熟悉蛋白质的重要性质和分类导入:100年前,恩格斯指出“蛋白体是生命的存在形式”;今天人们如何认识蛋白质的概念和重要性?1839年荷兰化学家马尔德(G.J.Mulder)研究了乳和蛋中的清蛋白,并按瑞典化学家Berzelius的提议把提取的物质命名为蛋白质(Protein,源自希腊语,意指“第一重要的”)。

德国化学家费希尔(E.Fischer)研究了蛋白质的组成和结构,在1907年奠立蛋白质化学。

英国的鲍林(L.Pauling)在1951年推引出蛋白质的螺旋;桑格(F.Sanger)在1953年测出胰岛素的一级结构。

佩鲁茨(M.F.Perutz)和肯德鲁(J.C.kendrew) 在1960年测定血红蛋白和肌红蛋白的晶体结构。

1965年,我国生化学者首先合成了具有生物活性的蛋白质——胰岛素(insulin)。

蛋白质是由L-α-氨基酸通过肽键缩合而成的,具有较稳定的构象和一定生物功能的生物大分子(biomacromolecule)。

蛋白质是生命活动所依赖的物质基础,是生物体中含量最丰富的大分子。

单细胞的大肠杆菌含有3000多种蛋白质,而人体有10万种以上结构和功能各异的蛋白质,人体干重的45%是蛋白质。

生命是物质运动的高级形式,是通过蛋白质的多种功能来实现的。

新陈代谢的所有的化学反应几乎都是在酶的催化下进行的,已发现的酶绝大多数是蛋白质。

生命活动所需要的许多小分子物质和离子,它们的运输由蛋白质来完成。

生物的运动、生物体的防御体系离不开蛋白质。

蛋白质在遗传信息的控制、细胞膜的通透性,以及高等动物的记忆、识别机构等方面都起着重要的作用。

随着蛋白质工程和蛋白质组学的兴起和发展,人们对蛋白质的结构与功能的认识越来越深刻。

第一节蛋白质的分子组成一、蛋白质的元素组成经元素分析,主要有 C(50%~55%)、H(6%~7%)、O(19%~24%)、N(13%~19%)、S(0%~4%)。

有些蛋白质还含微量的P、Fe、Cu、Zn、Mn、Co、Mo、I等。

各种蛋白质的含氮量很接近,平均为16%。

因此,可以用定氮法来推算样品中蛋白质的大致含量。

每克样品含氮克数×6.25×100=100g样品中蛋白质含量(g%)二、蛋白质的基本组成单位——氨基酸蛋白质在酸、碱或蛋白酶的作用下,最终水解为游离氨基酸(amino acid),即蛋白质组成单体或构件分子。

存在于自然界中的氨基酸有300余种,但合成蛋白质的氨基酸仅20种(称编码氨基酸),最先发现的是天门冬氨酸(1806年),最后鉴定的是苏氨酸(1938年)。

(一)氨基酸的结构通式组成蛋白质的20种氨基酸有共同的结构特点:1.氨基连接在α- C上,属于α-氨基酸(脯氨酸为α-亚氨基酸)。

2.R是側链,除甘氨酸外都含手性C,有D-型和L-型两种立体异构体。

天然蛋白质中的氨基酸都是L-型。

注意:构型是指分子中各原子的特定空间排布,其变化要求共价键的断裂和重新形成。

旋光性是异构体的光学活性,是使偏振光平面向左或向右旋转的性质,(-)表示左旋,(+)表示右旋。

构型与旋光性没有直接对应关系。

(二)氨基酸的分类1.按R基的化学结构分为脂肪族、芳香族、杂环、杂环亚氨基酸四类。

2.按R基的极性和在中性溶液的解离状态分为非极性氨基酸、极性不带电荷、极性带负电荷或带正电荷的四类。

带有非极性R(烃基、甲硫基、吲哚环等,共9种):甘(Gly)、丙(Ala)、缬(Val)、亮(Leu)、异亮(Ile)、苯丙(Phe)、甲硫(Met)、脯(Pro)、色(Trp)带有不可解离的极性R(羟基、巯基、酰胺基等,共6种):丝(Ser)、苏(Thr)、天胺(Asn)、谷胺(Gln)、酪(Tyr)、半(Cys)带有可解离的极性R基(共5种):天(Asp)、谷(Glu)、赖(Lys)、精(Arg)、组(His),前两个为酸性氨基酸,后三个是碱性氨基酸。

蛋白质分子中的胱氨酸是两个半胱氨酸脱氢后以二硫键结合而成,胶原蛋白中的羟脯氨酸、羟赖氨酸,凝血酶原中的羧基谷氨酸是蛋白质加工修饰而成。

(三)氨基酸的重要理化性质1.一般物理性质α-氨基酸为无色晶体,熔点一般在200 oC以上。

各种氨基酸在水中的溶解度差别很大(酪氨酸不溶于水)。

一般溶解于稀酸或稀碱,但不能溶解于有机溶剂,通常酒精能把氨基酸从其溶液中沉淀析出。

芳香族氨基酸(Tyr、Trp、Phe)有共轭双键,在近紫外区有光吸收能力,Tyr、Trp的吸收峰在280nm,Phe在265 nm。

由于大多数蛋白质含Tyr、Trp残基,所以测定蛋白质溶液280nm的光吸收值,是分析溶液中蛋白质含量的快速简便的方法。

2.两性解离和等电点(isoelectric point, pI)氨基酸在水溶液或晶体状态时以两性离子的形式存在,既可作为酸(质子供体),又可作为碱(质子受体)起作用,是两性电解质,其解离度与溶液的pH有关。

在某一pH的溶液中,氨基酸解离成阳离子和阴离子的趋势和程度相等,成为兼性离子,呈电中性,此时溶液的pH称为该氨基酸的等电点。

氨基酸的pI是由α-羧基和α-氨基的解离常数的负对数pK1和pK2决定的。

计算公式为:pI=1/2(pK1+ pK2)。

若1个氨基酸有3个可解离基团,写出它们电离式后取兼性离子两边的pK值的平均值,即为此氨基酸的等电点(酸性氨基酸的等电点取两羧基的pK值的平均值,碱性氨基酸的等电点取两氨基的pK值的平均值)。

3.氨基酸的化学反应氨基酸的化学反应是其基团的特征性反应。

重要的有:(1)茚三酮反应所有具有自由α-氨基的氨基酸与过量茚三酮共热形成蓝紫色化合物(脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质)。

用分光光度法可定量测定微量的氨基酸。

蓝紫色化合物的最大吸收峰在570nm波长处,黄色在440nm波长下测定。

吸收峰值的大小与氨基酸释放的氨量成正比。

(2)与2,4-二硝基氟苯(DNFB)的反应在弱碱性溶液中,氨基酸的α-氨基很容易与DNFB作用生成稳定的黄色2,4-二硝基苯氨基酸(DNP-氨基酸),这一反应在蛋白质化学的研究史上起过重要作用,Sanger等人应用它测定胰岛素一级结构。

多肽顺序自动分析仪是根据相类似的原理设计的,即利用多肽链N端氨基酸的α-氨基与异硫氰酸苯酯PITC反应(Edman降解法)。

三、肽(peptide)1.肽键与肽链一个氨基酸的α-羧基和另一个氨基酸的α-氨基脱水形成的酰胺键称为肽键。

由氨基酸通过肽键相连而成的化合物称为肽。

肽键及其两端的α-碳原子相连所形成的长链骨架,即…Cα—C—N—Cα—C—N—C α—C—N—Cα…称为多肽主链,—CαCN—是重复单位。

肽键是蛋白质分子中的主要共价键。

多肽链的方向性是从N末端指向C末端。

肽分子中不完整的氨基酸称为氨基酸残基。

肽按其序列从N端到C端命名。

一般10肽以下属寡肽,10肽以上为多肽。

2.生物活性肽(1)谷胱甘肽(glutathione,GSH)是由Glu、Cys、Gly组成的一种三肽,又叫γ-谷氨酰半胱氨酰甘氨酸(含γ-肽键)。

Cys的-SH是主要功能基团,GSH是一种抗氧化剂,是某些酶的辅酶,可保护蛋白质分子中的-SH免遭氧化,保护巯基蛋白和酶的活性。

在GSH过氧化物酶的作用下,GSH还原细胞内产生的H2O2,生成H2O,2分子GSH被氧化成GSSG,后者在GSH还原酶催化下,又生成GSH。

(2)多肽类激素和神经肽人体内有许多激素属寡肽或多肽,如下丘脑—垂体分泌的催产素(9肽)、加压素(9肽)、促肾上腺皮质激素(ACTH,39肽)等。

催产素和加压素结构仅第3、第8位两个氨基酸残基不同,前者使平滑肌收缩,有催产和使乳腺泌乳的作用;后者能使小动脉收缩,增高血压,也有减少排尿的作用。

神经肽是在神经传导过程中起信号转导作用的肽类。

如脑啡肽(5肽)、β-内啡肽(31肽)、强啡肽(17肽)等。

随着脑科学的发展,会发现更多的生物活性肽。

第二节蛋白质的分子结构蛋白质是生物大分子,结构比较复杂,人们用4个层次来描述,包括蛋白质的一级、二级、三级和四级结构。

一级结构描述的是蛋白质的线性(或一维)结构,即共价连接的氨基酸残基的序列,又称初级或化学结构。

二级以上的结构称高级结构或构象(conformation)。

一、蛋白质的一级结构(primary structure)1953年,英国科学家F. Sanger首先测定了胰岛素(insulin)的一级结构,有51个氨基酸残基,由一条A链和一条B链组成,分子中共有3个二硫键,其中两个在A、B链之间,另一个在A链内。

蛋白质的一级结构测定或称序列分析常用的方法是Edman降解和重组DNA法。

Edman降解是经典的化学方法,比较复杂。

首先要纯化一定量的待测蛋白质,分别作分子量测定、氨基酸组成分析、N-末端分析、C-末端分析;要应用不同的化学试剂或特异的蛋白内切酶水解将蛋白质裂解成大小不同的肽段,测出它们的序列,对照不同水解制成的两套肽段,找出重叠片段,最后推断蛋白质的完整序列。

重组DNA法是基于分子克隆的分子生物学方法,比较简单而高效,不必先纯化该种蛋白质,而是先要得到编码该种蛋白质的基因(DNA片段),测定DNA中核苷酸的序列,再按三个核苷酸编码一个氨基酸的原则推测蛋白质的完整序列。

这两种方法可以相互印证和补充。

目前,国际互联网蛋白质数据库已有3千多种一级结构清楚。

蛋白质一级结构是空间结构和特异生物学功能的基础。

二、蛋白质的二级结构(secondary structure)蛋白质的二级结构是指其分子中主链原子的局部空间排列,是主链构象(不包括侧链R基团)。

构象是分子中原子的空间排列,但这些原子的排列取决于它们绕键的旋转,构象不同于构型,一个蛋白质的构象在不破坏共价键情况下是可以改变的。

但是蛋白质中任一氨基酸残基的实际构象自由度是非常有限的,在生理条件下,每种蛋白质似乎是呈现出称为天然构象的单一稳定形状。

20世纪30年代末,L.Panling 和R.B.Corey应用X射线衍射分析测定了一些氨基酸和寡肽的晶体结构,获得了一组标准键长和键角,提出了肽单元(peptide unit)的概念, 还提出了两种主链原子的局部空间排列的分子模型(α-螺旋)和(β-折叠)。

1.肽单位肽键及其两端的α-C共6个原子处于同一平面上,组成了肽单位(所在的平面称肽键平面)。

肽键C—N键长为0.132nm,比相邻的单键(0.147nm)短,而较C=N双键(0.128nm)长,有部分双键的性质,不能自由旋转。

相关文档
最新文档